STUDIES IN AUTOMATION AND-CONTROL 9

RECENT ADVANCES IN
COMPUTER-AIDED
CONTROL SYSTEMS
ENGINEERING

Edited by

M. JAMSHIDI
University of New Mexico
Albuquerque, NM, USA

and .

C.J.HERGET

Lawrence Livermore National Laboratory
Livermore, CA, USA

ELSEVIER

Amsterdam —London—New York—-Tokyo 1992

ELSEVIER SCIENCE PUBLISHERS B.V.
Sara Burgerhartstraat 25
P.QO.Box 211,1000 AE Amsterdam, The Netherlands

Library of Congress Cataleging-in-Publication Data

Recent advances in compuier-aided control systems engineering / edited
by M. Jamshidi and C.J. Herget.
D. ctm. —— (Studies in automation and control ; v. 8)

Includes bibliographical references and index.

ISBN 0-444-83255-%

1. Automatic centrol. 2. Computer-aided engineering.
I. Jamshidi, Mohammad. II. Herget, Chariles J. III. Series.
TJ213.R435 1932

629.8'9~-dc20 92-30685
CIP

ISBN: 0-444-89255-9 (Vol. 9)
ISBN:0-444-41792-3 (Series)

© 1992 Eisevier Science Pub[isheré B.V. Allrightsreserved.

No part of this publication may be reproduced, stored in a retrieval systermn or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of the publisher, Elsevier Science Publishers B.V., Copyright & Permissions Department,
P.0O.Box 521,1000 AM Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. - This publication has been registered with the Copyright
‘Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about
conditions under which photocopies of parts of this publication may be made in the U.5.A. All other
copyright questions, including photocopying outside of the U.S.A_, should be referred to the copyright
owner, Elsevier Science Publishers B.V., unless otherwise specified.

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as

a matter of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

pp. 21-32, 417-430: Copyright not transferred
This book is printed on acid-free paper.

Printed in The Netherlands

Recent Advances in Computer-Aided Control Systems Engineering
M. Jamshidi and C.J. Herget (Editors)
© 1992 Elsevier Science Publishers B.V. All rights reserved. : 53

Computer—aided design of intelligent controllers:
challenge of the ninetiest

- F.E. Cellier, L.C. Schooley, M.K. Sundareshan, and B.P. Zeigler

Department of Electrical and Computer Engineering, University of Arizona, Tucson,

Arizona 85721, U.S.A.
E.mail: Cellier@ECE.Arizona.Edu

Abstract

Major developments in Computer—Aided Control System Design (CACSD) soft-
ware are briefly reviewed. It is demonstrated that today’s CACSD tools are insufficient
for supporting the design of intelligent controllers. Major components of an intelligent
control architecture are presented, and it is outlined how these relate to CACSD soft-
ware design issues. It is suggested that the development of adequate CACSD tools for
intelligent controller design represents a true challenge for the nineties.

1. INTRODUCTION

In the sixties and early seventies, CACSD researchers concerned themselves mostly
with the efficient design of control algorithms. It was felt that the numerical algorithms
that were needed to design good controllers were quite delicate, whereas the resulting
control algorithms themselves and the implementation of these control strategies, once
designed, were fairly trivial undertakings. These research efforts resulted in a set of
more or less decently maintained libraries of CACSD Fortran subroutines [8]. The users
of these subroutines concerned themselves only with the subroutine interfaces, and had
often little to no understanding of the computations that went on inside these routines.

In the later seventies, the focus of CACSD research shifted to questions of user
interface design. Initially, the purpose of these renewed efforts was to make the previ-
ously developed library routines easier to apply. The libraries had become quite bulky,
and the development of new application programs calling upon one or several of these
library routines was a slow process. The efforts were not driven by a desire for improved
flexibility. Their only purpose was to protect the users from having to learn how to call
the library routines, which often had a formidable list of user—specifiable parameters.

t Research supported by NASA/University of Arizona Space Engineering Research Center for
the Utilization of Local Planetary Resources (SERC/CULPR).

54 F.E. Cellier et al.

These CACSD tools were menu—driven, utterly inflexible, and therefore limited in their
scope to the design of controllers for textbook applications [1].

A major breakthrough was achieved by Cleve Moler in 1980 with the design of
Matlab [27]. The focus of Matlab was no longer that of protecting the user from having
to understand control algorithms. In fact, Matlab hadn’t originally been designed
for control engineers at all. Matlab is a very intuitive high—level language for linear
matrix algebra. Matlab protects the user from having to program in Fortran, and
from having to call Linpack [14] and Eispack [18] routines. The reason why Matlab
became immediately popular among control engineers was the fact that most CACSD
subroutines made extensive use of Linpack and Fispack routines. By porting these
algorithms from Fortran to Matlab, the previously obscure CACSD algorithms became
at once very easy to read and understand, write and enhance, and ultimately maintain.
As Alan Laub once put it: “Control engineers don’t have problems with designing
controllers, they have problems with computing eigenvalues” (private communication).
The previous generations of CACSD tools had offered monolithic building blocks with
too coarse a granularity, with the effect that these tools consisted of large numbers of
partially overlapping and inflexible building blocks.

The potential value of the Matlab approach to CACSD was quickly recognized,
and, in the sequel, several CACSD tools were designed on the basis of either the Matlab
software itself [22,26,36,38] or at least the Matlab language definition [17,32]. Three of
these tools (CTRL-C, Matrix,), and ProMatlab became commercially available around
1985, and they still define the state—of~the—art in CACSD software. These tools offer
compact high-level matrix manipulation languages to describe control system design
algorithms in, and especially ProMatlab has taken a very clear stand on standards
relating to toolboz design issues. While ProMatlab provides for a suitable environment
to describe control algorithms in, ProMatlab’s toolboxes assume the place of the ear-
lier CACSD subroutine libraries. They encode actual CACSD algorithms for various
application areas. However, contrary to the obscure and error—prone Fortran subrou-
tines of the previous era, the ProMatlab toolboxes are themselves compactly coded in
ProMatlab, and are easily understandable, maintainable, and extendable.

Three trends have dictated the CACSD software design over the past five years:

1. All three of the aforementioned tools (CTRL-C, Matrix,), and ProMatlab have
been merged with nonlinear simulation programs (Model-C, System—Build, and
SimulLab) for the analysis and design of nonlinear control systems.

2. The user interfaces of all three tools are steadily progressing away from purely tex-
tual specifications of control system design algorithms towards integrated graphi-
cal software specification environments. Over the years, the focus of CACSD has
matured from a level of subprograms, to individual application programs, to de-
sign languages, and finally to integrated design environments. At the same time,
the name of the discipline has changed from formerly CACSD (Computer—Aided
Control System Design) to newly CACE (Computer—Aided Control Engineering),
reflecting the aforementioned shift in focus.

3. The trend goes towards incorporating the object—oriented programming paradigm
and world view [5] into CACE environments. XMath, the successor of Matrixy,
offers “data objects,” which, in terms of traditional software engineering, are simply

Computer-Aided Design of Intelligent Controllers 55

strongly typed data siructures that enable a more convenient operator overloading
capability than that offered in earlier CACSD tools, a need that had long been
recognized and had e.g. been promoted in [9]. Unfortunately, this concept has
not systematically been carried over to the graphical interface as well. All three
graphical environments are based on block diagrams rather than the more versatile
object diagrams proposed in [6,7].

2. HIGH-AUTONOMY SYSTEMS

According to NASA [29], automnation is defined as “the ability to carry out a pre—
designated function or series of actions after being initiated by an external stimulus
without the necessity of further human intervention.” In contrast, autonomy is defined
as “the ability to function as an independent unit or element over an extended period
of time performing a variety of actions necessary to achieve pre—designated objectives
while responding to stimuli produced by integrally contained sensors.”

Automation of a process is usually viewed as designing a (feedback) controller that
reduces the plant sensitivity to parameter variations and/or the influence of distur-
bances. Parameter variations may be due to minor variations in the manufacturing
process that is used to generate the plant, due to thermal effects, or to the influence of
external environmental variations. Mostly, these variations are minor (a few percent).
Feedback control architectures have helped to make plant operation more robust (less
sensitive) to such types of variations in comparison with open—loop command architec-
fures. '

Control theory was developed since it was recognized that there exist patterns be-
tween different types of systems that extend beyond a single application or application
area. PID—controllers can be used to improve the behavior of large classes of different
systems to large classes of different stimuli.

Modern control architectures, particularly the H*—control schemes, have focused
on making controllers even more robust by enabling them to adequately respond to
even larger classes of stimuli, and perform correctly with even less complete plant
information [15].

However until now, control engineers hardly ever concerned themselves with ab-
normal situations such as failures that occur within a subsystem of the plant to be
controlled or —even worse~ within the controller itself. Reliability of a controlled
system over long periods of time is rarely mentioned among the items on the desired
performance parameter list of control engineers. They are concerned with such proper-
ties as stability, steady—state accuracy, percent overshoot, and settling time; not failure
rate, down time, or repair activities.

Such factors must be considered, however, for high—autonomy system operation.
They add a new dimension of complexity to the overall system design. A high—
autonomy system contains at least one additional hierarchy layer about the conventional
control architecture. The overall architecture usually contains several alternative con-
ventional controllers. It knows which of them to choose at any particular moment and
when to switch between different controllers. It contains a task planning module that

56 F.E. Cellier et al.

computes the set points for active controllers, and sequences the tasks to be executed.
It reasons about both plant and controller integrity, detects faults (symptoms) as they
occur, localizes faults within the system (discovers failures), and thinks about means of
recovery from such faults {initiates repair activities). It furthermore collects statistics
on symptoms, failures, and successful (as well as unsuccessful) repair activities, i.e., it
learns from past experience. '

In the past, CACSD researchers considered the implementation of the controllers
that are being designed by the CACSD tools a fairly straightforward task. Therefore,
most CACSD tools output the design specifications either in the form of a state feed-
back vector or matrix, or maybe a transfer function. In those cases, the implementation
of the controller once designed is indeed a fairly simple task that can be easily accom-
plished using either analog or digital circuitry, or possibly a microprocessor. Only in
very special application areas, such as CNC machines or industrial robots, have the
CACSD tools directly been merged with the equipment that implements the designed
controllers.

In the era of intelligent control, this situation will have to change. Fault—tolerant
intelligent controllers for high—autonomy long-term operation of complex plants are so
involved that issues of controller implementation can no longer be considered a triv-
ial undertaking by any standards. Consequently, CACE environments will have to be
enhanced in yet another direction: not only the user surface has to evolve into an
object—oriented interactive graphical design environment, but also the machine inter-
face must be developed into a highly flexible and fairly complex surface able to either
{ransmit commands or control signals directly to the plant and receive telemetry in-
formation back for analysis and/or display on the screen, or alternatively synthesize a
control program that can be automatically downloaded into another computer for con-
trol execution, and that in itself may contain an elaborate user surface and an involved
machine interface.

3. SUPERVISORY CONTROL OF REMOTE EQUIPMENT

“Teleoperation of equipment in remote locations, such as the moon or deep-sea
environments, poses particular problems because of the communication delays between
the plant and the remote observer.

Direct man—in—the-loop control is out of the question since the communication
delays; which in that situation are part of the feedback control loop, would either render
the control system unstable or at least would severely limit the control bandwidth.

High—autonomy control, on the other hand, is often not feasible yet due to weight,
volume, and energy restrictions within the umbrella of the overall mission payload.
The necessary number—crunching power may not be available at the plant site. This is
particularly true for space missions.

A feasible compromise is attained by means of the supervisory control paradigm
proposed by Sheridan [34]. This architecture is shown in Fig.1.

Computer-Aided Design of Intelligent Controllers 57

Figure 1. Supervisory control architecture.

In the supervisory control scenario, the “local” plant controllers possess limited in-
telligence and are equipped to correctly function over a limited time horizon only.
Most of the intelligence resides on the “remote” (i.e., observer) site, where it is im-
plemented partly by more intelligent control algorithms (feasible since the number—
crunching power at the observer site is practically unlimited), and partly by direct
man—in—the-loop interaction. Since local control takes care of the innermost (least
intelligent, but fastest) control loops, the communication delays are not critical as long
as the local controllers are able to survive longer than the communication delay on

their own, i.e., the communication delay dictates the minimum required time horizon
of the local controllers.

Software has been developed to support supervisory control of equipment in remote
locations. OASIS {Operations And Science Instrument Support) [30] is a software
developed for that purpose. Figure 2 explains the layered QASIS software architecture.

Layered architectures to control complexity issues have been in existence for a
long time. The well-known ISO Open Systems Interconnection (OSI) standard for
layered communication protocols [23] is one example. More recently, the European
Computer Manufacturer’s Association (ECMA) proposed a similar layered architecture
for Computer—Aided Software Engineering (CASE) environments [16].

58 7 F.E. Cellier et ai.

space applications [19], and remote control of a prototype of an oxygen production
plant for planet Mars [10]. However, OASIS does not provide for capabilities related
to the design of supervisory control algorithms. This could become the task of the
next higher level in a layered CACE architecture. Layered CACE architectures have
been proposed in the past [3], but it makes little sense to start from scratch. It is much
more reasonable to build upon what is already available, namely the O ASIS supervisory
control environment.

4. INTELLIGENT CONTROL ARCHITECTURE

Conventional control has focused in the past on the control of fully operational
plants only. In the context of high—autonomy operation of process plants, conventional
control concepts are clearly insuflicient.

Fault-tolerant control adds to the system the capability to recognize anomalies
in plant behavior, isolate these anomalies within the system, propagate symiptoms to
failure descriptions, and finally propagate deduced failures to descriptions of corrective
actions [28]. However, fault—tolerant control adds to the overall controller complexity,
thereby enhancing the risk of controller failure.

Self-aware control reduces this risk again by adding capabilities to recognize and
counter anomalous controller behavior. To this end, each controller must contain a
supervisory agent that is able to reason about proper execution of the control strategy,
and that is able to issue a declaration of incompetence in case a controller is unable to
perform its designated task. The supervisory agent is equipped to reason about the
integrity of the controller it is responsible for, and about the integrity of the supervisory
agents of each controller on the next lower layer in the control hierarchy. A declaration
of incompetence can result from three causes: (i) a controller malfunctions due to
hardware failure or latent errors in the control software, (ii) the controller is faced
with a situation outside its operational umbrella, and (iii) the controller itself or its
supervisory agent run out of reasoning time (time—out error).

Cognizant control finally adds a capability to reason about the appropriateness of
commands issued by the human operators, explain to the humans in clear text the
results of this reasoning effort, why, for instance, an issued command sequence may
not be safe to execute. It is responsible for carrying on an intelligent communication
with the human operators, assisting them both during regular operation and emergency
processing with current system status assessment and future system status projection.

Intelligent control comprises the entire control envelope including all four control
layers (conventional control, fault—tolerant control, self-aware control, and cognizant
control). The conceptual decomposition of the intelligent control architecture is shown

in Fig.3.

Computer-Aided Design of Intelligent Controllers 59

OASIS

TAE+

Motif

X

Operating System

Figure 2. OASIS software architecture.

OASIS realizes a layered software architecture for supervisory control. X [40] is used
to manage graphical screens at the bit level. X also offers basic window support, i.e.,
X provides for the capability of creating multiple virtual screens that reside physically
on one real screen and manages the logic behind overlapping windows. X defines
a portable standard that allows to address different types of graphical devices in a
uniform manner. Motif [21] sits on top of X. Motif concretizes the windows that
the user works with. Tt defines how windows are opened, sized, moved around, and
closed. It also defines mechanisms for establishing window tools, such as pull-down
menus, but does not define the actions associated with using these tools. TAE+ [37]
sits on top of Motif. TAE+ defines the actions associated with window operations.
It provides window editors that allow the user to define pointing—device—controlled
push buttons and gauges, actions associated with items on pull-down menus, and
repositories for data (tables, graphs). Some versions of TAE+ also offer limited resource
management capabilities. At the top layer, OASIS [30] controls the data flows. QOASIS
is responsible for translating push button and pull-down menu actions into command
streams (expressed in the CSTOL language [13]), encapsulating commands in command
packets (using the CCSDS standard (20]), and transmitting these command packets to
the plant site using either DECnet or TCP/IP protocols. OASIS is also responsible for
receiving telemetry packets from the plant site, unpacking them, and processing them.
Processing of telemetry data usually means to place them in TAE4 data repositories.
However, OASIS can also “bridge” incoming data to another computer for further
processing, e.g. for the computation of intelligent control actions. Finally, OASIS can
be used to compute some control actions on its own, i.e., an incoming data packet may
cause a new command stream to be issued.

OASIS goes a long way towards providing a vehicle for the realization (i.e., im-
plementation) of supervisory control architectures in a portable (i.e., both platform-—
and application—independent) fashion, and this task in itself is far from trivial. Re-
cent applications of OASIS include remote control of a simulation model of a space
telescope [25], remote control of a prototype of a robotic fluid handling laboratory for

60 F E. Cellier et al.

Cogmizant Control

Self—Aware Control

Fault—Tolerant Control

Conventional Control /

Figure 3. Conceptual control decomposition.

The conventional controller may contain a model of the plant, e.g. in order to solve the
inverse dynamics problem. This can be a differential equation model, a neural network
model, a fuzzy logic model, or any among a variety of other model types. It is even
feasible to use a combination of several such models together with a model selector as
suggested in [4]. The fault—tolerant controller may require another model of the plant
in order to be able to detect anomalous plant behavior (by comparing the measured
plant output with the expected model output when driven by the same control signal).
The self-aware controller needs a model of the controller itself probably together with
a model of the plant to detect, isolate, and analyze faults in the control architecture.
Finally, the cognizant controller needs a model of the control environment. It also needs
yet another model of the control architecture. This model must be able to perform a
predictive simulation of the control architecture, and is used to generate future system
status projections for the consumption of the human operators and possibly the higher—
level controllers. This model can e.g. be used to assess the effects of a planned control
action before it is actually being implemented on the real plant.

4.1. Fault—Tolerant Control

Fault—tolerant control can be realized using signal envelopes. Signal envelopes can
be implemented in the control architecture by means of either state—windows or time-
windows [39). Time-windows are best suited to accompany event-based controllers
[41]. Violation of state-~windows requires watchdog monitors [10,24] for their detection.
In the interest of a maximized robustness of the fault-tolerant control architecture, both
types of failure detection mechanisms should be implemented in parallel. Watchdog
monitors can also be used to periodically test all actuators and sensors to see whether
they are still responding in accordance with their designed functionality.

The fault—tolerant control plane further implements a set of fault diagnosers [33]
that are able to reason about the cause of an anomaly once detected. Fault diagnosis
involves relating symptoms to hypothesized failures. This problem has been studied in

Computer-Aided Design of Intelligent Controllers 61

(24,28].

The fault—tolerant control plane also implements a set of fault recovery algorithms.
These algorithms usually require replanning, and have been studied by {11,41]. How-
ever, many fundamental questions have not been properly addressed yet, e.g., what
happens if a new fault occurs during replanning.

4.2 Self-Aware Control

Self-aware control is based on controller models (redundancy of control signal com-
putation) and feedback from the plant. Smart plant actuators acknowledge receipt of
(discrete) control signals, and smart plant sensors acknowledge accomplishment of the
commanded tasks. Time-windows can be used to verify that requested actions have
been accomplished in accordance with the designed specifications.

Other self~aware control concepts include:

(1) Robustness: Each procedure must have an umbrella to recognize its own limita-
tions. As a procedure reaches that limit, it declares itself incompetent, and passes
the responsibility to the next higher level in the conirol hierarchy. Thus, in this
architecture, robustness is a bottom—up process initiated at the lowest levels of the
control structure by the declaration of incompetence.

(2) Alarming: Incompetence declaration is linked to alarm levels. As long as all active
procedures are competent, the plant is in a “green” state. As soon as one or
several low-level controllers declare themselves incompetent, the plant proceeds
to level “yellow” with prescribed actions taking place at that point. If the next
higher-level controllers declare themselves equally incompetent, the plant proceeds
to level “orange,” etc.

(3) Alarm Filtering: As a plant or controller perturbation propagates upwards through
the control structure, the characterization of the perturbations progress from a lo-
cal, sub—system specific, characterization to a broader system—-based characteriza-
tion. High level information concerning the fault is developed automatically as the
control system evaluates its own performance.

4.3 Cognizant Control

The most important principle in the context of cognizant control is the capability
to perform a predictive simulation of the overall control architecture. In this way, com-
mands issued by the human operators (or by higher-level controllers for that matter)
can be simulated ahead (using a model of limited validity to make it execute fast).
If these commands don’t lead to simulated anomalies within a reasonable amount of
(simulated and real) time, it can be assumed that the action is safe, and the action
can be forwarded to the real plant. However, if a simulated anomaly is detected, the
fault diagnosers can be activated to reason about the cause of the simulated anomaly.
Simulated alarm filtering will propagate the reasoning process back to the operator
who then is given the opportuniiy to either confirm or cancel the requested command.

The same feature can also be used for an entirely different purpose. Operators can
issue a command to the simulator only, i.e., they can inform the control system that
they don’t wish this command to be actually implemented. This facility can be used

62 ' F.E. Cellier et al.

both for operator training on the real system and for troubleshooting the system while
it is in full operation.

Finally, it is extremely important that the operators develop trust in the control
architecture [31]. They will never trust the controllers if they don’t understand what
the controllers are doing when and why. Therefore, it is important that the cognizant
controllers contain a “model” of the human operators that they use to provide the
operators with the kind of information that they would expect in order to be assured
that the control architecture is still working reliably [35]. To give an example: if may
be necessary for the higher-level controllers to test the lower-level controllers from
time to time by going into a testing mode. They must never do so without informing
the operators of what is on their “mind.” There is nothing more disconcerting for an
operator than a control system that, without any obvious cause, suddenly becomes
“active” and changes its behavior. On a similar note, it is important that the high—
level controllers keep the operators “entertained,” i.e., provide them regularly with
summary information since otherwise the operators might get nervous and suspect
that the control system has stopped to operate. Yet, the high-level controllers should
never “volunteer” more information than human operators can comfortably digest at
any one time. Of course, the operators can actively request information whenever they
want and to whatever extent they deem suitable.

5. KNOWLEDGE REPRESENTATION AND PROCESSING

‘While the previous section introduced a conceptual decomposition of the intelligent
control architecture, it did not outline how the control knowledge is actually being
processed. For this purpose, a granular decomposition of the control architecture is
presented next.

Central to the realization of the objectives of intelligent control is an organized
mechanism for knowledge representation and processing. Such a mechanism should
include appropriate transformations between diverse knowledge types, such as numeric,
symbolic, linguistic, etc. residing at different parts of the generic intelligent control
architecture in order to provide proper interfacing in the execution of the overall control
task. While traditional control design procedures have paid a greater degree of attention
to purely numerical knowledge processing, relatively litile effort has been spent on the
processing of other forms of knowledge.

A granular hierarchy in the overall processing of knowledge for the control of a
complex dynamical system is shown in Fig.4. This figure also identifies the principal
features of the represented knowledge at the various stages and the possible tools for
processing of this knowledge. ' ‘

The granular decomposition is responsible for the translation of knowledge between
different levels of abstraction (granularity). This translation works both ways. High—
level commands issued by human operators need to be translated down to actual control
actions at the conventional control level, and measurement data need to be processed
(filtered) for consumption by the higher-level controllers and ultimately the human
operators. The data filtering process relates to both presentation of system status
during normal plant operation, and alarm filtering during emergency processing.

Computer-Aided Design of Intelligent Controllers _ 63

To and From
Conirol Services

Abstract b * Knowledge Selection
Knowledge g * Data Fusion

* Heuristics
_____>

= N N
E Symbolic * Reasoning
g Knowledge o S— * Task Planning
g * Fault Analysis
=Rt
g B
= =}
W @
5 % » Identification
g 3 Structural —» | ofDymamics
o =] * Fau ecrion
< ,_‘é Knowledge < * Control Strategy
§ " Selection
=
2 8
g Re
I * Representation
ﬁ Fuzzy - of Control Varizbles
Knowledge * Identification
Rl r— of Parameters
l T * Control Law Selection
Crisp * Control Execution

Knowledge l————

Figure 4. Granular control decomposition.

6. FUNCTIONAL CONTROL HIERARCHY

While the previous section discussed the translation of knowledge for the intelligent
control architecture, it did not outline how the control hierarchy is actually being
realized. For this purpose, a functional decomposition of the control architecture is
presented next.

Figure 5 shows the functional decomposition of the intelligent hierarchical con-
trol architecture. While the granular decomposition is responsible for the translation
of knowledge, the functional decomposition accomplishes the decomposition of actual
control tasks. The task planner is responsible for translating high—level managerial
commands into sequences of plant commands [12]. It is responsible for resource man-
agement, i.e., ensures that the resources needed to perform a particular task are avail-
able at the time when the task is executed. The task planner has a considerable degree
of freedom in determining which tasks are executed when and in what sequence. The
task scheduler decomposes task requests from the task planner into individual steps.
The difference between task planning and task scheduling is that the sequence of steps
within a task is always fixed, i.e., a single task can be viewed as a macro—step. The
command interpreter puts individual steps into action. It is responsible for preparing
the control architecture for execution of the next step. It selects the proper controllers
from the controller library, downloads them into the controllers, and kicks off the actual

64 F.E. Cellier et al,

implementation. The command ezecutor finally represents the actual controller that
carries out the commanded action.

Te and From
Knowledge Translation

Services
* Resource Umbrella S Task
* Timing Constraints Plannin,
* Goal Knowledge -+ B
-
l =]
g
* System Structure —] Task &
- 1 - o
Strategic Knowledge < Scheduling E 2
2 m
E w
o 5
] il
{:
= Subsystem Structure — Command § &
* Tactical Knowledge Interpretation ® 5
=
=]
5
had
=3
=1
g
8
* Subsystem Parameters _—____ Jyul Command -
* Real—Time Constraints :
¢ Precise Knowledge < Execution

Figure 5. Functional control decomposition.

Numerous such architectures have been proposed in the past, most prominently the
NASREM robotics architecture {2]. It should be noticed that no direct correspondence
exists between the functional and granular decompositions. The granular décomposi-
tion corresponds loosely to the world model column in the NASREM architecture, but
it is misleading to represent both decompositions on the same figure. The granular
decomposition simply provides the knowledge that is being used by the control services
in whichever way needed.

The functional décomposition explains how complex plants can be controlled in a
high—autonomy mode of operation. It does not discuss yet the nature of the actual
controller itself. The command executor can be a simple PID controller in some cases,
an optimal or adaptive controller in others, or something more exotic such as an event—
based controller [41] operating on time~windows [39].

In particular, the command executor can itself be realized as a hierarchical control
structure. Such a structure is shown in Fig.6. This architecture can be regarded
as a generalization of some well-known structures such as the action—critic control
structure and the master—slave formulations that are popular in neural network—based
processing. In the structure shown in Fig.6, Level V represents the processing of higher—
level functions (the reasoner), while Level L encompasses the remainder of the functions
leading to the exact determination of the control variables to be input into the system
to realize the desired objectives.

Computer-Aided Design of Intelligent Controllers 65

Human

Interface
B S
1 i
1 |
' v
: Level U !
1 ¥
1 '
1]
' 1
i Controller :
1 - 1
1 i
' 1
1 Level L -] System
) | Control Output
1
b J

Figure 6, Operational control decomposition.

It must be emphasized that each of the two levels shown could be decomposed into a
number of sublevels appropriate for a specific purpose. Some characteristics that guide
in the determination of the number of sublevels are the types of knowledge used in the
processing, the control objectives, the complexity of the mathematical representation of
the system dynamics, and the extent to which human operators are allowed to intervene
directly in the system operation.

It must also be stressed that complex plants contain many control variables. Ob-
viously, each control variable can be computed by a separate controller realized in a
distributed control architecture. Thus, all of the previously discussed hierarchies can be
duplicated as needed to support the distributed controllers used to implement individ-
ual control loops for different control variables.

7. CONTROL OF A MARTIAN OXYGEN PRODUCTION PLANT

7.1. Plant Description

The University of Arizona / NASA Space Engineering Research Center for Utiliza-
tion of Local Planetary Resources (NASA/UA SERC/CULPR) is investigating means
to generate oxygen from lunar and/or asteroidal rocks as well as from the Martian at-
mosphere. In particular, the Martian oxygen production plant has progressed beyond
mere simulation to the status of rapid prototyping. Figure 7 shows diagrammatically
the Martian oxygen production prototype.

The Martian atmosphere (90% CO; at a pressure of 6 mbar and at a temperature
of 200 K) is condensed (and thereby heated) in a compressor to a pressure of 1 atm. It
is then heated further to a temperature of roughly 900 K. At that temperature, carbon
dioxide (CO3) decomposes through thermal dissociation into carbon monoxide (CO)
and oxygen (O3). Unfortunately, these two gases have similar molecular Welghts and
are therefore difficult to separate. The heart of the system is an array of zirconia tubes.
These tubes separate the two gases in an electrocatalytic reaction. The oxygen is lique-
fied for storage, whereas the components of the CO/CO2 gas mixture are separated in

66 F.E. Cellier et al.

a membrane separator. The CO; is then rerouted, whereas the CO is further processed
by a Sabatier process to generate methane (not shown on Fig.7).

A,

/ / mu HEAT EXCHANGER
é CRYO VACUUM é
BLEED / CHAMBER /
VALVE / / RADIATOR
X é . /
D
tl;‘x?mmn » 2z
4

ﬁ

N cou. a
EXHAUST PRESBOR
—

Figure 7: Martian oxygen production plant.

CHILLED WATER

In space exploration, large amounts of oxygen are used for propulsion. In any chemi-
cally propelled spacecraft, a fuel reacts with an ozidizer. Together they constitute the
propellant. The simplest chemical reaction that can be used for propulsion is:

2Hy + Oy — 2H20 (1)

During the reaction, energy is freed that can be used to propel the spacecraft. In this
propellant, the fuel (liquid hydrogen) makes up only 11% of the weight whereas the
oxidizer (liquid oxygen) occupies 89%. While many different combinations of fuels and
oxidizers can be employed for propulsion, oxygen is the most commonly used oxidizer.
In all such reactions, the oxidizer is considerably more heavy than the fuel. For these
reasons, it is economically interesting to generate oxygen on other planets.

The 16—tube breadboard generates roughly 1 kg of oxygen per day. The methane
that is generated by the Sabatier process can be used as fuel. The current testbed could
lead to a flight-rated plant before the turn of the century to be launched to planet Mars
by NASA in an unmanned mission. A later manned mission could then use the oxygen
that would meanwhile have been produced as oxidizer for the return flight to Earth.
In this way, the manned mission could arrive on planet Mars with empty tanks, and
the propellant for the return flight would not have to be lifted out of the gravity well
of planet Earth. A manned mission to Mars could take place as early as 2014.

Computer-Aided Design of Intelligent Controllers 67

7.2. Command and Control Architecture

Figure 8 shows the overall command and control architecture.

EARTH | MARS

' |

(University (UA/NASA SERCQC)
of Arizona |
Campus) |
|
SUN 3/80 I
|

VAX Station 3100 (DAL .
>4 en
RCC/ROC jl,‘ ——| tocal [m—py FRAIT F""Prﬁuetion

7 (Intel- Plant
H ligence
[cce g

RCC/ROC =|I — PCl Pt PC2

| Interface Dynamic

‘ Computer Simulation
microVAXIVGPX of Testbed

| PC/AT

l PC/AT

Figure 8: Command and control architecture.

Notice the usage of the terms “remote” and “local.” In the terminology employed here,
“local” stands for the plant site, whereas “remote” denotes the human commander.
This nomenclature comes naturally to control engineers who view their plant as central.
Psychologists have a tendency to view the human commander as central, and therefore
call that location “local” and the plant site “remote.”

At the remote site, several remote observers (ROCs) can share in monitoring an
ongoing experiment. Every one of the ROCs runs the OASIS software. One of the
remote OASIS workstations is the remote commander (RCC), who actually commands
and controls the experiment. Only one commander is allowed to issue intrusive com-
mands to the plant at any one time. However, one or several other remote sites can
obtain telemetry packages from the plant. They are also allowed to send non—intrusive
commands to the plant. A key assignment mechanism is used to determine who, among
the remote participants, is the commander. The rationale behind this decision is the
following: several human experts may be located at several different sites on Earth. If
a particular type of expert knowledge is required during a particular phase of the op-
eration, the most knowledgeable person will be given the command key, while all other
participants become passive observers. They can communicate with the momentary
commander through “open microphones.” If, during a later phase of the operation,
another participant becomes more knowledgeable, the command key can be passed on
to that individual, and the former commander becomes now one of the observers.

At the local site, a command and communication center {CCC) is respousible for
the communication with the RCC and the ROCs. The CCC is also the key manager.
In the future, a second CCC will be added at the remote site, thus, the RCC and ROCs

68 F.E. Cellier et al.

will communicate only with the Earth-bound CCC, whereas the processing plants will
communicate only with the Mars—-bound CCC. The long—distance communication will
be limited to a communication between the two CCCs.

The CCC decodes command packets, and passes them on to the appropriate local
controlling computer (LCC) for further processing. The CCC can be used to man-
age several LCCs simultaneously controlling several different pieces of equipment. The
LCCs are responsible for the processing of local intelligence. They monitor their re-
spective plant within the umbrella of local control. A limited set of intelligent decisions
can be made by the L.CCs directly without conferring with their RCC.

However, the LCC is not responsible for managing the sensors and actuators, and
for’ implementing the actual low-level control. This task is reserved for the “smart
sensor.” The smart sensor offers fast sensor monitoring and actuation, A/D and D/A
conversion, time-multiplexing, as well as a limited amount of programmable logic con-
trol. However, since the memory available for storing control programs is very limited,
these programs must be frequently exchanged. Therefore, the LCC assumes the role
of the command scheduler, whereas the smart sensor assumes that of the command
ezecutor.

7.3. Task Planning and Scheduling

The task planner used in the oxygen production prototype is fairly rudimentary.
An elaborate task planner was not required. Figure 9 shows how the task planner
manages the resource and time umbrellas for four different control loops during the
start—up sequence, the steady—state operation, and the shut—down procedure. The
four control loops are concerned with voltage control, temperature control, flow rate
control, and control of a gas chromatograph.

The first control loop is concerned with the voltage applied across the wall of the
zirconia cell. During the separation of oxygen and carbon monoxide, a voltage of 2 V
DC must be applied to the zirconia cell for the electrocatalytic reaction to take place.
In the presence of zirconia, the hot oxygen gas is ionized by borrowing four electrons
from the cathode located at the inside wall:

O, + 4e™ — 20%~ (2)

The oxygen ions are sufficiently small to migrate through the porous zirconia wall.
Upon arrival at the other side, they shed the electrons to the anode:

20% 5 0y + 4e” (3)

and free oxygen is released.

Computer-Aided Design of Intelligent Controllers

T3 minimum time
time window

Start-Up Operation Steady-State Operation

Maintain Voltage

Temperature
Contrat

T control commands

VolLageConlml,E g

* SEensorrasponse

Slhut—Down Operation

i Tum off
[Voltage

Turn off
Heater

He co, | i
.__(_;_'(.:L _Ca_llbr_a_tlo_rl _____ E G.C. Analysis of Exhaust Gas é
: N ——— time
System State Variable Tabla System State Variable Table System State Variable Table
temperaiure 25 temperature 900 temperature 25
upper bound 30 upper bound 915 upper bound 30
lower bound 20 lower bound 885 | lower bound 20
flow rate 0.07 flow rate 0.07 flow rate 0.07
upper bound 0.08 upper bound 0.08 upper bound 0.08
lower bound 0.06 lowsr bound 0.08 lower bound 0.06
voltage 0 voltage 500 voltage 0
upper bound 0 upper bound 2.05 upper bound 0
lower bound 0 lower bound 1.65 lower bound 0
input gas type He input gas type Co, input gas type " He

Start—Up Operation Steady—State Operation Shut~down Operation

Figure 9: Task planning for Martian plant.

The oxygen preduction rate is very sensitive to the applied voltage. Below 0.6 V (Nernst
voltage), no oxygen is produced at all. For higher voltages, the oxygen produced is
linear in the applied voltage. However, at 2.3 V, the zirconia cell is permanently
destroyed. However, there is also a relation between voltage and temperature. No
voltage should be applied to the cell before steady—state temperature and gas flow
rate have been reached, and the voltage should be switched off at the beginning of the
shut—down sequence.

Temperature control is also essential. A temperature of at least 850 X is necessary
for thermal dissociation of the carbon dioxide to take place. However, at temperatures
between 1000 K and 1200 K, the zirconia cell is permanently damaged (the critical
temperature depends on the material used for electrodes and seals). There also exists
a relation between temperature control and gas flow. Obviously, the proper gas flow
rate must be established before heating can take place. However, around 600 K, there
is a risk of carbon deposition along the walls of the zirconia cell. For that reason, the
cell is being purged with helium gas during start—up and shut~down. The helium gas
is only replaced by carbon dioxide gas after the zirconia cell has reached its operational
temperature of 900 K.

The third control loop is concerned with maintaining the appropriate gas flow rate
and with operating the electronically controlled valve that switches between the helium
and carbon dioxide gas.

70 F.E. Cellier et al.

The fourth control loop operates the gas chromatograph that is used to analyze the
various gases during the experiment. During start—up, the gas chromatograph needs
to be calibrated, and during steady-state, various gas samples can be routed through
the gas chromatograph by appropriately setting several valves.

Figure 10 shows the physical configuration of a single—cell breadboard used during
the initial phase of this project.

Real-Time Control System

High-Level Control System
(Personal Computer) ;

[Voltage Control |

ﬁemperamre Control l ‘ System Monitoring |
[Valve Control] (Collecting Data |
[Exception Handler |

Low-Level Control System
(Smart Sensor)

Control tliimute Control ProgramJ |Ca1ibrate Data Channelaﬂ i Sensory
A : - + Responses
Signals | |[Send Control Signal |[Read Sensory Data |[Lad
B Oxygen Production System ;
| C(_)ntrol Exhaust Gas -~ [SSSSHww—y Calibration\ i Sensory
i Signal RS Gas i -Data |
, Heater ', Temperature!
P Control 3 B8R)] :
! Signal (1) i o :
:_ :E E. Flow Rate |
! Voltage i @ :
“—b: Conmol ! e i Pressure {—
{ Signal (1) e
s o Cument |
: gglr:';ol i p-— S -» Exhaust Gas i} l(lgen :
! Si I | ¥ Transducers " :
: ignals 2) i OaG T : Temperature Transducer 1 Voltage
! H P : Pressure Transducer " (1) '
! v F : Fiow-Fate Tranaducer o H
' i V_: Votage i H

Figure 10: Configuration of single—cell breadboard.

While the task planner is currently still very simple, this part of the program will need
to be drastically expanded before the full-scale plant can be launched. Task planning
is not only respounsible for setting the pace for normal operation, but also for recovering
the plant after a fault has occurred. The Martian task planner must be able to deal
with sand storms, contaminated membranes and tubes, leakage of seals, and tripped
circuit breakers, to mention just a few of the types of failures that are ezpected to occur
during long-term operation of this high—autonomy control system.

Computer-Aided Design of Intelligent Controllers 71

7.4. Command Scheduling

The command scheduler is an independent agent that resides in the local controlling
computer. It accepts the next command to be executed from the task planner and
prepares the control architecture for its execution. The command scheduler selects the
appropriate low-level control algorithm from a set of precoded algorithms, downloads
the selected controller into the smart sensor, and initiates the control activity.

The command scheduler is also responsible for receiving and processing sensory
events that signal task completion. It is responsible for maintaining the appropriate
time-window information that allows it to judge success or failure of task execution.
Consequently, the command scheduler is responsible for fault detection during transient
operational phases, such as the start—up and shut—down phases that were previously
discussed. In case of a failure (the sensory event has arrived too-early or too-late), it
triggers the fault diagnoser, which starts to reason about the nature of the observed
fault so as to relate the observed symptom to the failure that caused it.

Time windows are intimately linked to event—based control logic. They ensure early
detection of faults during transient operational phases, and thereby provide the high—
autonomy system with sufficient reliability to allow the system to operate adequately
over an extended period of time. Figure 11 explains the time~window mechanism.

state
A
Goal Jrooorereee e e e
Early—Erronf Late—Error
i Recovery Recovery
Command Command
' , R time
Start Control Command minimum - maximmum

time time

Figure 11: Time—window mechanism.

Fach command issued by the command scheduler is accompanied by an expectation as
to how much time the commanded task will require for its completion, i.e., before the
goal state is reached. Due to plant parameter uncertainties and external disturbances,
the time cannot be estimated precisely. Instead, the uncertainty is captured in a so—
called time window. A sensor should record the fact that the next goal state has been
reached, and should report the time of task completion to the command scheduler.

72 FE. Cellier et al.

If the sensory event arrives too—early or too-late, a fault diagnoser is activated. The
objective of the diagnoser is to relate the observed symptom back to its cause, the
failure. It then calls upon the failure recovery agent to come up with a new command
sequence that will put the high-autonomy system back on track. Once the failure
recovery agent has decided what to do, it calls upon the task planner to work out a
new command sequence that implements the suggested recovery action.

The time-window mechanism has been described in detail in [39]. The time win-
dows associated with the control experiment are shown on Fig.9.

7.5. Command Execution

The actual low-level control is implemented in a microcontroller called a smart
sensor. Once the command scheduler has downloaded a control program into the
smart sensor, the low—level controller is activated. This can be a classical controller of
any vintage. Figure 12 shows the two—level local control architecture employed in this
testbed.

t PC2 -
current
voltage
co2prs

Control o2prs
Programs PC1 co2flow
o2flow
o2temp
zZro2temp
co2temp
A
Y
CHN10[™®
BlIT20 CHNs[™
CHN7
CHNég |
BITi8 CHN4 [
Chinz
BIT16 OHN 1
COz Temperature
ZrO,; Temperature
Qs Temperature
O» Flow Rate —
— CG} Flow Rate
PLANT Ogp Pressure
- COz Prossuro
ZrO2 —Cell Voltage
ZrOo—Cell Current

- 6., Amalysis Outpot

Figure 12: Two-level local control architecture.

Computer-Aided Design of Intelligent Controllers 73

The smart sensor accepts sensory information from the plant. Sensory signals are then
time-multiplexed before they are forwarded to the local controlling computer (a PC).
The smart sensor also receives multiplexed control signals from the PC, unpacks them,
and sends them out through its actuator channels to the plant. In this mode, the smart
sensor does not perform any control at all, but only serves as an interface between the
plant and the local controller. However, the smart sensor can be programmed to either
preprocess the sensory signals before sending them to the PC (sensor fusion), or post-
process the actuator signals before sending them {o the plant (actuator expansion), or
compute actuator signals directly from the sensory information received. In the lat-
ter case, the smart sensor acts as a microcontroller, and that is the mode, in which
the testbed is operated. The memory of the smart sensor used here is very limited.
Therefore, the microcontrol programs must be short. For that reason, different control
programs are downloaded into the smart sensor from the PC during various opera-
tional phases. However, using the smart sensor as a microcontroller (programmable
logic controller), it is possible to ensure high-speed control, relieve the PC from low—
level control activities, and reserve its computing cycles for the higher—level intelligent
control decisions. ‘

In the testbed, all control activity was event—based, but there is nothing in the ad-
vocated methodology that would dictate such a solution. It should be noticed that the
control programs are indeed different during different phases. For example, the voltage
is carefully ramped up in the start-up phase by one control program (to avoid over-
shoot), whereas the voltage control program operates quite differently during steady—
state operation.

It is useful to discuss temperature control in a little more detail. During start—
up, the heater is simply switched on. When the temperature reaches a value of 890
K, a threshold sensor detects this fact, and sends a sensory event back to the smart
sensor that is then forwarded to the PC. The PC compares the time of arrival with
the time window specified for (electrically) heating the system. If the completion
event arrives too—early, something bad must have happened. Since the electrical heater
is operating at its maximum power, the completion event should never arrive foo—
early. If this is nevertheless the case, the fault diagnoser concludes that there must be
something drastically wrong in the system, and the recovery unit decides that this fault
is not reparable and instructs the task planner to design a graceful shut—down sequence
starting from the current state. If the completion event arrives too—late (or rather, it
doesn’t arrive in time), the fault diagnoser concludes that either the power supply or
the heater is not functioning properly. In this case, the recovery agent switches both
the power supply and the heater off and back on, sends another command to the power
supply to reset its voltage, and instructs the task planner to try again with a new
time window. If the second attempt fails also with a too-late indication, the recovery
unit concludes that the situation is hopeless and instructs the task planner to design a
graceful shut—-down.

During steady—state operation, temperature control is governed by three rules:
1. Rule_1: Heating If the current temperature, Temp, is below 890 K, turn the
heater on and enable Rule_3.

2. Rule_2: Cooling If the current temperature, Temp, is above 915 K, turn the
heater off and disable Rule_3.

74 F.E. Cellier et al.

3. Rule_3: Approach If the current temperature, Temp, is between 890 K and 898
K, turn the heater on, estimate the expected remaining heating time 7344, which
is proportional to the difference of the goal temperature, 900 K, and the current
temperature, Temp, and schedule a turn-heater—off event to occur 7h,; time units
into the future.

The rationale behind this event—based control logic is simple: since the temperature
sensor is not directly attached to the heat source, a certain overshoot behavior is possi-
ble. To prevent the temperature from overshooting, Rule_3 is used. This rule functions
similarly to a corrective maneuver of a spacecrafl: the amount of necessary correc-
tion is computed beforehand and then the vernier engine is fired for a precomputed
period of time. To avoid problems with local heat stow, the goal temperature is al-
ways approached from below, i.e., Rule_3 is disabled during cooling periods until the
temperature has fallen safely below the goal temperature everywhere.

7.6. Watchdog Monitors

No time windows are shown on Fig.9 during steady—state operation of the oxygen
production plant. This is understandable since, during normal steady—state operation,
the same control algorithms are constantly active, and neither the task planner nor the
command scheduler have anything to do.

Watchdog monitors are independent intelligent agents that monitor the high—
autonomy system during steady—state operation. They have knowledge of some compo-
nents of nominal system behavior during steady-state, and compare their expectations
with the actually observed behavior. If a significant discrepancy is found, the “dis-
quieted” watchdog alerts a fault diagnoser to come up with an explanation for the
observed anomaly.

The watchdog monitor philosophy has been advocated in [24]. In the incident
described below, it was one of the watchdogs that finally, and unnecessarily late, got
aroused and triggered off the event chain that ultimately led to the restoration of the
“distressed” temperature controller.

7.7. Fault Diagnosis

Contrary to the watchdog monitors that are active daemons throughout the steady—
state operational phase, fault diagnosers are dormant sequential routines. They are
activated only after an anomaly has been detected. The purpose of a fault diagnoser
is to relate an observed symptom back to the failure most likely to have caused it.

In the testbed, only an extremely simple global rule-based fault diagnoser was
employed. Those failures from which the high—autonomy architecture can recover are
indicated by clear symptoms, and therefore, no complex fault diagnosers are needed.
However, before an actual plant can be launched, it must be ensured that the high—
autonomy system can recover from all foreseeable sorts of mishap. It will then become
essential that the precise nature of any observed failure is well understood before an
automated repair activity is initiated. For that purpose, a multi-level hierarchical
model-based diagnoser will be needed. Such an architecture was first proposed by [33].
It has meanwhile been elaborated upon by [11].

'Computer-Aided Design of Intelligent Controllers 75

7.8. Fault Recovery

The findings of the fault diagnoser will invariably be forwarded to a fault recovery

agent. It is the task of that agent to decide whether something can be done about the
failure or not.

If recovery is possible, it is the job of the recovery agent to compute a new goal state.
It then provides the task planner with the current state and the desired goal state, and
requests that a new command sequence be computed that moves the high-autonomy
system from the current state to the desired goal state.

If no recovery is possible, the recovery agent will provide the task planner with

the current state only and request computation of a command sequence for graceful
shut—down.

7.9. Description of an Incident

The following section uses actual data from a portion of a 100 hour test run to
illustrate the operation of the agents described above.

Figure 13 shows the zirconia cell temperature between 43,000 seconds and 107,000
seconds from start of the test. This is a portion of the steady—state operation.

Temperature (C degree)
$20.00

910.00 I

00,00 AL AN AR ML AN LI A et WAL 4 TTAY

YW urryTv 124 YE I

890.00

880.00

50.00 60,00 70.00 80.00 90.00 100.00
Time (x 10°)

Figure 13: ZrO, temperature plotted over time.

It is immediately visible that around 71,000 seconds, something strange happened. The
system recovered from the anomaly roughly 2,000 seconds later.

What happened? The anomaly started while a heavy thunderstorm took place.
This was during the evening, and no human observer was at the plant site. From other
curves, it can be concluded that at that time, there was a short power failure (less than 2
seconds). The backup power supply took over, but there are signs of a temporary power
surge. Somehow, this transient upset the smart—sensor-based temperature controller.

76 F.E. Cellier et al.

It is still not clear exactly what happened. It must be assumed that the power
failure stopped the real-time clock of the smart sensor. Thus, when Rule.3 fired, it
computed the remaining heating time, but the turn—heater—off event never arrived since
the real-time clock wasn’t working. Thus, the heater stayed on until Rule_2 fired, which
disabled Rule_3. Comnsequently, the system then cooled itself down until Rule_1 fired,
which reenabled Rule_3, which computed a new remaining heating time, etc.

It should have been easy to detect this anomaly immediately. However, the software
being used did not require that the value of the real-time clock of the smart sensor
be reported back to the PC, and thus, none of the watchdog monitors suspected any
trouble. In normal operation, Rule 2 should never be fired. Thus, the first firing of
Rule 2 should have sufficed to alert a fault diagnoser — but this case hadn’t been
foreseen, and the firing of Rule_2 during steady—state operation had not been declared
as an anomalous event. Finally, one of the watchdogs got suspicious — unnecessarily
late. Since temperature change is normally such a slow phenomenon, that particular
watchdog was executed only once every 30 minutes to save computing cycles on the PC.
This is a serious drawback of the watchdog monitor philosophy per se: since watchdogs
are daemons, they must be executed repetitively even if nothing is wrong. If they
are executed rarely, they aren’t very effective, but if they are executed frequently,
they consume lots of computing power. Fortunately, since they are daemons, they run
asynchronously and could be installed on separate CPUs, even though that was not
done in this testbed. '

Fault diagnosers are harmless. They are sequential routines and don’t consume
any computing cycles unless an anomaly has been observed. In this incident, the fault
diagnoser, once invoked, worked beautifully. It concluded that the failure had to be in
the smart—sensor program. It did not conclude that the bug was in the real-time clock,
but this wasn’t necessary. As an analogy: if a computer is down, the repair person will
identify the fault only up to the board level and exchange the entire board. The faulty
board can then be taken back to the lab where it can be further analyzed down to the
chip level. There is no need to perform the second type of fault diagnosis on-line and
in real time.

The recovery agent then decided to reload the control program once more into
the smart sensor memory. It would probably have sufficed o restart the smart sensor

without replacing any programs, but the additional action performed was harmless and
didn’t consume much time anyway.

8. CRITICAL ANALYSIS

While the previously described testbed is still fairly simple, it contains all elements
of the advocated intelligent control architecture. It implements the entire range of
the conceptual decomposition. Both fault-tolerant and self-aware control concepts
are realized (in a rudimentary fashion) within the local controlling computer. In the
described incident, the self-aware component of the control architecture was able to
discover, diagnose, and recover from a fault in the controller itself that furthermore had
not been foreseen. This is a quite spectacular result. Even portions of the cognizant
control layer were implemented in the remote commanding computer. Commands

Computer-Aided Design of Intelligent Controllers 77

issued by the human commander are analysed within the RCC for consistency and
compatibility. Heazard windows pop up on the screen when the commander tries to
command the testbed in a potentially dangerous fashion. Furthermore, it is possible
to send a command to the plant simulator rather than to the plant itself to analyze
the effects of a proposed action prior to its implementation on the real plant. Also
the functional decomposition has been implemented. No clear separation between task
planner and task scheduler exists in the current testbed. However, meaningfulness of a
separation between command scheduler and command executor has been convincingly
shown.

The example demonstrates clearly that, in the context of intelligent control, im-
plementational issues are by no means trivial. Programming of the testbed was slow
and painful. Worst of all were issues related to communication protocols among the
various inhomogeneous computing platforms involved in the testbed. No CACE tools
were used in the design of this testbed ...because none were available. An adequate
CACE tool should support the user in the design of the overall intelligent control archi-
tecture, it should then be able to simulate the intelligent control system with sufficient
realism to judge its acceptability, and it should finally be able to generate code that
can be downloaded into the various real-time computers that implement the intelligent
control architecture.

These demands are a tall order, and the state—of-the-art of current CACE tech-
nology is far from being able to fill it. This is the challenge of the nineties.

9. SUMMARY AND CONCLUSIONS

Multi-Facetied Hierarchical Decompositions were introduced and used as the cor-
ner stones of a generic intelligent control architecture. The conceptual decomposition
captures layers of increased awareness and thereby intelligence; the granular decompo-
sition encodes layers of increased knowledge abstraction; the functional decomposition
describes layers of increased task abstraction; and the operational decomposition per-
tains to layers of reasoning abstraction in the context of the control objective.

The layers of increased awareness relate to conventional control, dealing with fully
operational plants only; fauli-tolerant control, able to recognize and compensate for
faults in the plant; self-aware control, capable of detecting and correcting errors in
the controllers themselves; and cognizant control, geared to perceive and respond to
erroneous behavior of the control environment.

A prototype of a Martian oxygen production plant served as a vehicle to concretize
the intelligent control architecture. It was demonstrated by means of this testbed,
which implementing all major components of this architecture, that this design enables
intelligent controllers to recover from even unforeseen types of failures in an efficient
and organized manner.

It was demonstrated that today’s CACE tools are insufficient to support the design
of intelligent controllers. Hopefully, the next generation of CACE tools will remedy this
deficiency.

78

F.E. Cellier et al.

10. REFERENCES

10.

11.

12.

. Agathoklis, P., F.E. Cellier, M. Djordjevic, P.O. Grepper, and F.J. Kraus, (1979).

“INTOPS, Educational Aspects of Using Computer—Aided Design in Automatic
Control,” Proceedings IFA C Symposium on Computer—Aided Design of Control Sys-
tems (M.A. Cuénod, Ed.), Ziirich, Switzerland, August 29-31, Pergamon Press,
Oxford, U.K., pp. 441-446.

. Albus, J.S., H.G. McCain, and R. Lumia, (1987). NASA/NBS Standard Reference

Model for Telerobot Control System Architecture (NASREM), NBS Technical Note
1235, Robot Systems Division, Center for Manufacturing Engineering, National
Technical Information Service, Gaithersburg, Md.

. Barker, H.A., M. Chen, P.W. Grant, C.P. Jobling, and P. Townsend, (1992).

“An Open Architecture for Computer—Assisted Control Engineering,” Proceed-
ings CACSD’92, IEEE Computer—Aided Control System Design Conference, Napa,
Calif. '

. .Berkan, R.C., B.R. Upadhyaya, L.H. Tsoukalas, R.A. Kisner, and R.L. Bywater,

(1991). “Advanced Automation Concepts for Large—Scale Systems,” IEEE Control
Systems Magazine, October, pp. 4-12.

. Booch, G., (1991). Object-Oriented Design with Applications, Benjamin/Cummings,

Redwood City, Calif.
Cellier, F.E., (1991). Continuous System Modeling, Springer—Verlag, New York.

. Cellier, F.E., (1992). “Integrated Continuous—System Modeling and Simulation

Environments,” in: CAD for Control Systems (D. Linkens, Ed.), Marcel Dekker,
New York, in press.

Cellier, F.E., P.O. Grepper, D.F. Rufer, and J. Tadtli, (1977). “AUTLIB, Auto-
matic Control Library, Educational Aspects of Development and Application of a
Subprogram Package for Control,” Proceedings IFAC Symposium on Trends in Au-

tomatic Control Education, Barcelona, Spain, March 30 — April 1, Pergamon Press,
Oxford, U.K., pp. 151-159.

. Cellier, F.E., and C.M. Rimvall, (1987). “Computer—Aided Control System Design:

Techniques and Tools,” in: Systems Modeling and Computer Simulation (N. Kheir,
Ed.), Marcel Dekker, New York, pp. 631-679.

Cellier, F.E., L.C. Schooley, B.P. Zeigler, A. Doser, G. Farrenkopf, J. Kim, Y. Pan,
and B. Williaros, (1992). “Waichdog Monitor Prevents Martian Oxygen Production
Plant from Shutting Itsef Down during Storm,” Proceedings ISRAM’92, Interna-
tional Symposium on Robotics and Manufacturing, Santa Fe, N.M., November 8-11,
1992.

Chi, S.D., (1991). Modelling and Simulation for High Autonomy Systems, Ph.D.
Dissertation, Department of Electrical and Computer Engineering, University of
Arizona, Tucson, Ariz.

Chi, S.D., B.P. Zeigler, and F.E. Cellier, (1990). “Model-Based Task Planning
System for a Space Laboratory Environment,” Proceedings SPIE Conference on
Cooperative Intelligent Robotics in Space, Boston, Mass.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29,

Computer-Aided Design of Intelligent Controllers 79

CSTOL, (1991). OASIS CSTOL Reference Guide, University of Colorado at Boul-
der, Operations and Information Systems Group, Laboratory for Atmospheric and
Space Physics, Boulder Colo. -

Dongarra, J.J., (1979). Linpack Users’ Guide, SIAM, Philadelphia.

Doyle, J.C., B.A. Francis, and A.R. Tannenbaum, (1992). Feedback Control Theory,
Macmillan Pubhslung, N ew York.

Earl, A., (1990). A Reference Model for Computer Assisted Software Engineer-
ing Environment Frameworks, Technical Report HPL-SEG-TN-90-11, Software
Environments Group, Hewlett—Packard Laboratories, Bristol, U.K.

Gavel, D.T., and C.J. Herget, (1984). The M Language — An Interactive Tool for
Manspulating Matrices and Matrizc Ordinary Differential Equations, Internal Re-
port, Signal and Image Processing Research Group, Lawrence Livermore National
Laboratory, University of California, Livermore, Calif.

Garbow, B.S., .M. Boyle, J.J. Dongarra, and C.B. Moler, (1977). Matriz Eigen-
system Routines — Fispack Guide Ertension, Springer—Verlag, New York, Lecture
Notes in Computer Science, 51.

Hack, B.W.J., (1988). Man to Machine, Machine to Machine and Machine to
Instrument Interfaces for Teleoperation of a Fluid Handling Laboratory, MS Thesis,
Technical Report TSL—-014/88, Electrical and Computer Engineering Department,
University of Arizona, Tucson Ariz.

Helgert, H.J., (1991). “Services, Architectures, and Protocols for Space Data Sys-
tems,” Proceedings of the IEEE, 79(9), pp. 1213-1231.

Heller, D., (1991). Motif Programming Manual, O’Reilly & Associates, Sebastopol,
Calif. ‘

Integrated Systems, Inc., (1984). MATRIXx User’s Guide, MATRIXx Reference
Guide, MATRIXx Training Guide, Command Summary and On-Line Help, Santa
Clara, Calif.

1SO, (1983). Basic Reference Model for Open Systems Interconnection, Technical
Report DIS 7498, International Organization for Standardization.

Kury, P.M., (1990). An Intelligent Fault Diagnoser for Distributed Processing in
Telescience Applications, MS Thesis, Department of Electrical and Computer En-
gineering, University of Arizona, Tucson, Ariz.

Lew, A.K., (1988). Astrometric Telescope Simulator for the Design and Develop-
ment of Telescope Teleoperation, MS Thesis, Technical Report TSL-016/88, Elec-
trical and Computer Engineering Department, University of Arizona, Tucson Ariz.
Mathworks, Inc., (1992). The Student Edition of MATLAB for MS-DOS or Mac-
intosh Computers, Prentice~Hall, Englewood Cliffs, N.J.

Moler, C.B., (1980). Matlab User’s Guide, Dept. of Comp. Sc., University of New
Mexico, Albuquerque.

Motaabbed, A., (1992). A Knowledge Acquisition Scheme for Fault Diagnosis in
Complez Manufacturing Processes, MS Thesis, Dept. of Electr. & Comp. Engr.,
University of Arizona, Tucson, Ariz.

NASA, (1985). The Space Station Project.

80

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

F.E. Cellier et al.

OASIS, (1991). OASIS System Manager’s Guide, University of Colorado at Boul-
der, Operations and Information Systems Group, Laboratory for Atmospheric and
Space Physics, Boulder Colo.

Rasmussen, J., (1990). “Supervisory Control and Risk Management,” in: Robotics,
Control and Society, (N. Moray, W.R. Ferrell, and W.B. Rouse, Eds.), Taylor &
Francis, New York, pp. 160-171.

Rimvall, C.M., (1986). Man~Machine Interfaces and Implementational Issues in
Computer—Aided Control System Design, Ph.D. Dissertation, Diss. ETH No 8200,
Swiss Federal Institute of Technology, ETH Zirich, Switzerland.

Sarjoughian, H.S., F.E. Cellier, and B.P. Zeigler, (1990). “Hierarchical Controllers
and Diagnostic Units for Semi—Autonomous Teleoperation of a Fluid Handling

Laboratory,” Proceedings IEEE Phoeniz Conference on Computers and Commu-
nication, Scottsdale, Ariz., pp. 795-802.

Sheridan, T.B., (1988). “Supervisory Control of Telerobots in Space,” in: Machine
Intelligence and Autonomy for Aerospace Systems (E. Heer and H. Lum, Eds.),
Progress in Astronautics and Aeronautics, 115, American Institute of Aeronautics
and Astronautics, pp. 31-50.

Strickland, T.J., (1989). Dynamic Management of Multi—-Channel Interfaces for
Human Interaction with Computer—Based Intelligent Assistants, Ph.D. Disserta-
tion, Dept. of Systems & Industrial Engr., University of Arizona, Tucson, Ariz.
Systems Control Technology, Inc., (1985). CTRL-C, A Language for the Computer—
Atded Design of Multivariable Control Systems, User’s Guide, Palo Alto, Calif.

TAE+, (1991). TAE+ User Interface Developer’s Guide, Version 5.1, National
Aeronautics and Space Administration (NASA), Goddard Space Flight Center,
distributed by: Cosmos, University of Georgia, Athens, Ga.

Vanbegin, M., and P. Van Dooren, (1985). MATLAB-§C, Technical Note N168,
Philips Research Laboratories, Bosvoorde, Belgium.

Wang, Q., and F.E. Cellier, (1991). “Time Windows: An Approach to Automated

Abstraction of Continuous-Time Models into Discrete—Event Models,” Interna-
tional Journal of General Systems, 19(3), pp. 241-262.

Young, D.A., (1989). X Window Systems Programming and Applications With Xt,
Prentice-Hall, Englewood Cliffs, N.J.

Zeigler, B.P., S.D. Chi, and F.E. Cellier, (1991). “Model-Based Architecture for
High Autonomy Systems,” in: Fngineering Systems with Intelligence — Concepts,

Tools and Applications (S.G. Tzafestas, Ed.}, Kluwer Academic Publisher, Dor-
drecht, The Netherlands, pp. 3-22.

