Appendix A

Computer-Aided Control Systems
Techniques and Tools

A.1 INTRODUCTION

Up to this point, this book has mainly discussed diverse types of simulation
techniques, and indeed, simulation has become ‘extremely important in almost
every aspect of scientific and engineering endeavor. According to Korn
and Wait (1978), simulation is experimentation with models. Thus, each
simulation program consists of two parts:

1. A coded description of the model, which we call the model representa-
tion inside the simulation program (notice the difference as compared
to Chapters 1 and 2, where the term "model representation”" was
used to denote graphical descriptions such as block diagrams or sig-
nal flow graphs) :

2. A coded description of the experiment to be performed on the model,
which we call the experiment representation inside the simulation
program

Anelyzing the different types of simulation examples presented so far,
it can be realized that most of these examples independent of whether they
were discrete or continuous in nature, consisted of a fairly elaborate model
on which a rather simple experiment was performed. The standard simula-
tion experiment is as follows: starting with a complete and consistent set
of inijtial conditions, the change of the various variables of the model (state
variables) over time is recorded. This experiment is often referred to as
determining the trajectory behavior of a model. Indeed, when the term
"simulation," as is often done, is used to denote a solution technique rather
than the ensemble of all modeling-related activities (as is done in this book),
simulation can simply be equated to the determination of trajectory behavior.
Most currently available simulation programs offer little beside efficient
means to compute trajectory behavior,

Unfortunately, few practical problems present themselves as pure simula-
tion problems. For example, it often happens that the set of starting
values is not specified at one point in time. Such problems are commonly

631

632 Appendix A

referred to as boundary value problems as opposed to the initial value
problems discussed previously. Boundary value problems are not naturally
simulation problems in a puristic sense (although they can be converted to
initial value problems by a technique called invariant embedding (Tsao,
1986). A more commonly used technique for this type of problem, however,
is the so-called shooting technique, which works as follows:

1. Assume a set of initial values.

2. Perform a simulation.

3. Compute a performance index, e.g., as a weighted sum of the
squares of the differences between the expected boundary values
and the computed boundary values.

4. If the value of the performance index is sufficiently small, terminate
the experiment; otherwise, interpret the unknown initial conditions
as parameters, and solve a nonlinear programming problem, looping
through 2 . . . 4 while modifying the parameter vector in order to
minimize the performance index.

As can be seen, this "experiment" contains a multitude of individual simula-
tion runs.

To elaborate on yet another example, assume that an electrical network
is to be simulated. The electrical components of the network have tolerance
values associated with them. It is to be determined how the behavior of
the network changes as a funection of these component tolerances. An al-
gorithm for this problem could be the following:

1. Consider those components that have talerances associated with
them to be the parameters of the model, Set all parameters to their
minimal values,

2. Perform a simulation.

3. Repeat 2 by allowing all parameters to change between their minimal
and maximal values until all "worst case" combinations are exhausted.
Store the results from all these simulations in a database.

4. Extract the data from the database and compute an envelope of all
possible trajectory behaviors for the purpose of a graphical display.

As in the previous example, the experiment to be performed consists of
many different individuel simulation runs. In this case, there are exactly
2N yuns to be performed, where n denotes the number of pasrameters.
These examples show that simulation does not live in an isolated world.
A secientific or engineering experiment may involve many different simulation
runs, and many other things in between. Unfortunately, the need for
enhanced experimentation capabilities is not 'properly reflected by today's
simulation software. Although model representation techniques have become
constantly more powerful over the past years, very little was done with re-
spect to enhancing the capabilities of simulation experiment descriptions
(Cellier, 19862). Some simulation languages, such as ACSL (Mitchell and
Gauthier, 1981), offer facilities for model linearization and steady-state
finding. Other simulation languages, such as DSL/VS (IBM, 1984), offer
limited facilities for frequency domain analysis, e.g., a means to compute
the Fourier spectrum of a simulation trajectory. To our knowledge, there
is not a single simulation system currently available that would offer a
general-purpose nonlinear programming package for curve fitting, steady-
state finding, the solution of boundary value problems, etc., as an integral

Computer-Aided Control Systems 633

part of the software, and this is only one among many tools that would be
useful to have. Moreover, the few experiment enhancement tools that are
currently available are often difficult to use and are very specialized, that
is limited in applicability.

Whenever such a situation is faced, we, as software engineers, realize
that something must be wrong with the data structures offered in the
language. Indeed, all refinements in model representation capabilities, such
as techniques for proper discontinuity handling and facilities for submodel
declarations, led to enhanced programming structures, whereas the available
data structures are still much the same as they were in 1967, when the
CSSL specifications (Augustin et al., 1967) were first formalized.

When we talk about computer-aided design software as opposed to
simulation software, it is exactly this enhanced experiment description
capability that we have in mind. Simulation is no longer the central part
of the investigation, but simply one software module (tocl) among many
others that can be called at will from within the "experiment description
software," which from now on will be called "computer-aided design soft-
ware." Algorithms for particular purposes will be called computer-aided
design techniques, and the programs implementing these algorithms will be
called computer-aided design tools. As many of the design tools are applica-
tion dependent, our discussion will be restricted to one particular application,
namely, the design of control systems.

Until very recently, the data structures available in computer-aided
control system design (CACSD) software were as poor as those offered in
simulation software. However, even the available programming siructures
in these software tools were pitiable. Users were led through an inflexible
question-and-answer protocol. Once an incorrect specification was entered
by mistake, there was no chance to recover from this error. The protocol
deviated from the designed path and probably led sooner or later to a com-
plete software crash, after which the user had lost all his previously entered
data and was forced to start from seratch. ‘ ‘

A true breakthrough was achieved with the development of MATLAB,

a matrix manipulation tool (Moler, 1980). Its only data structure is a
double-precision complex matrix, MATLAB offers a consistent and natural
set of operators to manipulate these matrices. In MATLAB, a matrix is
coded as follows:

A =11,2,3;4,5,6;7,8,9]

or alternatively:

Elements in different columms are separated by either comma or space,
whereas elements in different rows are separated by either semicolon or
carriage return (CR). With mairices being the only available data structure,
scalars are obviously included as a special case, Each element of a matrix
can itself again be a-matrix. It is, therefore, perfectly legitimate to write

- a = [0*ONES(3,1),EYE(3);[-2 -3 —4 -51]

where ONES(3,1) stands for a matrix with three rows and one column full of
1 elements; O0*ONES(3,1) is thus a matrix of same size consisting of 0

634 Appendix A

elements only. EYE(3) represents a 3 x 3 unity matrix which is concatenated
to the 0 matrix from the right, thus making the total structure now a matrix
with three rows and four columns. Concatenated from below is the matrix
[-2 —3 —4 —5], which has one row and four columns. Thus, the above
expression will create the matrix

A =1

N OO o
Ww o O
=~ O = o
51 B o N ==

1

Suppose it is desired to solve the linear system
A¥x =D

For a nonsingular matrix A, it is known that the solution can be obtained
as

= _A_fh l*b

sl

which, in MATLAB, can be expressed as
x = INV(a)*p

or, somewhat more efficiently,
x=a\b

(b from left divided by a), in which case a Gaussian elimination is performed
in place of the computation of the complete inverse. .With MATLAB, we
finally got a tool that allows us to learn what we always wanted to know
about lnear algebra [such as: what are the EIG(a+2EYE(a)) where EYE(a)
stands for a unity matrix with the same dimensions as a, and EIG(...)
computes the eigenvalues of the enclosed expression]. In fact, such a tool
existed already for some time. It was called APL and offered much the
same features as MATLAB. However, APL was characterized by a very
cryptic syntax. The APL user was forced to learn to think in a fashion
similar to the computer that executed the APL program, which is probably
why APL never really made it into the world of applications. Cleve Moler,
on the other hand, taught the computer te "think" like the human operator.
MATLAB was not designed to solve CACSD problems. MATLAB is simply
an interactive language for matrix algebra. Nevertheless, this is exactly
the -type of tool that the control engineer needs for solving his problems.
As an example, let us solve a simple LQG (linear quadratic gaussian)
regulator design problem. For the linear system '

it is desired to compute a linear state feedback such that the performance
index (PI) is

Computer-Aided Control Systems 635

«© 1 :
Pl = [(x'@x + wBwdt = min
0

where u' denotes the transpose of the vector u. This LQG problem can be
solved by means of the following algorithm:

1. Check the controllability of the system. If the system is not con-
trollable, return with an error message.
2. Compute the Hamiltonian of this system:
_.1 :
H=[A -BR B
e AT
3. Compute the 2n eigenvalues and right eigenvectors of the Hamiltonian.
The eigenvalues will be symmetrical not only with respect to the real
axis, but also with respect to the imaginary axis, and since the sys-
tem is controllable, no eigenvalues will be located on the imaginary
axis itself. '
4. Consider those eigenvectors associated with negative eigenvalues,
concatenate them into a reduced modal matrix of dimension 2n x n,
and split this matrix into equally sized upper and lower parts:

v=1Y,
'Y‘Z]

5. Now, the Riccati feedback can be computed as

K=-RBP

where
P

-1
1

i}

Re {_72*}_7 }

The following MATLAB "program" (file: RICCATI.MTL) may be used to
implement this algorithm:

EXEC (*contr.mtl')

IF ans <> n, SHOW('System not Controllable'), RETURN, END
[v,d] = EIG([a,—b*(r\b'):—q,—a'l):

d = DIAG(d); k=0;

FOR j=1,2*n, IF d(j)<0, k = k+1; v(:,k) = v{:,j); END

p = REAL{v(n+1:2*n,1:k)/v(1:n, 1:K};

k = —=r\b'*p

RETURN

which is a reasonably compound way of specifying this fairly complex
algorithm. Yet, contrary to an equivalent APL code, we find this code
acceptably readable.

After MATLAB had become available, it took amazingly little time until
several CACSD experts realized that this was an excellent way to express
control problems. Clearly, MATLAB was not designed for CACSD

636 Appendix A

problems, and still a lot had to be done to make it truly convenient, but
at least a basis had been created. In the sequel, several CACSD programs
have evolved: CTRL-C (Systems Cecntrol, 1984; Little et al., 1984),
MATRIXy (Integrated Systems, 1984; Shah et al., 1985), IMPACT (Rimvall,
1983; Rimvall and Bomholt, 1985; Rimvall and Cellier, 1985), PC-MATLAB
(Little, 1985), MATLAB-SC (Vanbegin and Van Dooren, 1985). All these
programs are "spiritual children" of MATLAB.

We want to demonstrate in this appendix how simulation software de-
signers can learn from recent experiences in CACSD program development,
and how the CACSD program developers can learn from the experiences
gained in simulation software design.

It would be convenient if a MATLAB-like matrix notation could be used
within simulation languages for the description of linear systems or linear
subsystems., It would, indeed, be useful if the simulation software could
apply to linear (sub)systems an integration algorithm that is more efficient
than the regularly used explicit Runge Kutta, Adams-Bashforth, or Gear
algorithms, e.g., an implicit Adams-Moulton technique. Linear (sub)systems
could automatically be identified by the compiler through the use of a matrix
notation. :

On the other hand, it is true that most recent CACSD programs offer
only limited simulation capabilities (e.g., applicable to linear systems only).
It would be useful indeed if all our knowledge about the simulation of dy-
namic systems/processes could be integrated into the CACSD software.

Since a design usually involves more than just simulation, but certainly
simulation among other techniques, it would definitely be beneficial if a
flexible interface between a CACSD program and a simulation language could
be created such that powerful simulation runs could be made efficiently at
arbitrary points in a8 more complex design study. These are some of the
topics that this appendix addresses.

Note that this appendix discusses purely digital solutions only. Other
simulation techniques (such as analog and/or hybrid simulation technigues)
are discussed in Chapter 4 of this book. Although we shall not refer to
these techniques explicitly any further, computer-aided control system design
algorithms can be implemented on hybrid computers very easily. The dy-
namic process (that is, the model description) will then be programmed on
the analog part of the computer, while the experiment description that trig-
gers indivual simulation runs will be programmed on the digital part of
the computer. The digital CACSD program will lock just the same as in the
purely digital solution, while the simulation program will look just the same
as any other analog simulation program. ZFor these reasons, a further elabora-
tion on these concepts can be spared.

In the next section, a systematic classification of CACSD techniques is
presented. Different techniques (algorithms) for computer-aided control
system design are discussed.

In Section A.3, CACSD tools are classified. This discussion highlights
the major differences between several classes of CACSD tools.

Both Sections A.2 and A.3 help to prepare for Section A.4, in which a
number of currently available CACSD tools are compared with respect to
features (algorithms) offered by these software systems.

After this discussion, the reader may question whether a diversification
of tools as can be currently observed is truly justified and desirable. For
this reason, the problem of software standardization versus software diversifi-
cation is discussed in Section A.5.

Computer-Aided Control Systems 637

In Section A.6, we show how simulations can intelligently be used with-
in CACSD software. This section helps to throw a bridge across to other
chapters in this book.

Finally, Section A.7 presents our perspective of forthcoming develop-
ments in the area of CACSD software design.

A.2 DEVELOPMENT AND CLASSIFICATION
OF CACSD TECHNIQUES

Let us look briefly into the history of CACSD problems. CACSD, as we know
it today, has its roots in a technology that was boosted by the needs created
in World War II, when military leaders started to think about more powerful
weaponry, and engineers produced answers in the form of automatically con-
trolled, in place of manually controlled, weapon systems. (Fortunately, auto-
matiec control has since found many other nonmilitary applications as well.
Nevertheless, even today, a substantial percentage of research grants in the
automatic control field stems either directly or indirectly from national
defense sources.)

In the beginning, that is, in the 1930s-1950s, engineers were dealing
with isolated (smally continuous-time systems with one single input and one
single output (so-called SISO systems). The design of these systems was
(at least here in the West) predominantly done in the frequency domain,
most prominently represented by people such as W. R. Evans and H. Nyquist.
Most of the techniques developed were graphical in nature.

With the need to deal with more complex systems with multiple inputs
and outputs (so-called MIMO systems), these graphical techniques failed to
provide sufficient insight. It was among others R. Kalman who led the
scientists and engineers back into the time domain, where systems were now
represented in the so-called state space, that is, by sets of first-order ordi-
nary differential equations (ODEs) in place of nth-order ODEs. For further de-
tail, refer to Chapter 2 of this book and to the References of Chapter 2.
This modern representation seemed to be better amenable to a systematic
(algorithmic) design methodology. This representation was very naturally
extensible from SISO system representations to MIMO system representations,
and many of the algorithms (such as LQG design) would work as well on
MIMO systems as on SISO systems, With the advent of modern digital com-
puters, it was possible to apply these algorithms also to "higher" order
systems (say: fifth- to tenth-order systems), whereas the previous hand
computations were limited to second- to third-order systems. (This was
actually the major reason for choosing a frequency domain representation in
previous decades, as frequency domain design can be done manually also
in the case of higher-order systems.) What is described above is the
technology of the sixties.

What has happened since? What were the major breakthroughs in the
seventies and in the early eighties? While research in control theory before
was pretty much consolidated, now diversification took place; that is,
different types of approaches were made available to tackle different types
of problems. :

One of the major drawbacks of the previously used technology was
ironically found in the high degree of automation characterizing its
algorithms. One jotted down some values, called on a subroutine, and the
answer came in the form of some other numbers, parameter values, gain

638 Appendix A

factors, etc. The procedure was "sterile." Somehow lacking was the
intuitive feel for what was going on. What if the LQG design failed to pro-
duce acceptable answers? Where do we go from there? Often, the conclu-
sion had been that the structure of the chosen controller was inappropriate
for the task, and thus optimization of the parameters of the inappropriate
controller was doomed to failure. Therefore, the control engineer had to
take structural decisions in place of purely parametric ones. Unfortunately,
such decisions can hardly be taken without profound insight into what is
going on. None of the automated algorithms available at that time was able
to determine an adequate controller structure.

For these reasons, several researchers went back to the frequency
domain and came up with some new design tools [such as a generalization
of the Nyquist diagram (Rosenbrock, 1969)], and some new system repre-
sentations [such as some varieties of polynomial matrix representations
(Wolovich, 1974; Wonham, 1974)]. Other groups decided on a different
approach to tackle the same problem. Instead of producing individual solu-
tions in the form of sets of parameter values, they tried to develop algorithms
that would produce entire "fields" of output parameters as a function of in-
put parameters, to come up with, for example, three-dimensional graphs in
the parameter space. For instance, this is often done in the so-called
robust controller design (Ackermann, 1980). Unfortunately, these tech-
nigues usually involve multiple sweeping, which is number-crunching at its
worst. For a somewhat cheaper solution, it may be possible to employ
sensitivity analysis instead (Cellier, 1986a). The newest developments in
this area try to do away with numerical algorithms altogether. Instead of
computing numerically one point in the parameter space at a time, the new
algorithms reproduce what the engineer used to do in the paper and pencil
age, that is, formula meanipulation. The latest developments in nonnumerical
data processing are employed to obtain algorithmically and automatically a
formula that relates the desired output parameters to the given input
parameters. However, these techniques are still in their infancy, and no
commercial product of this kind is available as of today. The furthest
developed program of this type known to us is an extensive LISP pro-
gram running on an LMI computer (a special-purpose LISP machine), That
program is currently under development at NASA's Johnson Space Center,
but it is far from completed, and its user interface is still rather awkward
(Norsworthy et al., 1985).

Another development was initiated by the need to deal with even larger
systems. How do you control a large system consisting of many subsystems
in an "optimal" way? Many of the previously used algorithms fail to work
properly when applied te 50th- or 200th-order systems. They either com-
pute forever, or fail to converge, or produce a result that is accurate to
exactly zero significant digits ! One way to tackle this problem is to try
to cut the system into smaller subsystems and find answers for those sub-
systems first., This led to decentralized contrcol (Athens, 1978) and
hierarchical control (Siljak and Sundareshan, 1976) schemes. More informa-
tion about these approaches can be found in Chapter 6 of this book. An-
other answer, of course, might be to desigh new centralized algorithms that
work better on high-dimensional systems (Laub, 1980).

The availability of reliable low-cost microprocessors led to the need to
implement subsystem controllers by use of a digital computer. This stimu-
lated research into discrete-time algorithms, as the continuous-time algorithms
applied to discrete-time systems tend to exhibit very poor stability behavior.

Computer-Aided Conirol Systems 639

Finally, the new age of robotic technology led to the need for develop-
ing better algorithms for the control of nonlinear systems (Asada and
Slotine, 1986). The models describing the dynamics of robot movements are
highly nonlinear. Most of the more refined algorithms that were previously
developed work poorly, or not at all, when applied to nonlinear systems.
Unfortunately, the robustness of an algorithm is often inversely proportional
to its refinement; that is, the more specialized an algorithm is, the less
likely will it be to handle modified situations. One way to solve this problem
is ‘o view the nonlinear time-invariant system as a linear time-variant system,
and to design control algorithms for this class of problems, such as self-
tuning regulators (Astrém, 1980), model-reference adaptive controllers
(Monopoli, 1974; Narendra, 1980), and robust controllers (Ackermann, 1980).

So far, we have presented the problems to be solved. Problems can be
classified into single-input, single-ocutput (SISO), multiple-input, multiple-
output (MIMO), and decentralized problems. For each class of problems, a
different suite of algorithms was developed to solve them. Until now, we
have totally ignored the problem of numerical aptness of an algorithm, of
numerical accuracy and numerical stability. The numerical behavior of
algorithms is highly dependent on the system order, that is, the number of
state variables describing the system/process. Almost any algorithm can be
used to solve a third-order problem. Many algorithms fail when applied to
a 10th-order problem, and almost all of them fail to solve a 50th-order
problem correctly, and this is true for almost every single algorithm in all
three classes of problem types. This fact was detected only recently.

Since the late seventies, many researchers, including C. Moler, G. H. Golub,
A. Laub, J. H. Wilkinson, and P. van Dooren, have designed a series of
new algorithms for SISO- and MIMO-system design that are less sensitive to
the system order. A major breakthrough in this area was the development

of the singular value decomposition (SVD), described in Golub and Wilkinson
(1976).

From now on, algorithms that work only for low-order systems will be
referred to as LO algorithms, techniques that work also for high-order
systems will be called HO algorithms, and finally, methods that can be used
to treat very-high-order systems (mostly discretized distributed parameter
systems) will be called VHO algorithms.

Let us introduce next the concepts used in the design of the different
classes of algorithms more explicitly. Most of the algorithmic research
done so far was concerned with algorithms based on canonical forms
(Kailath, 1980). All these canonical forms, in turn, are based on minimum
parameter data representations. What is a minimum parameter data repre-
sentation? A SISO system can be represented in the freguency domain
through its transfer function

n—1
g(s) = (b0+bls+ . +bn_1s)/(a0 tasd -4 8 _4S +s5)

where the denominator polynomial is of nth order (the system order), and
the numerator polynomial is of (n — 1)st order. This representation is
unique; i.e., the system has exactly 2n degrees of freedom (the degrees
of freedom equal the number of linearly independent parameters of any
unique data representation). The parameters of this representation are
the coefficients of the numerator and denominator polynomials. Any set of
parameter values describes one system, and no two different sets of

640 Appendix A

parameters describe the same system. Any data representation sharing
this property is a minimum parameter representation. The controller-
canonical representation of this system can be written as

0 10 0 cee 0 0
0 o0 1 0 e 0 0
x=| 0 0 0 1 0 x+ | 0 |u
| "% "% T T8 “®n-1 | 1]
v =0 bO b, b, b, . bn—_1]

Counting the number of parameters of this representation, it can easily be
verified that this representation has ex%cfly 2n parameters, and they are

the same as above. Also, the Jordan-qanonieal representation

B A0 0 0 0] [1]
. 0 Ay 0 0 0 1
x =10 0 Aq 0 0 X 1
0 0 i} 0 A 1
L n L
y = [rl r2 r3 r4 rn]x

(assuming all eigenvalues Xj to be distinct) has exactly the same number

of parameters. This is true for all the canonical forms. For LO systems,
these representations are perfectly acceptable. However, we require re-
dundaney in order to optimize the numerical behavior of algorithms for HO
systems. Thus, all algorithms that are based on canonical forms are clearly
LO algorithms.

HO algorithms can be obtained by sacrificing this "simple" system repre-
sentation through the introduction of redundancy. These new system repre-
sentations contain more than 2n parameters with linear dependencies existing
between them. This redundancy can now be used to optimize the numerical
behavior of control algorithms by balancing the sensitivities of the parameters
(Laub, 1980). Some of the better HO algorithms are based on Hessenberg
representations (Patel, 1984).

VHO systems (that is, systems of higher than about 50th order) typically
result from discretization of distributed parameter systems. Most of the
algorithms developed for this class of systems until now expleoit the fact
that, in general, VHO systems have sparsely populated system matrices.
Thus, algorithms, have been designed that address matrix elements through
their indices. Careful bookkeeping ensures that only elements that are
different from zero are considered in the evaluations. These so-called
sparse matrix techniques have a certain overhead associated with them.
Thus, they are not cost effective for the {reatment of LO systems, and
even many HO systems are handled more efficiently by the regular algorithms.

Computer-Aided Control Sysiems 641

As a rule of thumb, sparse matrix techniques become profitable for systems
of higher than about 20th order.

Contrary to the above-described algorithms for HG problems, sparse
matrix techniques do not influence the numerical behavior of the involved
algorithms, but only their execution time. Therefore, the numerical problems
discussed for the case of HO systems remain the same. (In most of the ‘
published papers discussing VHO problems, sparse matrix techniques have
been applied to one or another of the classical canonical forms.) Unfor-
tunately, the introduction of redundancy also reduces the sparsity of the
system matrices and eventually annihilates it altogether. Therefore, these
two approaches are in severe competition with each other. More research
is needed to find a solution to this serious problem.

Most of the research described so far was concerned with time domain
algorithms. It has often been said that frequency domain operations are
numerically less stable than time domain operations. .It is our opinion that
this statement is incorrect. It is not the frequency domain per se that
makes the algorithms less suitable, it is the data representation currently
used in frequency domain operations that has these undesirable effects.

As previously discussed, if one wants to minimize the numerical sensitivity
of an algorithm, one has to balance the sensitivities of the system parameters;
i.e., each oufput parameter should be about equally sensitive to changes

in the input parameters (Laub, 1980). Also, the sensitivities of algorithmic
parameters should be balanced. In the time domain, this has been achieved
by the process of orthonormalization, by operating on Hermitian forms
(Golub and Wilkinson, 1976). In the frequency domain, it is less evident
how the balancing of sensitivities can be achieved. If we represent a poly-
nomial through its coefficients, even the evaluation of the polynomial at any
value of the independent variable with a norm much larger or much smaller
than 1 will lead to extremely unbalanced parameter sensitivities. Let us
consider the polynomial

n
= + + . . .4 +
q(s) a_s a 15 as ao

If this polynomial is evaluated at s = 0, obviously the only parameter that
has any influence on the outcome is ag; that is, ag is sensitive to this
operation, while all other parameters are not. However, if we evaluate the
polynomial at s = 1000, obviously a; exerts the strongest influence, while ag
can easily be neglected. This problem disappears when we represent the
polynomial through its roots:

q(s) = k(s - sl)(s - SZ) - e - (s - Sn)

Here, the parameters are (k) and (sy . . . sj) instead of (ag. . . ap).
However, if we want to add t{wo polynomials, we won't get around to (at
least partially) defactorize the polynomials and refactorize them again after
performing the addition. The processes of defactorization and. refactoriza-
tion have badly balanced sensitivities and are thus numerically harmful.
Traditionally, these were the only two data representations considered,
and both are obviously unsatisfactory. There is little we can do to improve
the numerical algorithms based on these data representations as both are
minimum parameter representations. However, we have other choices. For
instance, it is possible to represent a polynomial through a set of supporting

642 Appendix A

values. Let us evaluate g(s) at any (n + 1) points. If we store these

(n + 1) values of s together with those of q(s8), we know that there exists
exactly one polynomial of nth order that fits these (n + 1) points. We can
"reconstruct” the polynomial at any time (that is, find its coefficients), and
this, therefore, gives rise to another data representation (Sawyer, 1986).

If we choose more points, we can make use of redundancy and reconstruct
~the polynimial by regression analysis, reducing the numerical errors involved
in this computation. The basic operations (addition, subtraction, multiplica-
tion, division) all become trivial in this data representation if all involved
polynomials are evaluated over the same base of supporting values (we just
apply them to each data point separately), and as most algorithms are based
solely on repeated application of these basic operations, they can also be
performed easily within this data representation. The redundancy inherent
in this data representation can eventually be used to balance parameter
sensitivities by selecting the supporting values (values of s) carefully. A
preliminary study (Sawyer, 1988) indicates that the best choice might be to
place the supporting values equally spaced along the unit circle. More re-
search is still needed, but we feel that this approach could possibly lead to
a breakthrough in the numerical algorithms for frequency domain operations.

To summarize this discussion, CACSD techniques can be classified in
several ways: techniques for SISO, MIMO, and decentralized systems; tech-
niques for frequency versus time domain operations; techniques for continuous-
time versus discrete-time systems; techniques for linear versus nonlinear
systems; and finally, techniques for low-order, high-order, and very-high-
order systems.

Another classification distinguishes between user-friendly and non-user-
friendly algorithms; user-friendly algorithms allow us to concentrate on
physical design parametfers rather than on algorithmic design parameters.
As a typical example of user-friendly algorithms, we may mention the
variable-order, variable-step integration algorithms which enable us to
specify the required accuracy (a physical design parameter) as opposed to
the integration step length and order (which are algorithmic design
parameters).

Finally, one should distinguish between numerical and nonnumerical
algorithms. Nonnumerical algorithms make use of formula manipulations,
and "reasoning® techniques that are usually connoted as artificial intelligence
(AI) techniques. Since none of the CACSD programs discussed in Section
A.4 makes extensive use of such techniques, we shall save a more intimate
discussion of Al technigques for the "outlook"™ section (A.7).

A.3 DEVELOPMENT AND CLASSIFICATION
OF CACSD TOOLS

Although control theory as we know it today is a child of the early part of
this century, computer-aided control system design (CACSD) really did not
start until 1970. At that time, it would take roughly half a day just to

find the eigenvalues of a matrix, as this involved the following procedure:

1. Develop a program to calculate eigenvalues by calling a library sub-
routine with about six call parameters (1/2 hr).

2. Walk to the computer center to prepare the data input (20 min).

Wait for a card puncher to become available (1/2 hr).

4. Prepare input data (10 min).

oo
.

Computer-Aided Conirol Systems _ 643

5. Submit card deck to input queue, and wait for output to be re-
turned (turnaround time roughly 1 hr),

6. Correct typos after waiting for another card puncher to become
available, and resubmit card deck; wait again for output (90 min).

7. Walk back to office (20 min).

The solution of a true control problem (e.g., the simple LQG design
problem described above) took considerably longer time, possibly as much
as 1 or 2 weeks. No wonder most colleagues detested the computer at that
time and preferred to specialize on other topics that did not require any in-
volvement in this denervating process..

Around 1972, the writers undertook the effort to go around and ask
colleagues in the department not to throw away their control programs any
longer (after they were done with a particular study), but rather document
their subroutines and hand them over for inclusion in a "control library" to
be built. By 1976, an impressive (and somewhat formidable) set of (partially
debugged) control algorithms had been collected (Cellier et al., 1977). At
this time, we decided to ask colleagues from other universities to join in the
effort and share their control routines and libraries with us as well. We
started the PIC service, a program information center for programs in the
control area, and circulated a short newsletter twice a year providing in-
formation in the form of a "who has what" in control algorithms and codes.
Meanwhile, as first computer ierminals became available to us, and using
our control library, we were able to reduce the time needed to solve most
(simple) control problems to 1 or 2 days of work.

At that time, it was considered important to work toward reducing
further the turnaround time by creating an interactive "interface" to our
control library. This required conversion of the program to a PDP 11, as
the CDC machine of the computer center could be used for batch operation
only. Clearly, the interface was meant to be a relatively small add-on to
our library, and most of our effort and time were spent on improving the
control subroutines themselves. Nevertheless, this activity resulted in
INTOPS (Agathoklis et al., 1979), one of several interactive control system
design programs made available around the same time. The first generation
of true CACSD programs was, however, very limited in scope. To keep
the interface simple, the programs were strictly question-and-answer driven,
with the effect that they were almost useless for research. True research
problems simply do not present themselves in the form of classroom examples
that follow a prepaved route as foreseen by the developers of the CACSD
software. INTOPS proved very useful for undergraduate control education
though. Suddenly, the use of computers to many became real fun. How-
ever, as a research tool, INTOPS failed to provide the necessary flexibility,
and we became convinced that a true full-fledged programming language was
required for that purpose. Unfortunately, such a language could no longer
be considered as a small and inexpensive add-on to the control library,
and we wondered what could be done about it.

In the fall of 1980, K. J. Astrém and G. Golub undertook the com-
mendable effort to bring recognized numerical analysts and control experts
together in the first Conference on Numerical Techniques in Control to be
ever held. On this occasion, we met with Cleve Moler, who demonstrated
his newly released MATLAB software. It took us only minutes to realize
the true value of this instrument for our task. When we returned to
Zurich, we implemented MATLAB first on a PDP 11/60, and a short while
later on the freshly acquired VAX 11/780. Within 1 year, MATLAB became

644 Appendix A

the single most often used program on that machine (which belongs to the
department of electrical engineering). Students were able to learn the
usage of this tool within half an hour, and suddenly, also the researchers
became interested in our "gadgets." MATLAB was fully command-driven.

An often-heard criticism of command-driven languages is that they are
too complicated for the occasional user to use. Who can remember all those
commands and their parameters except someone who uses the tool on a daily
basis? It was simply not true. Our students were enchanted, and they
found MATLAB actually much easier to use than the question-and-answer-
driven INTOPS program. Extensive interactive HELP information is available
to aid in the use of any particular function, and this proved completely
satisfactory to our users.

Notice that MATLAB really was not designed to be a CACSD tool at all.
There are many shortcomings of MATLAB for our purpose. These were
summarized as follows (Cellier and Rimvall, 1983):

1. The programming facility (EXEC-file) of MATLAB is insufficient
for more demanding tasks; EXEC-files have no formal arguments;
EXEC-files cannot be called as funections but only as subroutines;
WHILE, FOR, and IF blocks cannot be properly nested; there is
neither a GOTO statement nor an (alternative) loop exit statement
available; and the input/output capabilities of EXEC-files are too
limited.

2. - The SAVE/LOAD concept of MATLAB is insufficient as this immediately
results in large numbers of files that are difficult to maintain in an
organized fashion. A true database interface would be valuable.
Moreover, the user wants the possibility to interface data produced/
used by his own programs with MATLAB.

3. Control engineers prefer results in graphical form. The output
facilities offered by MATLAB are insufficient in every respect. A
database interface would at least soften this request, as it would
allow the use of a separate stand-alone program, outside MATLAB,
to view data produced by MATLAB graphically.

4, MATLAB does not lend itself easily to operations in the frequency
domain.

5. Many control systems call for nonlinear controllers (e.g., windup
techniques for treatment of saturations, adaptive controllers for
time-varying systems, etc.). MATLAB does not provide for a
mechanism to describe nonlinear systems.

6. A library of good and robust control algorithms is needed. (This
final request is actually the one that is easiest to satisfy.)

In the sequel, a number of CACSD programs were made available that
provide answers to one or several of the above demands. These (and
others) are reviewed in the following section of this appendix.

To summarize this section: CACSD tools can be classified into sub-
program libraries versus integrated design suites. The first generation of
CACSD tools was of the former type; the more recent ones are mostly of
the latter type. This new type of CACSD tools can be further classified as
either comprehensive design tools or design shells. The former type tries
to provide algorithms that handle all imaginable control situations. This
may eventually result in very large programs offering many different
features; KEDDC (Schmid, 1979, 1985) is an example of this type. The

Computer-Aided Control Systems 645

design shells type provides an open-ended operator set that allows the user
to code his own algorithms within the frame of the CACSD software; MATLAB
(Mohler, 1980) is an example of that type. Of course, a combination of
these two categories is possible (and probably most useful) to the control
engineer.

CACSD programs can, furthermore, be either batch-operated, or fully
interactive, or both. The interactive mode is useful for a quick analysis
and understanding of what is going on in a particular project. However,
there are many control design problems, such as optimal design of nonlinear
systems, that call for an extensive amount of number crunching. Those
problems are best executed in batch mode.

CACSD program can be either code-driven or data-driven or a combina-
tion of the two (e.g., by use of incremental compiler techniques). Code-
driven programs are compiled programs that implement their algorithms and
operators in program code. They are faster executing, but they are less
flexible and less easy to augment. On the other hand, data-driven programs
implement algorithms and operators as data statements which are interpreted
during program execution. They are powerful tools for experimentation, but
not necessarily for production. It is usually a good idea to develop a new
CACSD software first as a data-driven program. Later, once the features
and format of the new software are stabilized, it can be reimplemented as a
code-driven program for improved efficiency. Compiler-compilers can
eventually be used to (at least partially) automate the step from the data-
driven to the code-driven implementation.

The user interface of CACSD programs can be either question-and-
answer-driven, command-driven, menu-driven, form-driven, graphies-driven,
or window-driven. The user of the program is asked questions to determine
what needs to be computed next. Thus, the program flow is completely pre-
determined. This type of user interface is easiest to implement, but it is
inflexible and probably not very useful in a research environment.

Newer CACSD programs are often command-driven. Here, the initiative
stays completely with the user. The CACSD program sends a "prompt” to
the terminal indicating its readiness to receive the next command in just
the same manner as an interactive operating system (e.g., on a PDP 11 or
on a VAX) would. In fact, an interactive operating system is nothing but
a command-driven interactive program. Turning the argument over,
command-driven CACSD programs can also be viewed as special-purpose
operating systems. One disadvantage of this type of user interface is the
need to remember what commands are available at every interface level.

This problem is today mostly remedied by providing an extensive interactive
HELP facility.

Another alternative is to use a menu-driven interface. Here, the
CACSD program displays a menu of the currently available commands on the
screen instead of just sending a prompt. It then waits for the user- to
pick one of the items on the list, normally by use of a pointing device such
as a cross-hair cursor or a Swiss mouse. This interface type is quite
easy to implement, and it can be very powerful. One of its major drawbacks
lies in the amount of information that must be exchanged between the pro-
gram and the user. This interface type is simply too slow; moreover, point-
ing devices have not yet been standardized, making the software terminal-
dependent.

A form-driven interface is most profitably used during the setup period
of the CACSD program for supplying (or modifying) defaull values for

646 Appendix A

large numbers of defaulted parameters of more intricate CACSD commands or
operators. Here, the screen is split into separate alphanumeric fields.

Each field is used to supply one parameter value. The user can jump from
one field to the next to supply (override) parameter values. This inter-
face requires a direct addressing mode to position the alphanumeric curser
on the screen. Although there meanwhile exists an ANSI standard for this
task, many hardware manufacturers already offered such a feature when the
standard became available and refused to modify their hardware and system
software to comply with the new standard. A laudable exception is DEC,
which adopted the new ANSI standard when switching from the VT52 series
terminals to the VT100 series terminals. Owing to these hardware de-
pendency problems, most portable CACSD programs do not exploit this in-
terface type either. ,

A graphics-driven interface was originally used to display results from
a CACSD analysis such as a Bode diagram or a simulation trajectory in a
graphical form (and this is about all that can be done on a mainframe com-
puter with a serial asynchronous user interface). However, one obstacle
has always been the high degree of terminal dependency of any graphics
solution. One way to overcome this problem was to employ a graphics
library providing for a large variety of terminal drivers to be placed be-
tween. the CACSD software and the terminal hardware. In the past, several
such libraries have been developed (DISSPLA, DI-3000, ete.). Unfortunately,
all these commercially available libraries were expensive, and no true
standard existed. Recently, the graphics kernel system (GKS) has been
accepted as a standard (ANSI, 1985), and this will certainly drive the prices
for GKS implementations down. Fancy graphics, however, call for high-speed
communication links. Meanwhile, special-purpose graphics workstations have
been developed (e.g., APOLLO Domain and SUN) that provide the necessary
speed for enhanced graphics capabilities.

A first generation of simulation programs was recently made available
that offer a true animation feature. A mechanism is provided to synchro-
nize the simulation clock with real time, and the user can watch results
from a simulation either on-line (that is, while the simulation is going on)
or off-line (that is, driven from the simulation database), in a true relation
to real time (either slower, equal, or even faster than real time). For an
increased feeling of reality, the color graphics screen is divided into a
static background picture and an overlaid dynamic foreground picture on
which the simulation results are displayed. TESS (Pritsker & Assoc., 1986)
and CINEMA (Systems Modelling Corp., 1985) are two such programs. Some
flight simulators use a "wallpaper" concept to make the background picture
even more realistic. Polygons can now be filled with patterns that represent
a blue sky with slight haziness and a few fluffy clouds, or a green meadow
with flowers and some trees. Here, the background picture is partly dy-
namic as well, fed from a three-dimensional database, and a projection
program automatically calculates the currently visible display (Evans, 1985).

Graphical input has also become a reality. Control circuits can be
drawn on the screen by means of block diagrams, which then are automatical-
ly translated by a graphical compiler into a coded model representation.
MATRIXy (Integrated Systems, 1984, Shah et al., 1985) already provides
this feature when operated from a SUN workstation (the program module
implementing this feature is called SYSTEM-BUILD). The most faney im-
plementation, however, is provided in HIBLIZ (Elmqvist, 1982; Elmqvist
and Matison, 1986). This program uses a virtual screen concept similar

Computer—-Aided Control Systems 647

to the one used in a modern spreadsheet program. The virtual screen is

a portion of memory that maintains the entire graph. The physical window
can be "moved" over the virtual screen such that only part of the total
graph is visible at any one time. A zoom feature is provided to determine
-the percentage of the virtual screen to be depicted on the physical screen.
The program is hierarchical. Breakpoints are used to determine the amount
of detail to be displayed. In a typical application, when the entire virtual
screen is made visible, a box may be seen containing a verbal description
of the overall model. Once the user starts to zoom in on the model, a break-
point is passed where the previously visible text suddenly disappears and
is replaced by a diagram showing a couple of smaller boxes with intercon-
nections between them. When the user zooms in on one of these (so far
empty) boxes, a new text may suddenly appear that describes the model
contained in this box, and so on. At the innermost level, boxes are de-
scribed either through sets of differential equations, a table, a graph, a
transfer function, or a linear system description. The connections (paths
between boxes) are labeled with their corresponding variable names placed
in a small box located at both ends of the path. Pointing to any of these
variables, all connections containing this variable are highlighted. During
compilation, an arrow points to the part of the graph that is currently
being compiled. During simulation, the user can zoom in on any path until
thé "small box" containing the names of variables in this path becomes
visible. Pointing to any of these variables now, the user immediately obtains
a display of a graph of that variable over time. _

A window-driven interface permits splitting the physical sereen into
several logical windows. Each window is now associated with one logical
unit in just the same manner as different physical devices used to be.

Each window by itself can theoretically be alphanumerical or graphical,
question-and-answer-driven, command-driven, menu-driven, or form-driven.
Thus, the window interface is actually at a slightly different level of ab-
straction than the previously described interface types. Windows can often
be overlaid. In that case, the most recently addressed window will auto-
matically become the top window that is totally visible. On some occasions
(e.g., the AMIGA operating system), windows are attached to a logical
sereen. The concept here is to allow multiple screens that can be pulled
down on the physical screen in a fashion similar fo a roll shutter. In
practice, window management calls for high-resolution bit-mapped displays
(at least 700 by 1000 pixels).

The different interface modes described above are by no means in-
compatible with each other. We recently experimented with combinations of
several interface types. IMPACT (Rimvall, 1983; Rimvall and Bomholt,
1985; Rimvall and Cellier, 1985) is largely command-driven. However, in
IMPACT, an extensive QUERY facility is available that goes far beyond the
interactive HELP facility offered in previous programs. By use of the
QUERY feature, the user can obtain guidance at either the individual com-
mand level or the entire session level; thus, one can decide on an almost
continuous scale at which level of guidance io operate the software (with
the pure question-and-answer-driven mode as the one extreme and the pure
command-driven mode as the other). A form-driven interface is being
provided for particular occasions, e.g., to determine the format of graphs
to be produced by IMPACT. A window-driven interface is provided for the
management of multiple sessions. Multiple sessions are created by use of
a SPAWN facility that works similarly to the one provided in VAX/VMS.

648 Appendix A

However, our SPAWN facility goes far beyond that of VMS. At any instant,
even while entering parameters to a function, the user can SPAWN a new
subprocess as a scratchpad for intermediste computations.

These interface discussions do not pertain to CACSD programs alone.
In fact, they are crucial considerations in any interactive program. The
most modern operaiing systems experiment with precisely the same elements.
For instance, the operating system of the MacIntosh can be classified as a
window-driven graphical operating system where the windows themselves are
sometimes menu-driven and sometimes form-driven.

A.4 CACSD TOOLS—A SURVEY

As discussed above, a CACSD program can offer a variety of interfaces.
There are also different types of design problems to be solved, and a
CACSD program may be either general or specialized. Thus, it is important
to select the right tool for the problem to be solved. The available CACSD
programs are by no means uniform.

Therefore, we gathered information about some of the currently available
CACSD programs. We developed a list of features using the categories
described above and mailed it to the producers of all CACSD programs we
were aware of. There were at that time roughly 40, and half of them re-
sponded. Their answers are listed in Table A.1. On the left, the features
are listed; thus each feature occupies one row. On the top, the different
CACSD programs are shown; thus each program occupies one column. A
0 entry dencotes the fact that the feature is not available in the particular
CACSD program, a 1 entry denotes availability, and a 2 entry denotes
particular strength. In the last row of the table, the accumulated "score"
of each' CACSD program is presented.

In Table A.l, whenever there existed several versions of -one program,
we listed the features of the strongest version. For example, MATRIXx,
{(Integrated Systems, 1984; Shah et al., 1985) has considerably stronger
power when executed from a SUN workstation than when operated through
a VT100 on a VAX system. The features listed are consequently those of
the workstation implementation. The mainframe version has substantially
fewer accumulated points and is roughly comparable to CTRL-C or IMPACT
(two other mainframe programs). As another example, CTRL-C (Systems
Control, 1984; Little et al., 1984) offers only a few features for the treat-
ment of nonlinear systems by itself, but there exists a strong link between
CTRL-C and the simulation language ACSL (Mitchell and Gauthier, 1981),
making it possible to run ACSL simulations under the supervision of CTRL-C.
Thus, CTRL-C is used for the experimental design, while ACSL is utilized
for individual simulation runs. The features listed under the heading
"CTRL-C" are consequently those of the combined software system CTRL-C/
ACSL.

Columns 2-7 list features of MATLAB and its "spiritual children."”
These programs are actually all very similar in nature and therefore easy to
compare. However, the difference in power between the various programs
is dramatic. As can be seen from Table A.l, the original MATLAB (Moler,
1980) accumulated 39 points only (and is thus the second "weakest" CACSD
program listed), whereas the "strongest" of these programs, MATRIXx
(Integrated Systems, 1984; Shah et al., 1985), accumulated 149 points (more
than any other of the listed programs). Also CTRL-C (8ystems Control,

Computer-Aided Control Systems ' 649

1984; Little et al., 1984) and IMPACT (Rimvall, 1983; Rimvall and Bomholt,
1985; Rimvall and Cellier, 1985) are very sirong programs, and even the
"smallt PC-MATLAB (Little, 1985) is amazingly powerful. The developers

of MATLAB-S8C (Vanbegin and Van Dooren, 1985) concentrated on the al-
gorithmic aspects, implementing some powerful, numerically stable algorithms
for particular control problems, but this is only one of the six previously
mentioned shortcomings of MATLAB. Therefore, MATLAB-SC accumulated
relatively few additional points over MATLAB itself and cannot be considered
a full-fledged CACSD tool yet. All the other programs (in Columns 2-7)
added strength in face of the six deficiencies in one form or the other,

MATRIXy, CTRL-C, and MATLAB-SC are true descendants of MATLAB,
in that they started off from the (FORTRAN-coded) MATLAB program and
added enhancements where they saw fit.

PC-MATLAB was completely recoded in C, makmg its code somewhat
easier to read and maintain. PC-MATLAB was developed for operation on
the IBM-PC and its lookalikes, which actually was one of the reasons for
recoding PC-MATLAB from scratch (the C-compiler available for the PC is
far better than the FORTRAN-compiler). Since the time of our questionnaire,
two additional implementations of PC-MATLAB were made available, namely,
one for the MacIntosh and the other for the SUN workstation, and therefore,
the name of the software was changed from PC-MATLAB to PRO-MATLAB
(Little et al., 1986). Also since the time of our guestionnaire, a tight link
between PRO-MATLAB and the simulation language SIMNON (Elmqvist, 1975,
1977) was established. With this new link, PRO-MATLAB passes the 100-
point level, making the software comparable in power to CTRL-C and
IMPACT.

Also, IMPACT was completely recoded using ADA. IMPACT's particular
strength lies in its powerful data structures, which will be discussed later.

One more derivative of MATLAB, called M (Gavl and Herget, 1984), has
also been completely recoded using OBJECTIVE-C. This implementation is
very powerful. M may be of particular interest to universities, as it is the
only one of MATLAB's derivatives that is available as public domain soft-
ware (as the original MATLAB was). However, its developers do not want
to advertise M too highly before its implementation has come to an end, and
thus, they did not respond to our questionnaire. Therefore, M's features
are regrettably not contained in Table A.1l.

Before we continue with the analysis of other programs listed in Table
A.1, let us discuss some of the concepts that went into the design of
MATLAB's derivatives. Why, for instance, did we decide to reimplement
IMPACT from scratch rather than making use of the code already available
in MATLAB? It is our experience that new program structures can be
easily added on to an existing code, while it is almost hopeless to try to
add new data structures to it. Thus, one is stuck with a code once one
decides that a major review of the available data structures is needed. As
the complex double-precision matrix is the only awvailable data structure in
MATLAB, the ™rue" children of MATLAB had to squeeze any new data
types into this data representation. For example, in CTRL-C, polynomials
such as p(s)

p(s) = 553 + 853 - 25+ 7

are represented through their coefficients coded as a vector.

=[5 8 -2 1]

SUNS D NI O NN D DD T S R =

= . . N ’ . . . * -
SUBCPT N N T = TN =T R Y = O e S o R . O OO

SSPACK = mio;m:r’:'—-‘o_m_o, o Do -:N-.N;O:f*—

CATPAC BN

PC-MATLAB ';N;mémim'm'-—Aro::—r——i.o:: Do ' . locoow

MATRIX, R PN P NP TR N N R TN

IMPACT o el — olelol L — ol

CTRL-C Ll M NN - Do . L olao N

(1]

[2] 3L4|5| 6|7_[8]9|lOlHl_\Z‘l:’:]H]lSllﬂI7‘li8‘19|20|2|

=
& .
0
0
0.
0
0
0
0
0
0
0
0
0

CACSD Program Features

Question—and—Answer

Continyous Systems

. Discrete Systems
Menu—/Form—driven
Object oriented
Command—drivan

Time Domain
Interactive Operation

‘Real-Time Interface
V_Inp.u‘t

Frequency Domain
_Nonlinear_VSyst_efns

Identification

13 | Single—Input/Single~Output

7_|6LOBAL CLASSIFICATION
14 | Multivariable

16 | Adaptive Contral

8
9
10
11
12
15

21 |USER INTERFACE

Table A.1

17
18
19
20
2z
23
24

5

7
28

26

650

disy sul|—up

6S

85

LS

[
oS

o
o
o
<
o

o
o

(=3
o

oo
oo

-
o

0 l 0:0 0

0: 2: ¢ [i 0
R Gy RS FEgE
SRR Grirgd g g g

0: 0: 0: |:1 L0

oo

o
od

o
<

(=N

l 0
Lol
e '
g: 1 l

(o}

—

—

N

— 0N —

VRN

e
S S
0
O
pEREE R
Sl G
SRR
AR
b g

AV R

2.

>

=

<
RIC e
RN
2. 2.0
70
22|

WeJdboddgng/oase)y

9<

GqS

¥S

£S

FAS

LS

0s

6%

159

b

651

[
[aX]

uolejou [ealjewsulel | 88
T Feanyoangais puewwoen| g
B T
Uoijlugep [spow [ESYDJRIEIH [68
1 suoienbe [ENUSISLIP (Eided | b
ST glueieAs gyep peldwes o8
...... G B T

U shonuuey {18
Tsubtiaisap waisAs ugeutUoN | 08
Vo T T T senjtdeeniuoN | 64
sednyondys Bulllspow djJauinuuoN| g2
S R T
© T suotydidogep eihwioy (eusten [OZ
T eeaniondys T ogwAS) €72
................ B
saibolodny WeysAs [€7
T uorieyueséudal edédsaieis 24

ol el

o
(e

fes)
o
= -
—
o

o
~J
o4
=
<
o4
4
(g]

U Usaunyonhas Uopounj—dajsuedl | 12

: T seorew (elulonAicd [of
N S 1 S C7s : ST Yuswodiaue Xidyely | 69
...... T T $e.4n¥ondis [eolJewnN| 89
...... B R i B e e R USRI

SIHNLINYLS WWHIOHd/ VLva| 99

o
]
™
o
od
o8]
o
[N}
o

o
<
o
=

[=]

...... R A T e SR <5

: : S Lo : - : . P 5
€9
29
19
09

LR TIE RS EE R
G0 d
2

WCDS/DSC
MATLAB

&
e 4 P
-—

SANCABD
PAAS
MADPAC
oo

SUNS
SUBOPT
TRIP

LUND
LAS.
KeDDC

_

E%S?LE?LEW_ T_FLN_ _?Lo_ _ 6 _

~ PC-MATLAB

o| MATRIX
»| MATLAB-SC

v (':TF-QL—.C

‘-
—

(penunuod) 1°V SIQEL

652

000

saipnis U@N_Loumrcagma

R I IR T e Rl

e

jencs
~lo o o - -

‘—.'ot -

oD

—_—
o

[V
Nl
0~ O

RS

iO:D:O:-—- -——EO-
SO

o3

oal oy

o~ :

N

e

o

o
o
<

“yod) S%Em_m _m,_Bu?zm

653

: (2]
: ¥l
m T
: ¥l
D _ vl
T 0.0 2. 0. 0. 2. 2 1. 1:0: 1:1: (:0: 1: 1:0 saienbs—1ses] (OW1
T e L e T Sssiiiani e oeT
R e S T S S e S5t foET
g g g e s e ades [T
g g g T s Wi T B K Teye iUl 26U T ET
... g G Gt e S b e i Tee T
................ gt G S S T e e T
.. sdoss EET
... oS P i agT
B R T e e B =
S T I o L O B B e B e R T TR T T TR
g g g g S S 10555 > shonaee TeaT
R IR AR R e i O Tt o
e T e e e e i seest =
Lo seuinod uofjew.ojsued) ozt
S LIRS U S e el T I S B R et 2
S 0 -3 2 | ¥zl
eixial g 3 I =IE R N AP - % €21
9 S T ipidiwiai oy gl IERIFIRTSIRYTES zzZ1
5 81 a2 32 Z:0ig i< QiR kiie Bk ¥
BB s a8 xiEi2i 5883 TIEIELGIE e
1zjozier[stfztjorfsiisrfsrfziJutjoi 6]z ofjswv[e]2] 1

(penupuod) 1°V 9lgel

654

€Ll

655

241
(WA
1 FA
691
: : : H N . QOH
______ RN O 0 00 R0 40000 0 AN OO St NS ARSI R SHEONCE SECERE £}
SRS ST T P PP SR N e L L LT . 0 : |99t
OO R O [0 M o bz b g 0n e 2 el 9!
‘‘‘‘‘‘ T L H Lo : : “. : ., b9l
...... : : : “. : .” £91
SRR PSPPI U PO NSORS OO PRTS NSPRSPNTS S NSO SN S SRR TR SO SO 291
..... TIPS ; : : . 191
...... L el T O O S A 4 651
ST ST T JP SO0 AP0 L OO O R0 00 L S 0, S A8 Mt 85!
...... : : H L L51
AR SR R0 N, JIN G PN A SO0 0 T N SO o S ST SR 951

: 4 ¢ci

261
161
061
6% 1
- Alqaeis [gp)
_______________ ANligeAiasqo Ay 1de(1043U0d [Zp]

'SeuIN0J SIsAlEUY|8F 1

0: 0 ublsep sW9lsAS poyndLllsLq
| .

, rewop suit)
Ubisap &|gelieAlN

— -

oo O
e
— 0)l

g

RN RS R
[aS S ¥
ol 0

- O3

(A

oo —
or— o O
oo o o —

gt
Leald

ol —

R

66 9l 9l L02
90¢
02
R Ty

0: 0: 0: 2: 94BM}}0S UfeUuiop d}(and[£02

:S1INIOd JO & TVIOL

0b: 9b: §9: 96! 62! 9f£: : - : P98 - R} A

Rt_..............._................;_.._......._....._.. der b SR GAE $555 $5 108302
A I ST TR S e o8 S St S e i A O TA (GU56XI| TOZ

..... B R I A ettty =

..... T B S T T v 71,

861
161

961
c61
¥61
£61
261
161
061
681
881
L8l
991
S8l
¥81
£81

Q LL)
g - 9L}
<
b

. E . i : Sl
: : : : : : ¥l

S E 281
L 181
Lo 081
S 641
Lo S 71

SANCAD

PAAS
MADPAC
ICARE
WCDS/DSC ©
CATPAC

TRIP

NS
- S

LUND
AS.
KEDDC

~! PC-MATLAB

chwmm?__tT:mm_mv__mm.wﬁ?_wo_wmmnw EREEEREREE [

anunuo)) 1°V 9lqe]

656

Computer-Aided Control Systems ' 657

This notation is perfectly legitimate, but unfortunately it leads to confusion,
For example, if one wants to add two polynomials: p(s) + g(s), this opera-
tion cannot be written as P + @ unless both polynomials p(s) and q(s) are
of the same order. p(s)*g(s) is entirely different from any matrix multipli-
cation; namely, it is a convolution between P and Q, e.g., expressed in
CTRL-C as CONV{(p,q). Thus, to be able to overload the conventional
operators, we must be able to distinguish polynomials from other vectors
through use of a different data type. (The term operator overloading has
been borrowed from the ADA language. It denoctes the ability to reuse the
same operator for different purposes depending on the data types of its
operands.) -

Linear systems are expressed, e.g., in MATRIXy, through an ordinary
MATLAB matrix:

S=[A B
C DI

but certainly, two parallel connected subsystems cannot be expressed as
S1+ 82, while two cascaded subsystems cannot be expressed as S2*S1,
which would be analogous to frequency domain operations.

In IMPACT, each conceptual data element (matrix, polynomijal, transfer
function, linear system, trajectory) is expressed by a data structure of its
own, thus allowing mathematical operators to be overloaded. This concept
also allowed us to implement additional data structures such as polynomial
matrices (which are essentially tensors) for the design of MIMO systems
in the frequency domain (an area in which most CACSD tools are weak).
Polynomials can, in' IMPACT, be represented through their coefficients,
their roots, or a set of supporting values. '

Besides all these differences, the gap between the various MATLAB
derivatives seems to close rather than to widen. Recently, a new down-
scaled version of MATRIXyx was announced for the IBM-PC. This software
must obviously be in direct competition with PC-MATLAB. On the other
hand, a new upscaled version of CTRL-C is currently under development
that will execute on a VAX-Station If, and that will offer features very
similar to the combined MATRIXy«/SYSTEM _BUILD software.

Columns 8-14 summarize other general-purpose CACSD programs.
CATPAC (Buenz, 1986) is a strongly data-driven program. Both the
numerical algorithms and the computed results are stored in hierarchically
organized databases. Database management (cf. Chapter 7 of this book)
is one area in which the MATLAB derivatives are chronically weak. The
data organization in CATPAC eases the incorporation of additional algorithms
into the program, and it allows results from CACSD studies to be maintained
in a better-organized manner. CATPAC does not provide for a full-fledged
language though; that is, new algorithms must be hand-compiled before
they can be added to the database. Moreover, the execution of data driven
programs is slower than the execution of code-driven programs. Thus, the
runtime efficiency of CATPAC algorithms must lie somewhere between that of
MATLAB derivatives when executing functions programmed in their own
interpretive macro languages, which execute even slower, and that of
MATLAB derivatives when executing algorithms programmed in their implemen- .
tation languages (FORTRAN, C, ADA), which execute much faster.
Our experience with CTRL-C has shown that an algorithm programmed

658) Appendix A

directly into the CTRL-C system executes roughly 20 times faster than the
same algorithm when implemented as a CTRL-C function (actually macro).
The optimal solution would probably be to stay code-driven (as in MATLAB),
but to provide a function translator that can compile new functions from

the application language (MATLAB, CTRL-C, etc.) into the implementation
language (FORTRAN, C, ADA), once such a function has been sufficiently
debugged. This is the path we intend to take with IMPACT (which is one
of the major reasons why language constructs in IMPACT's own procedural
language look as similar as possible to equivalent constructs of its implemen-
tation language ADA}. .

Program CC (Thompson, 1986) is a CACSD program that has been
implemented in BASIC and runs on IBM-PCs (and PC lookalikes), CC has
been designed for multivariable control system analysis and synthesis. It
supports the data type "transfer function matrix,”" which enables frequency
domain design also of multivariable systems. Among the MATLAB derivatives,
only IMPACT and M offer this feature. Special features of Program CC are
graphical displays of transfer functions, partial fraction expansions, and
inverse Laplace and Z-transforms, symbolic manipulation of transfer functions,
and state-space and frequency domain analysis of multirate sampled-data
systems. The symbolic manipulation of transfer functions is a rather unique
feature. Only four programs of the 20 surveyed offer any symbolic manipula-
tion capabilities at all. Such a capability is invaluable in parametric studies,
and it is certainly one of the features that needs to be strengthened in the
future.

KEDDC (Schmid, 1979, 1985) is one of the most comprehensive CACSD
programs currently available. It is coded in portable ANSI-FORTRAN, with
the exception of the graphics subsystem, which is coded in PASCAL. Inter-
faces (graphics drivers) exist for many different terminal types and brands.
The user interface can be configured. KEDDC can be used in a question-
and-answer mode, but is more flexible when used through its menu- and
form-driven interface. Depending on the terminal type, KEDDC also sup-
ports window management with parallel sessions. Its user's manual alone
has 1200 pages, its programmer's manual has 1400 pages! KEDDC thus
takes the cureall approach rather than providing for a flexible control shell.
Indeed, when the user wants to solve a problem for which no algorithm is
currently provided in KEDDC, he may find KEDDC less user-friendly than
some of the MATLAB derivatives. The combination of existing algorithms
into new ones can less easily be accomplished. However when using existing
algorithms, KEDDC offers better guidance, and in some cases offers better-
tuned algorithms.

L-A-S (linear algebra and systems; Chow et al., 1983; West et al.,
1985) is one of CACSD programs that offer a full-fledged programming language
for implementation of new algorithms. L-A-S is thus the pure contrary to
KEDDC. It follows the shell approach rather than trying to provide a cure-
all. Unfortunately, we find the L-A-S language highly cryptic.

The LUND software system consists of a suite of different CACSD
programs for various purposes. SIMNON (Elmqvist, 1975, 1977) is a direct-
executing simulation language comparable in power to DESCTOP (Korn, 1985,
1987). It supports the simulation of sampled-data systems, the interconnec-
tion of submodels, and multirate integrations of subsystems. SIMNON was
the first floating-point direct-executing simulation language. SIMNON
executes on VAX/VMS and UNIVAC machines, and only a few months ago,

a PC-version of SIMNON was added. SIMNON is coded in FORTRAN-77
(but unfortunately not in a very portable manner).

Computer-Aided Control Systems 659

A preprocessor, DYMOLA (Elmgvist, 1978, 1980), a topology-oriented
system description language, generates either SIMNON application programs
or directly FORTRAN code that can be linked with the SIMNON system.
DYMOLA models (subsystem descriptions) are connected by means of cuts,

a new data abstraction mechanism (similar to PASCAL records) that allows
grouping variables together in the same way as fibers are grouped into

wires, and wires are grouped into cables. There are two versions of
DYMOLA. The first version was coded in SIMULA; a newer version is

coded in PASCAL. DYMOLA was the first modular modeling system developed.

A graphical prepreprocessor, HIBLIZ (Elmgvist, 1982; Elmgvist and
Mattson, 1986), generates a DYMOLA program out of a graphical description
of the model. This system was already mentioned in this appendix. To
our knowledge, it was the first (experimental) graphical modeling system
ever built. It executes on VAX/VMS using a modified CRT with a mouse.
In the meantime H. Elmgvist, the designer of all three simulation/modeling
systems, has left the Swedish Control Institute at Lund. With him, K. J.
Astrém lost one of the most talented and innovative simulation experts
available.

.IDPAC (Wiestander, 1980a) is a highly powerful program for parameter
estimation in linear stochastic MIMO models and for model validation pur-
poses. It provides for spectral analysis, correlation analysis, and data
analysis in general. POLPAC (Astrém, 1985) is a (somewhat more experi-
mental) program for polynomial design. MODPAC (Wieslander, 1980b) is
a program for transformations between different system representations; for
basic operationé on these data types, that is, polynomial operations and
matrix operations; for evaluation of basic system properties such as con-
trollability, obserwvability, and stability; and for graphical output.

All programs contained in the Lund software suite use internally the
same parser, INTRAC (Wieslander and Elmqvist, 1978), which also provides
for a standardized (though somewhat primitive) "language" environment.
Even though scme of the MATLAB derivatives are more powerful than .
INTRAC with respect to the features offered through their MACRO languages,
the LUND software suite has paved the road for this new software tech-
nology. The LUND software suite was the first modern CACSD tool on the
CACSD software market,

TRIP (transformation and identification program; Van den Bosch, 1985)
is a CACSD program for the design of continuous- and/or discrete-time
SISO systems in either time or frequeney domain. It has a tight link to
the interactive nonlinear simulation program PSI for the design of nonlinear
control systems. TRIP is available on VAX and IBM-PC. It is a low-cost
CACSD program for the design of systems up to tenth order.

The Waterloo Control System Design Software Packages (WCDS and DSC;
Aplevich, 1986) can be used for optimal-control, multivariable frequency
domain design and algebraic matrix-fraction design for systems of up to
100th order. These software systems make use of the system representation
(F — sE)x + Gu = 0, where E, F, and G are matrices, u denotes the input
vector, X denotes the state vector and s is a linear operator. This is the
direct linearization of the nonlinear vector equation f(x,sx,u) = 0. Any
linear model in state-space form, transfer-function representation, or matrix-
fraction form can be put into the above representation by inspection, and
hence, in principle, any algorithm based on these other system representa-
tions ean be implemented. However, important simplifications result from this
choice of data representation, All binary algebraic operations reguired for
manipulating subsystems are performed using exactly three operations:

660 Appendix A

combining two systems into one, adjoining linear constraint equations, and
reducing a model to an externally equivalent model, with a desired form.
The first two operations are numerically harmless; the third requires a
generalization of state-space minimality theory and is implemented using
numerically stable staircase algorithms.

Columns 15—-21 of Table A.1 describe more special-purpose CACSD
systems. Each of them [ICARE (Gorez, 1986a), MADPAC (Bartolini et al.,
1983), PAAS (Gorez, 1986b), SANCAD (Gray, 1986), SSPACK (Technical
Software Systems, 1985), SUBOPT (Fleming, 1979), and SUNS (Atherton
and Wadey, 1981; Atherton et al., 1986)] has a strength in one particular
area of CACSD, as can be extracted from the feature table. We shall not
describe those software systems in any greater detail.

Although we added up the credit units for gll these 20 CACSD systems,
it is impessible to ensure that we really compared apples to apples in all
cases. In particular, the special-purpose CACSD programs are obviously
doomed to collect fewer points. Moreover, the question whether to assign
1 or 2 units to a particular feature is somewhat subjective, and the fact
that a particular table column (CACSD program) contains many 1 entries
may, in fact, speak for the modesty of the software designer, more than
for a lack of quality of the particular product. Nevertheless, 5 of these. 20
programs (MATRIXx, CTRL-C, IMPACT, LUND, and KEDDC) coliected more
than 100 points each, and indeed, we believe these five programs to be the
most versatile among the CACSD software systems surveyed. With its new
link to SIMNON, PRO-MATLAR should be added to this list.

Our CACSD survey is obviously incomplete, as only about 50% of the
CACSD software designers known to us by the time we mailed out our
circular letter responded to our gquestionnaire. Another survey of CACSD
software was published recently by D. K. Frederick (1985). In that
survey, each software system is described in much less detail (as the sur-
vey does not contain any feature table), but the survey contains 37 entries
in place of our 20, and these are only partially the same as those contained
in our survey. Thus, Frederick's survey is highly recommended for an
additional source of information (as is the entire volume in which that survey
appeared). There has recently also been created an ELCS (extended list of
control software) newsletter to provide an information exchange forum for
CACSD software developers (Rimvall et al., 1985). The newest issue of
this newsletter contains already more than 80 different software entries.

Our software survey is subjective rather than objective. This is due
to the fact that the 1 and 2 entries could not be assigned in a completely
objective manner., -Moreover, the authors of this survey have a strong in-
clination in favor of MATLAB-like languages and did not hide this fact.

We often expressed personal opinions rather than restricting our survey to
a simple listing of dry facts and leaving the interpretation of these facts
to the reader, but we tried honestly to serve the CACSD community in the
best possible way. The authors acknowledge with gratitude the kind co-
operation of those responding fo our questionnaire.

A.5 STANDARDIZATION VERSUS DIVERSIFICATION
In the previous section, we introduced a number of different CACSD tools.

We have seen that they vary with respect to their application areas, as well
as with respect to their user interfaces. Is such a diversification really

Computer-Aided Control Systems 661

justified and desirable, or might a canalization of the various and diversi-
fied efforts into one CACSD software standard be more appropriate? Is
there any hope for a CACSD standard comparable, for example, to the
continuous system simulation language (CSSL) standard in simulation soft-
ware (Augustin et al., 1967)? What might such a standard look like?

We indeed believe that with respect to the manner in which control
problems are formulated, a standard is both feasible and desirable. The
matrix notation of MATLAB-like languages is so natural that we do not see a
need for any other notation in this respect. Although the division operators
"M gand "N\ for right and left division are not "standard" operators in the
classical mathematical sense, after MATLAB became available and popular,
even a few publications have used this notation for simplicity. Hopefully,
a MATLAB-like notation will also be introduced into CSSL's as an additional
tool for the description of state-space models.

In IMPACT, we used additional operators for a third dimension, thus
operating effectively on complex tensors in place of complex matrices. Multi-
variable systems can be expressed in terms of polynomial matrices where
each matrix element may be a polynomial in the linear operator s (or z in
the discrete case). We introduced the """ operator to separate polynomial
coefficients, and (alternatively) the "|" operator to separate polynomial
roots. Thus, the polynomial matrix

P = [(3s7+ 10s+ 3 (25 = 3)

s3 (—52 - Ts — 10)]

can, in IMPACT, be coded as

P = [[371073], [-3"2]
B [~™"13, [-10"=7"~1] 1]

or glternatively as

PF = [3*%[-3|-(1/3)1, 2*%[|1.5]
[ojojoi, ~1*[-2[-5]]

to denote the factorized form

PF = [3(s+ 3)(s+ 1/3) 2(s - 1.5)
s*s¥s s+ 2)(s+ 5)]
The two operators """ and "|" naturally extend the previously introduced
operators "," (used to separate matrix columms) and ";" (used to separate

matrix rows). Once selected, the data representation is maintained until
the user decides to convert the polynomial matrices into another data
representation, e.g., by writing PFEFACTOR(P) or P=DEFACTOR(PF).
Factorized polynomial matrices and defactorized polynomial matrices are two
different data structures in IMPACT. Note that FACTOR(PF) will result
in an error message. This notation has meanwhile been adopted by the
developers of M as well (Gavel et al., 1983).

Of course, it is natural to define once and forever

s=1"11]

662 ' Appendix A

(which, in fact, is an IMPACT system variable). Thus, one can also write
a polynomial as

pl = 3*s**¥2 + 10*s + 3
or alternatively as

pl = 3*%(s + *(s + (1/3))

which will nevertheless, in both cases, result in a polynomial of type de-
factorized polynomial, as the s-operator was coded in a defactorized form.
To prevent this from happening, the user could write

sf = [{0]
and thereafter

plf = 3*(sf + 3)*(sf + (1/3))

which, however, is not recommended as frequent defactorizations and re-
factorizations will take place in this case. Notice the consequent overload-
ing of the "+" and "*" operators in these examples. Depending on the
types of operands, a different algorithm is employed to perform the opera-
tion. '

Also, with respect to the embedded procedural language, an informal
standard can be achieved. The procedural language of CTRL-C, for
instance, is very powerful. It basically extends the PASCAL programming
style, ‘operating conveniently on the new matrix data structures. Very
useful, for instance, is the extension of the PASCAL-like "FOR" statement:

FOR | = 11,3,7,28}], ...

This FOR loop shall be executed precisely four times with I =1, I =3, 1 =
7, and I = 28, respectively. (Many users still deplore the missing GOTO
statement in CTRL~-C. Although it has been theoretically proven that a
GOTO statement is not needed, its lack makes programming sometimes quite
difficult.) IMPACT employs an ADA style instead of the previously advo-
cated PASCAL style. It actually does not matter too much which style

is adopted in a forthcoming standard, but any standard would be highly
welcome to allow smooth exchange of the extensive available soft-coded macro
libraries. There is really no good reason to stick to the prevalent variéty
of only marginally different procedural languages.

Also with respect to the user interface, de facto "pseudostandards”
have already been established. Window interfaces look more and more
similar to the MaclIntosh interface, (Although the MacIntosh was not the
first machine to introduce windowing mechanisms, it was this machine
that made this new technique popular.) The Swiss mouse is a very con-
venient, flexible, and fast-input device, and it is expected to make the
previously fashionable cross-hair cursors and light pens soon obsolete,
as cross-hair cursors are both uncomfortable to use and slow, and as light
pens demand very expensive screen sensors. To our displeasure though,
there exist mice with one, two, and three buttons. Any standard would be

Computer-Aided Control Systems 663

equally acceptable, but a standard must be found. Once the fingers are
used to one system, it is hard to adjust to another (like driving a car that
has the gas pedal on the left and the clutch on the right).

With respect to the actual functions offered, we shall probably not see
a standard quickly. The current diversification into different application
areas and design methodologies is most likely to be around for some time,
and we actually welcome this, as too early a standard can freeze the lines
and hamper the introduction of innovative new concepts.

Another interface, which is rarely even noticed by the casual CACSD
software user, is the interface to a database where results of computations,
as well as programming modules, notebook files, etc., may be stored. To
promote the state of the art of CACSD software further, it is imperative
that a database interface standard be defined. Lacking such a standard,
most current CACSD software developers don't even offer a database inter-
face at all, but fully rely on the file-handling mechanism (directory struc-
ture) of the embedding operating environment. This mechanism is computa-
tionally efficient (as the record manager, on every computer, is strongly
optimized to suit the underlying hardware), but the mechanism is entirely
insufficient for our task. The immediate effect of the lack of an appro-
priate database concept is a jungle of small and smallest data and program
files scattered over different subdirectories, which makes it hard to re-
trieve data and programs that have previously been stored for later reuse.
As an example, a particular A-matrix of a linear system will probably not
be related to the problem under investigation at all, but will be stored as -
a nonmnemonic file "A.DAT" located somewhere in the directory structure
of the underlying operating system. Little has been done to address this
pertinent problem. Probably most advanced in this context is the work of
Maciejowski (1984).

An IFAC working group discussing "Guidelines for CACSD-Software"
was generated recently which consists of three subgroups for the discus-
sion of

CACSD program interfaces (including graphics)
CACSD program data exchange
CACSD program algorithm exchange

A similar IEEE working group exists as well. Hopefully, these two bodies
will be able to promote a forthcoming CACSD standard.

A.6 SIMULATION AND CACSD

Let us discuss next how simulation has been implemented in some of the
current CACSD programs.
In CTRL-C, there is a simulation function that takes the following form:

where a, b, ¢, and d are the system matrices describing a linear continuous-
time MIK/IO system t is a time base (that is, t is a vector of time instants),
u is the input vector sampled over the time base (that is, u is actually a
matrix, each row denotes one input variable, and each column denotes one

time instant), y is the output vector (that is, y is a matrix with rows

664 Appendix A

denoting output variables, and columns denoting time instants), and x is
the state vector (which is also a matrix with according definitions). Initial
conditions can be specified in a previous call of the same funection:

SIMU ("IC',x0)
and also the integration method can be declared in a similar manner:
SIMU (ADAMS',relerr,abserr,maxstp)

An equivalent function DSIMU exists for discrete-time systems. The system
matrices can be constructed out of subsystem descriptions by use of a
series of interconnection functions (SERIES, PARALLEL, INTERC, and
MINREAL).

In IMPACT, we chose a slightly different approach. Since systems
and trajectories are identifiable as separate data structures, we can once
again overload the meaning of the primitive operators. Time bases
("domains") are created by means of the functions LINDOM and LOGDOM
and/or by use of the "&" operator (concatenation operator):

t = LINDOM(0.,1.,0.1) & LINDOM(2.,20.,1.) & 50. & 100

which generates a domain consisting of 23 points: [0., 0.1, 0.2, . . ., 0.9;
1., 2., 3., . . ., 19., 20, 50., 100.]. Trajectories are functions over
domains, thus: ’ :

= [SIM(t);CO8(1)]

which creates a trajectory column vector u evaluated over the previously
defined domain t. Linear systems are generated by use of the LINCONT
and LINDISC functions:

s1 - LINCONT(al,bl,c1,D=>d1,X0=>10.5;2.;~3.71)

The three matrices al, bl, and ¢l are compulsory positional parameters,
whereas the input- output matrix (D) and the initial condition vector (X0)
are optional (defaulied) named parameters.

Series connection between two subsystems is expressed as s2%*sl, that
is, multiplication in reverse order (exactly what it would be if the two sub-
systems were expressed through two transfer function matrices: g2¥gl);
parallel connection is expressed by use of the "+" operator, and feedback
is expressed by the "\\' operator:

gtot = g\ (~h)

(g fed back with -h), independently of whether g and h are expressed as
transfer function matrices or as linear system descmptlons. Simulations
finally are expressed by overloading the "*"' operator once more:

y = Sl*E

which simulates the system sl (which in our example must have two inputs)
from 0. to time 100., interpolating between the specified wvalues of the

Computer-Aided Control Syétems 665

input trajectory vector u, and sampling the output trajectory vector y over
the same domain. Thus:

tout = (s2%s1)*tin

series-connects the two subsystems sl and s2 and then performs one simu-
lation over the combined system. On the other hand:

tout = s2*(s1*tin)

simulates the subsystem sl using tin as input, samples the resulting output
trajectory over the same domain, and then simulates the subsystem s2 using
the previous result as an input by reinterpolating it between its supporting
values, Of course, numerically the results of these two operations will be
slightly different, but conceptually, the associative law of multiplication
holds,

In standard CSSLs, simulation is always viewed as the execution of a
special-purpose program (the simulation program) producing simulation re-
sults (mostly in the form of a result file). There, the simulation program
is viewed as the central part of the undertaking. No wonder such a con-
cept does not lend itself easily to an embedding into a larger whole in
which simulation is just one task among many.

In CTRL-C, simulation is viewed as a funection mapping an input vector
(or matrix) into an output vector (or matrix). Clearly, simulation is here
just one function among many others that can be performed on the same
data.

In IMPACT finally, simulation is viewed as a binary operator that maps
two different data structures, namely, one of type system description
(eventually alse nonlinear), and the other of type trajectory into another
data structure of type trajectory.

Of course, all three descriptions mean ultimately the same thing, yet
the accents are drastically different. To prove our case, the reader
versed in the use of one or the other of the CSSLs may try to code the
IMPACT statement tout = s2¥(sl1*in) as a "CSSL simulation program." In
most CSSLs, this simply cannot be done. The task would require two
separate programs to be executed one after the other. The output from the
first simulation run (implementing taux = sl1*in) would have to be manually
edited into a "tabular function" and used by the second simulation run
(implementing tout = s2*taux).

To give another example: When solving a finite-time Ricecati differen-
tial equation, one common approach is to integrate the Riccati equation back-
ward in time from the final time tf to initial time tg, because the "initial
condition” of the Riccati equation is stated as K(t = tf) = 0, and because
the Riccati equation is numerically stable in backward direction only. The
solution K(1) is stored away during this simulation and then reused (in
reversed order) during the subsequent forward integration of the state
equations with given x(t = {p). Some of the available CSSLs allow solving
this problem (mostly in a very indirect manner); other simply cannot be
used at all to tackle this problem.

How can one handle this problem in CTRL-C? The first simulation is
neonlinear (and autonhomous), and the second is linear {(and input-dependent)
but time-varying; thus, we cannot use the SIMU function in either case.
CTRL-C provides for a second means of simulation though. In the newest

666 Appendix A

release of CTRL-C, an interface to the well-known simulation language
ACSL was introduced. This interface allows making use of the modeling
and simulation power of a full-fledged simulation language, while one is still
able to control the experiment from within the more flexible environment of
the CACSD program. Several of the discussed CACSD programs follow this
path, and it might indeed be a good answer to our problem if the two
languages that are combined in such a manner are sufficiently compatible
with each other, and if the interface between them is not too slow. Un-
fortunately, this is currently not yet the case with any of the CACSD
programs that use this route.

Let us illustrate the problems. We start by writing an ACSL program
that implements the matrix Riccati differential equation

aK
e

= -Q +K*B'RBUE - KA - ATK K(tp =0

Since ACSL does not provide for a powerful matrix environment, we have
to separate this compact matrix differential equation into its component
equations. [ACSL does provide for a vector-integration function, and
matrix operations such as multiplication and addition could be (user-)coded
by use of ACSL's MACRO language. However, this is a slow, and in-
convenient replacement for the matrix manipulation power offered in
languages such as CTRL-C.] Furthermore, since ACSI, does not handle
the case ty < tO’ we must substitute t by

* = - ~
t ‘tf tO t

and integrate the substituted Riccati equation

'dg

5 ° Q- KMB'R B + KA + AK K(0) = 0

forward in time from t* = 0 to t* = ty — t3. Through the new interface
(A2CLIST), we export the resulting Kij(t*) back into CTRL-C, where they
take the form of ordinary CTRL-C vectors. Also in CTRL-C, we have to
manipulate the components of K(t) individually, as K(t) is a trajectory
matrix, that is, a three-dimensional structure. However, CTRL-C handles
only one-dimensional structures (vectors) and two-dimensional structures
(matrices), but not three-dimensional structures (tensors). Back sub-
stitution can be achieved conveniently in CTRL-C by simply reversing the
order of the components of each of the vectors as follows:

[n,m] = SIZE(Xi})
nm = n*m
kij = kij(nm:-1:1)

Now, we can set up the second simulation:

ax :
at = [A - E(t)*li]*}_(g(tg) = }_50

Computer-Aided Control Systems ‘ 667

What we would like to do is to ship the reversed Ki]*(t) back through the
interface (C2ALIST) into ACSL, and use them as driving functions for the
simulation. Unfortunately, ACSL is not (yet!) powerful enough to allow us
to do so. Contrary to the much older CSMP-III system, ACSL does not of-
fer a dynamic table lcad function (CALL TVLOAD). Thus, once the Kij(t)
functions have been sent back through the interface into ACSL, they are no
longer trajectories, but simply arrays, and we are forced to write our own
interpolation routine to find the appropriate value of K for any given time
t. After all, the combined CTRL-C/ACSL software is indeed capable of
solving the posed problem, but not in a very convenient manner. This is
basically due to the fact that ACSL is not (yet!) sufficiently powerful for
our task, and that the interface between the two languages is still awkward.
Because of the weak coupling between the two software systems, it might
indeed have been easier to program the entire task out in ACSL alone, al-
though this would have meant doing without any of the matrix manipulation
power offered in CTRL-C.

What about IMPACT? In IMPACT, it was decided not to rely on any
existing simulation language, but rather to build simulation capabilities into
the CACSD program itself. This is partly because of the fact that (as the
above example shows) the currently available simulation languages are -
really not very well suited for our task, and partly due to our decision to
employ ADA as implementation language. As currently no CSSL has been
programmed in ADA, we would have had to rely on the "pragma concept"
(which is ADA's way to establish links to software coded in a different
language). However, we tried to limit the use of the pragma concept as
much as possible as this feature does not belong to the standardized ADA
kernel (and, thus, may be implementation-dependent).

Until now, only the use of linear systems in IMPACT was demonstrated.
However, nonlinear systems can be coded as special macros (called
SYSTEM MACROs). The two linear system types (LINCONT and LINDISC)
are, in fact, just special cases of system macros. The Riccati equation can
be coded as follows:

SYSTEM ricc_eqf(a,b,q,rb) RETURNK IS
k = zero{a);

BEGIN
K = —q + k*b*rb*k — k*a — a'*k;
END ricc_eq

The state equations can be coded as

SYSTEM sys eq(a,b,rb,x0) INPUT k RETURN x IS

x = x0
BEGIN

X = (a — rb*k)*x;
END sys eq

The total experiment can be expressed in another macro (of type FUNCTION
MACRO):

668 Appendix A

FUNCTION fin tim ricc(a,b,q,r,xbeg,time_base) IS

BEGIN
back time = REVERSE(time base);
rb = r\b":
kt = ric_eq(a,b,q,rb) *back_time;

k2 - REVERSE(kT1);
x = sys_eq(a,b,rb,xbeg) *k2;
RETURN <x,k2>;

END fin_tim _ricc;

Notice the difference in the call of the two simulations. The first system
(ricc_eq) is autonomous. Therefore, simulation can no longer be expressed
as a multiplication of a system macro with a (nonexistent) input-trajectory
vector. Instead, the system macro here is multiplied directly with the
domain variable, that is, the time base. The second system, on the other
hand, is input-dependent. Therefore, the multiplication is done (as in the
case of the previousiy discussed linear systems) with the input trajectory.
FIN TIM RICC can now be called just like any of the standard IMPACT
functions (even nested). The result of this operation are two variables,

vy and k, of the trajectory vector and trajectory matrix type, respectively.

x0 =10;01; a = [0,1;~2,—-3]; b = [0;1];

q = [10,0;0;100]; r = 1;

forw time = LINDOM{0,10,0.1, METHOD=>'ADAMS', ABSERR=>0.001);
[y.kl = fin_tim_ricc(a, b,q,r,x0,forw_time);

plot(y)

As can be seen from the above example, the entire integration information,
in IMPACT, is stored in the domain variables, which makes sense as these
variables anyway contain part of the runtime information (namely, the com-
munication points and the final time). Moreover, this gives us a neat way
to differentiate clearly between the model description on the one hand and
the experiment description on the other.

Obviously, this is a much more powerful tool for our demonstration task
than even the combined ACSL/CTRL-C software. Unfortunately, contrary to
CTRL-C, IMPACT has not yet been released. Roughly the first 75,000
lines of ADA code have meanwhile been coded and debugged, and the
IMPACT kernal will be released soon. This kernel will implement all the
IMPACT language structures (including all the macro types, the complete
query feature, and multiple sessions), but it will not contain all the fore-
seen control library functions, nor will it contain multiple windows. The
complete software is expected to become available soon.

A.7 OUTLOOK

How is the field of CACSD going to develop further over the next decade
or so? To understand where we are heading, we need to assess where we
currently stand. In the past, and this still holds for the first generation
of CACSD tools, the application programmer was talking about program
development. A program is a tool that caleculates something in a sequential
manner when executed on a digital computer. Some programs were param-
eterized, that is, accepted input data to partly determine what was to be
calculated, The major emphasis was on the program, whereas the data were

Computer-Aided Control Systems 669

of relatively minor importance. There was a clear distinction between the
program (a piece of static code in memory), and the data (a portion of
memory that changed its content during execution of the program).

With the new generation of CACSD tools, we departed from this view-
point drastically. New CACSD programs are in themselves true programming
languages; that is, the application programmer no longer relies on the com-
puter manufacturer to provide the languages to be used, but creates his
own special-purpose languages. The difference is simply that less and less
of the computational task is frozen in code, while more and more of it is
parameterized, that is, data-driven. The data in itself reached such a
degree of complexity that its appropriate organization became essential. The
user interface, previously an unimportant detail, turned into a central ques-
tion that decided whether a particular CACSD tool was good or bad, even
more than the algorithmic richness provided within the program. What we
gained by this change in accent was a dramatic increase in flexibility
offered by the CACSD tools; what had to be paid in return was a certain
decrease in runtime efficiency. However, with the advent of more powerful
computers (an engineering workstation of today compares in number-crunch-
ing power easily with a mainframe computer of not more than a decade ago),
this sacrifice could be gladly made. Moreover, it was often true that the
compilation and linkage of a simulation program took .10 times longer than
the actual execution of the program (at least for sufficiently simple applica-
tions). With the advent of the new direct executing (that is, fully data-
driven) simulation languages such as SIMNON (Elmqvist, 1975, 1977) and
DESCTOP and DESIRE (Korn, 1985, 1986), one can obtain simulation results
immediately, and even if the simulation program executes 50% slower than it
would if it were properly compiled, the increased flexibility of the tool (ease
of model change) pays off easily even with respect to the total time spent
at the computer terminal. These types of simulation tools are exactly what
is needed within the CACSD program. '

However, we are currently at the edge of taking yet another step.

We now talk about the development of multiwindow user interfaces, of
object-oriented programming style, of language-sensitive editors, of CAD
databases, etc. Are these really issues that can (or should) be tackled at
the level of a programming language? Are these not rather topics to be
discussed at the level of the underlying operating systems? If we say

that we need a CAD database to store our models and resulting data files,
do we not simply express the fact that the file storage and retrieval system
of the operating system in which the tool is being embedded is not powerful
enough for our task? Are not interactive languages such as MATLAB and
DESCTOP (very primitive) special-purpose operating systems in themselves?
We indeed do believe that future programming systems will blur the pre-
viously clear-cut distinction between programming languages and the operat-
ing systems they are embedded in. This problem was realized by the
developers of ADA, who understood that a complex tool such as ADA cannot
be designed as a programming language with a clean interface to the out-
side, implementable independently of the operating system it is to run under.
Instead, its developers considered an ADA environment to be offered to-
gether with the ADA language. The ADA environment is basically nothing
but a (partial) specification of the operating system in which the ADA
language is to be embedded. The same is true with respect to CACSD
tools, In IMPACT, we were not yet able to address this question in full
depth, as the ADA environment itself is not yet completely defined, and as

670 Appendix A

we would like to borrow as much as possible from ADA concepts. In M
(Gavel et al., 1985), this question was addressed and led to the develop-
ment of yet another tool, EAGLES (Lawver, 1985), an object-oriented, multi-
tasking, multiwindowing operating system, under which M is to run. The
import/eéxport of M-variables between different sessions (windows) is not
programmed in M itself, but is supported by EAGLES. The entire graphics
system is a facility provided by the EAGLES operating system rather than
being implemented as an M-tool. EAGLES operates on a rather involved
database that serves as a buffer for all data to be shuffled back and forth
between the different tools (such as M) and the operating system EAGLES
itself. ,

The future will tell how efficient (or rather inefficient) EAGLES is
when implemented as a language running under an existing operating sys-
tem (as it is currently planned) rather than being implemented as the
operating system itself. Obviously, EAGLES has to rely strongly on the
record manager and system functions of the operating system (VMS). How
will the developers of EAGLES deal with new releases of the underlying
operating system offering enhanced and, at this level, not fully upward-
compatible new features? Are EAGLES users going to have the same problem
as EUNICE users (EUNICE = UNIX under VMS), who are always two or
three versions behind the current version of VMS, because it takes the
EUNICE developers usually 1 yvear to keep up with the newest (meanwhile
already again outdated) developments in VMS? We don' know the answers
to these questions. We just focus on some of the dangers behind this cur-
rent development.

One way to overcome the previously mentioned problem may be to
standardize the operating system itself. The UNIX operating system pre-
sents one step In this direction. There already exist a large number of
(unfortunately not very uniform) UNIX implementations for various com-
puters. The idea is splendid. Unfortunately, the original UNIX was much
too small fo be taken seriously (e.g., with respect to the problem of en-
forcing data security and data integrity). Current UNIX dialects tackle
these problems in wvarious ways, but the experiment is doomed to failure
unless the computer manufacturers can agree on an invariant UNIX kernel
that goes far beyond the original UNIX definition. It must include not
only the procedural command language, but also sysfem calls (lexical func-
tions), the interface to the record manager, and naming conventions for
files, symbols, and logicals.)

What about new facilities offered in future CACSD tools? We expect
to see more and more flexibility with respect to the data interface. The
ultimate of data-driven programming is a language in which there is essen-
tially no longer any difference between code and data at all, Each operation
that can be performed in the language is itself expressed as an entry in a
database and can thus be altered at any moment.

One such envircnment is LISP. Basically, the only primitive operations
in LISP are addition and removal of entries from lists. These operations
are themselves expressed as entries in lists. When interpreted as opera-
tion, the first entry in the list is the operator, while all further entries are
its parameters. For these reasons, LISP programs exhibit a serious runtime
inefficiency. A numerical algorithm implemented in LISP will probably
execute two to three orders of magnitude slower than the same algorithm
implemented in a conventionally compiled language. Moreover, LISP is
often rather unwieldy with respect fo how a particular numerical algorithm

Computer-Aided Control Systems 671

has to be specified. However, LISP certainly also presents the ultimate in
flexibility. Suddenly, self-modifying code has become a feasibility and can
be employed to achieve amazing results. Moreover, in LISP, numerical data
are entries in lists just like any other data. Thus, nonnumerical data
processing is as efficient as numerical data processing, and in this arena,
LISP competes a little more favorably with conventional programming tech-
niques. Also, steps have been taken to alleviate some of this inherent
inefficiency. Incremental compilers in place of pure interpreters can in-
crease the runtime efficiency by roughly one order of magnitude. Further-
more, a LISP interpreter is an extremely simple program as compared to a
conventional compiler. A (basic) LISP interpreter can be coded in roughly
600 lines of (LISP) code. Owing to this simplicity, it may make sense to
implement part of this task in hardware rather than in software., The
machine instructions. of a special-purpose LISP machine can be tuned to
optimize efficiency of executing LISP primitives. Such machines are already
available and help to overcome at least part of the inefficiency of LISP.

With respect to the user interface, many of LISP's difficulties can be
avoided by changing the world view once more. While LISP is basically
process-oriented, PROLOG is activity-oriented. That is, in LISP, the
programmer takes the standpoint of the operator ("What do I do next with
my data?"), whereas in PROLOG, the programmer takes the standpoint of
the data ("What needs to happen to me next?"). This helps to concentrate
activities to be performed into one piece of code rather than having them
spread all over., Unfortunately, digital computers are still sequential
machines, whereas activity programming is not procedural in nature. As a
consequence, PROLOG is expected to be more inefficient than even LISP.
(However, PROLOG can rather easily be implemented in LISP, and thus,
there exist PROLOG environments also on LISP machines, and they function
amazingly well.) PROLOG primitives are more compound than LISP primi-
tives. The natural consequence of this enhanced degree of specialization
are shorter and better readable PROLOG programs on the one hand, but
less flexibility on the other. Not every program that can be conceived in '
LISP can easily be implemented in PROLOG, while the converse is true.

These new languages are expected to shortly lead to yet another genera-
tion of CACSD tools. The strength of these new tools will lie in nonnumeri-
cal design, that is, in parameterized control system design studies, where
several parameters are kept as unknowns in the design process. This will
hopefully help to give the designer more insight into what is happening in
his system. Nonnumerical controller design algorithms are still in their
infancy, and it is not known yet how far these new concepts will lead us.
How does one avoid the problem of formula explosion; that is, how can one
obtain parametric answers without being confronted with pages and pages of
never-ending formulas? Recent developments in programs such as
MACSYMA (Symbolics, 1983) and REDUCE (Rand Corp., 1985) may help to
answer some of these questions. A clue may be to.introduce intermediate
variables in the right places, variables that are not further expanded but
kept as additional (dependent) parameters. These techniques were recently
surveyed by Birdwell et al. (1985).

Another area that will be boosted by concepts such as advertised in
PROLOG and LISP is the integration of CACSD software with expert systems.
Expert systems are programs that evaluate a set of parameterized rules
(conditional statements with mostly nonnumerical operands) by plugging in
appropriate parameter values. The set of available parameter values is

672 Appendix A

called the knowledge of the expert system. Each evaluation may generate
new knowledge, and eventually even new rules. To accommodate this new
knowledge (new rules), the rules of the expert system are evaluated re-
cursively until no further facts (knowledge) can be derived from the current
state of the program.

Why is it that many computer experts smile at the current efforts in
expert system technology? To design an expert system, one needs expert
knowledge. For this reason, most of the early expert systems were written
by experts in the application area rather than by experts in the implementa-
tion tool. Such programs did not always exploit the latest in software tech-
nology. Expert systems are thus often envisaged as guestion-and-answer-
driven programs with very limited capabilities. However, our above definition
of the term "expert system”" did not mention the user interface at all. In
fact, the user Interface (that is, the port through which new knowledge is
entered into the knowledge base of the expert system) is completely de-
coupled from the mechanisms of rule evaluations (the inference engine) and
can be any of the previously mentioned interface types (question-and-
answer, command, menu, form, graphical, and window interface).

Indeed have not expert systems been further developed than what most
people think? Is not MATLAB in fact an expert system for linear algebra?
Is not every single CACSD tool an expert system for control system design?
They surely exhibit all properties of expert systems. To prove our case,
let us examine the MATLAB statement

x=bla

a little more closely. Certainly, the interpreter of this statement performs
symbolic processing. Omnce it has determined the type of operation to be
performed (division), it has to check the types of the operands. If a is a
scalar, all elements of b must be divided by a. If a is a square matrix, a
Gaussian elimination must take place to determine x. And finally, if a is a
rectangular matrix, x is evaluated as the solution of an over- or under-
determined set of equations in a least-squares sense. Quite obviously,
these are rules to be evaluated.

Of course, most people would not call MATLAB an expert system (and
neither would we). However, there is more expert system technology
readily available than what is commoenly exploited. To give an example:

Most expert systems today constantly perform operations on symbolic data.

It is true that the data to be processed are input in a symbolic form. How-
ever, that does not mean that they have to be processed within the expert
system in a symbolic form as well. Compiler writers have known this fact
for years. The scanner interprets the input text, maps tokens (symbols)
into more conveniently processable integers, and stores them in fast
addressable data structures. This process is called "hashing.” During the
entire operation of compilation (and eventually also symbolic debugging),
the system operates on these numerical quantities in place of the symbolic
ones. Only upon output (e.g., for generating the cross-reference table),
the original symbols are retrieved through the hash table. This mechanism
could easily be used in expert systems to increase their efficiency, but this

is rarely done today. SAPS (Uyttenhove, 1979; Klir, 1985; Yandell,

1987), for instance, can be used for qualitative simulations of discrete
input/output models (that is, models described through sets of input and

Computer-Aided Control Systems ‘ 673

output trajectories rather than by means of a symbolic structure). The
trajectories can be either discretized continuous wvariables or variables that
are discrete in nature. Often, one would like to characterize a signal as
being [<<much_too small>>, <Ktoo_small®, <<just right>, <<too_large>>,
and <<much_too large>>]. These ‘symbols are mapped into the set of
integers [0, 1, 2, 3, and 4]. The authors of SAPS called this process
"recoding." However, in SAPS, the recoding has to be done by hand,

and the output will be expressed in terms of the recoded wvariables instead
of the original ones.

How can the emerging expert system technology be exploited by CACSD
software? As a first step, the error-reporting facility, the HELP facility,
and the TUTORIAL facility: of CACSD tools should be made dynamic. Today,
such facilities exist in most CACSD programs, but they are static; that is,
the amount and detail of information provided by the system are insensitive
to the context from which it was triggered. The idea is quite old. IBM
interactive operating systems have offered for many years a two-level error-
reporting facility. When an error occurs, a short (and often cryptic)
message is displayed which may suffice for the expert, but is inadequate
for the novice. Thus, after receiving such a message, the user can type
a "?" which is honored by a more detailed analysis of the problem.
IMPACT's QUERY facility is another step into this direction. Another im-
plementation has been described by Munro et al. (1986).

' Also, K. J. Astrom and L. Ljung are working on such a facility for
IDPAC (private communication). The idea is the following: Rather than
letting the students queue in front of Karl Johan's office, his knowledge
about the use of the IDPAC algorithms (when to use what module) should
be coded into the program itself, providing the students with an adaptive
tutorial faeility for identification algorithms. Thus, a computer-aided
instruction (CAI) facility is being built into the CAD program. A similar
approach has been proposed by Taylor and Frederick (1984),

Another related idea was expressed by K. J. Astrém (private communica-
tion). He wants to add a command spy to his IDPAC software. Here, the
idea is as follows: instead of waiting until the student realizes that he is
doing something wrong, and therefore seeks the professor's advice, the
professor stands, in a figurative sense, behind the student and watches
over his shoulder to see what he is doing. As long as the student is
doing fine, the professor (that is, the command spy) keeps quiet, but
when the student tries to perform an operation that is potentially dangerous
to the integrity of his data, or that is likely to lead to illegitimate con-
clusions, the command spy becomes active and warns the student about the
consequences of what he is doing.

A similar feature could be built into a language sensitive editor. This
would allow checking a CACSD program early on not only for syntactic
correctness, but also for semantic correctness. Some of the semantic tests
are, of course, data-dependent, and these can only be performed at
execution time.

Other improvements can be expected from screening data for automated
selection of the most adequate algorithms. This is similar to the previously
mentioned operator overloading facility, but here, the algorithm is selected
not on the basis of the types of the operands, but on the basis of the data
jtself. As a typical example, we could mention the problem of inverting
a matrix, Obviously, if the matrix is unitary, its inverse can be obtained
by simply computing the conjugate complex transpose of the matrix, which

674 Appendix A

is much faster and gives rise to less error accumulation than computation
of the inverse by, e.g., Gaussian elimination. If the matrix is (block-)-
diagonal, each diagonal block can be inverted independently. If the matrix
presents itself in a staircase form, yet another simplified algorithm can be
used, ete. Thus, the matrix should be checked for particular structural
properties, and the most appropriate algerithm should be selected on the
basis of the outcome of this test. A good amount of knowledge about data
classification algorithms exists, a knowledge that is not being exploited by
many of today's CACSD programs.]

Finally, we expect that even new control algorithms will arise from’
expert system technology. Today's control algorithms are excellent for
local control of subsystems. They are not so good for global assessment of
complex systems. A complex system such as the forthcoming space station
or a nuclear power plant needs to be monitored, and expert system tech-
nology may be used to decide when something odd has happened or is about
to happen. Then a global control strategy must teke over and decide what
to do next. Currently, human operators do a much betier job in this re-
spect that automatic controllers. However, they do not solve Riccati equa-
tions in their heads. Instead, they decide on the basis of gualitative, that
is, highly diseretized, information processed by use of a mental model of
the process. Cellier (1986b) investigates the possibilities of qualitative
simulation and rule-based control system design.

Toe sum up, CACSD is still a very active research field, and more re-
sults are to be expected shortly. We sincerely hope that our survey and
discussion may stimulate more research,

REFERENCES

Ackermann, J. (1980). Parameter space design of robust control systems,
IEEE Trans. Automatic Control AC-25, 1058—-1072.

AgathoKklis, P., Cellier, F. E., Djordjevic, M., Grepper, P. 0., and Kraus,
F. d., (1979). INTOPS, educational aspects of using computer-aided
design in automatic control, in: Proceedings of the IFAC Symposium on
Computer-Aided Design. Zlirich, Switzerland, August 29-31, 1979 (M. A.
Cuénod, ed.), Pergamon Press, Oxford, 441-446.

ANSI (1985). American National Standard for Information Systems, Com-
puter Graphics, Graphical Kernel System (GKS). Functional Description
(ANSI X3.124-1985) and FORTRAN Binding (ANSI X3.124,.1-1985).

Aplevich, J. D. (1986). Waterloo control system design packages (WCDS and
DSC), personal communication, Dept. of Electrical Engineering, University
of Waterloo, Waterloo, Ontario, Canada.

Asada, H. and Slotine, J. J. E. (1986). Robot Analysis and Control,
Wiley, New York, 266 pp.

Astrom, K. J. (1980). Self-tuning regulators—design principles and
applications, in .Applications of Adaptive Control (K. S. Narendra
and R. V. Monopoli, eds.), Academic Press, New York.

Astrém, K. J. (1985). Computer-aided tools for control system design, in:
Computer-Aided Control Systems Engineering (M. Jamshidi and C. J.
Herget, eds.), North-Holland Publishing, Amsterdam, pp. 3—40.

Athens, M., ed. (1978). On large scale systems and decentralized control,
IEEE Trans. Automatic Conirol, AC-23, Special Issue.

Atherton, D. P. and Wadey, M. D. (1981). Computer-aided analysis and
design of relay systems, in: IFAC Symposium on CAD of Multivariable
Technological Systems, Pergamon Press, New York, pp. 355-360.

Compuler-Aided Conirol Syétems 675

Atherton, D, P, et al, (19888). SUNS: The Sussex University Control
Systems Software, in: Proceedings of the 3rd IFAC Symposium on
Computer-Aided Design in Control and Engineering Systems (CADCE'85),
Copenhagen, July 31-August 2, 1985, Pergamon Press, pp. 173—178.

Augustin, D. C., Fineberg, M. S., Johnson, B. B., Linebarger, R. N.,
Sanson, F. J. and Strauss, J. C. (1967). The SCi continuous system
simulation language (CSSL), Simulation, 9, 281-303.) -

Bartolini, G., et al. (1983). A package for multivariable adaptive control,
in: Proceedings of the 3rd IFAC/IFIP Symposium on Software for
Computer Control (SOC0OCO0'82), Madrid, Spain, Pergamon Press,
Oxford, pp. 229-235.

Birdwell, J. D. et al. (1985). Expert systems techniques and future
trends in a computer-based control system analysis and design environ-
ment, in: Proceedings of the 3rd IFAC Symposium on Computer-Aided
Design in Control and Engineering Systems (CADCE'85), Copenhagen,
July 31-August 2, 1985, Pergamon Press, Oxford, pp. 1-8.

Buenz, D. (1986). CATPAC—Computer-aided techniques for process analy-
gis and control. personal communication, Philips Forschungslaboratorium
Hamburg, Hamburg, Federal Republic of Germany.

Cellier, F. E. (1986a). Enhanced run-time experiments in continuous system
simulation languages, in: Proceedings of the 1986 SCSC Multiconference
(F. E. Cellier, ed.), SCS Publishing, San Diego, CA, pp. 78-83.

Cellier, F. E. (1986b). Combined continuous/discrete simulation— Applica-
tions, tools, and techniques, Invited Tutorial, in Proceedings of the
Winter Simulation Conference (WSC'86), Washington DC.

Cellier, F. E. and Rimvall, M. (1983). Computer-aided control systems
design, Invited Survey Paper, in: Proceedings of the Winter Simula-
tiorr Conference (ESC'83), Aachen, FRG (W. Ameling, ed.), Springer-
Verlag, Lecture Notes in Informatics, New York, pp. 1-21.

Cellier, F. E., Grepper, P. O., Rufer, D. F. and Todtli, J. (1977). AUTLIB,
automatic control library, educational aspects of development and applica-
tion of a subprogram package for control, in: Proceedings of the IFAC
Symposium on Trends in Automatic Control Education, Barcelona, Spain,
March 30—April 1, 1977, Pergamon press, pp. 151—-159.

Chow, J. H., Bingulac, J. H., Javid, S. H. and Dowse, H. R. (1983).

User's Manual for L-A-S Language, System Dynamics and Control Group,
General Electric, Schenectady, NY.

Denham, M. J. (1984). Design issues for CACSD systems, Proc. IEEE 72
(12), 1714-1723.

Elmqvist, H. (1975). SIMNON—An Interactive Simulation Program for Non-
linear Systems—User's Manual, Report CODEN: LUTFD2/(TFRT-7502).
Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden.

Elmgvist, H. (1977). SIMNON—An interactive simulation language for nonlinear
systems, in: Proceedings of the International Symposium SIMULATION'TY,
Montreux, Switzerland (M. Hamza, ed.), Acta Press, Anaheim, CA, 85-90.

Elmqvist, H. (1978). A structured model language for large continuous
systems, Ph.D. Thesis, Report: CODEN: LUTFD2/(TRFT-1015).

Dept. of Automatic Control, Lund Institute of Technology, Lund,
Sweden, 226 pp.

Elmgvist, H. (1980). A structured model language for large continuous
systems. IMACS TC3 Newsletter 10,

Elmgvist, H. (1982)., A graphical approach to documentation and implementa-
tion of control systems, in: Proceedings of the 3rd IFAC/IFIP Symposium
on Software for Computer Control (SOCOCQOCO'82), Madrid, Spain, Per-
gamon Press, Oxford.

676 Appendix A

Elmgvist, H. and Mattson, S. E. (1986). A simulator for dynamic systems
using graphics and equations for modelling, in: Proceedings of the
3rd Symposium on Computer-Aided Control System Design, Washington,
DC,

Evans, D. C. (1985). The art of visual simulation, Keynote Address, Win-
ter Simulation Conference (WSC'85), San Francisco, Evans & Sutherland
Computer Corp., IEEE Publishing, Piscataway, NJ.

Fleming, P, J. (1978). A CAD program for suboptimal linear regulators.
in: Proceedings of the IFAC Symposium on Computer-Aided Design,
Zirich, Switzerland, August 29-31, 1979 (M. A, Cuénod, ed.),
Pergamon Press, Oxford, 259-266.

Frederick, D. K. (1985). Software Summaries, in: Computer-Aided Con-
trol Systems Engineering (M. Jamshidi and C. J. Herget, eds.), North-
Holland, Amsterdam, pp. 349-384. _ \

Gavel, D. T. and Herget, C. J. (1984), The M language—An interactive
tool for manipulating matrices and matrix ordinary differential equations,
International Report, Dynamics and Controls Group, Lawrence Livermore
National Laboratory, University of California, Livermore, CA.

Golub, G. H. and Wilkinson, J. H. (1976). Ill-conditioned eigensystems
and the computation of the Jordan canonical form, SIAM Rev. 18(4),
578-619. ‘

Gorez, R. (1986a). The ICARE project—An interactive computing aid for
research and engineering, Personal Communication, Laboratoire
d'Automatique, de Dynamique et d'Analyse des Systémes, Université
Catholique de Louvain, BAtiment Maxwell, Louvain-la-Neuve, Belgium.

Gorez, R. (1986b)., PAAS—Programme d'aide 4 l'analyse des systémes.
Personal Communication, Laboratoire d'Automatique, de Dynamique et
d'Analyse des Systémes, Université Catholique de Louvain, Bé&timent
Maxwell, Louvain-la-Neuve, Belgium.

Gray, J. O. (1986). SANCAD and SATRES, Personal Communication, Dept.
of Electronic and Electrical Engineering, University of Salford, Salford,
United Kingdom.

IBM (1984). Dynamic Simulation Language/VS (DSL/VS). Language
Reference Manual, Program Number 5798-PXJ, Form SH206-6288-¢, IBM
Corp., Cottle Road, San Jose, CA,

Integrated Systems, Inc. (1984). Mairixy User's Guide, Matrix, Reference
Guide, Matrix, Training Guide, Command Summary, and on-line Help,
Integrated Systems, Inc., Palo Alto, CA. ‘

Kailath, T. (1980). Linear Systems, Prentice-Hall, Englewood Chffs, NJ.
682 pp. '

Klir, G. J. (1985). Architecture of Systems Problem Solving, Plenum Press,
New York, 539 pp.

Korn, G. A. (1985). A mnew interactive environment for computer-aided
experiments, Simulation 45(8), 303— 305.

Korn, G. A. (1987). Control-System simulation on small personal-computer
workstations, Int. J. Modeling and Simulation 8§(4).

Korn, G. A. and Wait, d. V. (1978). Digital Continuous System Simulation,
Prentice-Hall, Englewood Cliffs, NJ. 212 pp.

Laub, A. (1980). Computation of balancing transformations, Proc. JACC 1,
Paper FAS-E.

Lawver, B. (1985). EAGLES, an interactive environment and program de-
velopment tool, Personal Communication, Dynamics and Controls Group,
Lawrence Livermore National Laboratory, University of California,
Livermore, CA.

Computer-Aided Control Systems 677

Little, J. N. (1985). PC-MATLAB, User’'’s Guide, Reference Guide, and
On-line HELP, BROWSE, and Demonstrations, The MathWorks, Inc.,
Sherborn, MA,

Little, J. N. et al. (1984)., CTRL-C and matrix environments for the com-
puter-aided design of control systems, in: Proceedings of the 6th
International Conference on Analysis and Optimization (INRIA), Nice,
France, Lecture Notes in Control and Information Sciences, Vol. 63,
Springer-Verlag, New York.

Little, J. N., Herskovitz, 5., Laub, A. J. and Moler, C. B. (1986). MATLAB
and control design on the MacIntosh, in: Proceedings of the 3rd Sympo-
sium on Computer-Aided Control Systems Design, Washington DC. '

Maciejowski, J. M. (1984). Data structures for control system design, in:
Proceedings of the 6th European Conference of Electirotechnics, Compu-
ters in Communicalion and Control (EUROCON'84), Brighton, UK.

Mitchell, E. E. L. and Gauthier, J., S. (1986). ACSL: Advanced Continuous
Simulation Language—User/Guide Reference Manucl, Mitchell & Gauthier,
Assoc,, Concord, MA,

Moler, C. (1980). MATLAB User's Guide, Dept. of Computer Science,
University of New Mexico, Albuquerque, NM. 40 pp.

Monopoli, R. V. (1974). Model reference adaptive control with an augmented
error signal, JEEE Trans. Automatic Control AC-19, 474-484.

Munro, N., Palaskas Z. and Frederick, D. K, (1986). An adaptive CACSD
dialogue facility, in: Proceedings of the 3rd Symposium on Computer-
Aided Control System Design, Washington D.C.

Narendra, K. 8. (1980). Recent developments in adaptive control, in:
Methods and Applications in Adaptive Control (H. Unbehauen, ed.),
Springer-Verlag, New York.

Norsworthy, R., Kohn, W. and Arellano, 4. (1985). A symbolic package for
- analysis and design of digital controllers, Honeywell, Inc,, and NASA
Johnson Space Center, Private Communication.

Patel, R. V. and Misra, P. (1984). Numerical algorithms for eigenvalue
assignment by state feedback, Proc. IEEE 72(12), 1755-1764.

Pegden, C. D., et al. (1985). CINEMA User's Manual, Systems Modeling
Corp., State College, PA,

Rand Corp. (1985). REDUCE User's Manual, The Rand Corp., Santa Monica,
CA.

Rimvall, M. (1983). IMPACT, Interactive Mathematical Program for Auto-
matic Control Theory, User's Guide, Dept, of Automatic Control, Swiss
Federal Institute of Technology, ETH-Zentrum, Zirich, Switzerland,

208 pp.

Rimvall, M. and Bomholt, L. (1985). A flexible man-machine interface for
CACSD applications, in: Proceedings of the 3rd IFAC Symposium on
Computer-Aided Design in Control and Engineering Systems (CADCE'S85),
Copenhagen, July 31-August 2, 1985, Pergamon Press, Oxford, 98-103.

Rimvall, M. and Cellier, ¥, E. (1985)., The matrix environment as enhance-
ment to modeling and simulation, in: Proceedings of the 11th IMACS
Worid Conference, Oslo, August 5-9, 1985, North-Holland, Amsterdam.

Rimvall, M., et al. (1985). ELCS—Extended List of Conirol Software, News-
letter (M. Rimvall, D. K. Frederick, C. Herget, and R. Kook, eds.), Dept.
of Automatic Control, ETH-Zentrum, Zirich, Switzerland.

Rosenbrock, H. H. (1969). Design of multivariable control systems using
the inverse Nyquist array, Proc. IEE 116, 1929-1836.

Sawyer, W. (1986). Polynomial operations with a trajectory representation,
Term Project (M. Rimvall, adv.), Dept of Automatic Control, ETH-
Zentrum, Ziirich, Switzerland.

678 Appendix A

Schmid, C. (1979). KEDDC, User's Manual and Programmer's Manual,

Dr. -Ing. Chr. Schmid, Lehrstuhl fiir Elektrische Steuerung und
Regelung, Ruhr University Bochum, Federal Republic of Germany.

Schmid, C. (1985). KEDDC-—A computer-aided analysis and design
package for control systems, in: Computer-Aided Control Systems
Engineering (M. Jamshidi and C. J. Herget, eds.), North-Holland,
Amsterdam, pp. 159-180.

Shah, S., Shah, 8. C., Floyd, M. A. and Lehman, L. L. (1985). Matrixy:
Control Design and Model Building CAE Capability, in: Computer-Aided
Control Systems Engineering, (M. Jamshidi, and C. J. Herget, eds.),
North-Holland, Amsterdam, pp. 181-207.

Siljak, D. D. and Sundareshan, M. K. (1976). A multilevel optimization of
large-scale dynamic systems, IEEE Trans. Automatic Control AC-21,

70— 84.

Spang, H. A. III (1984). The federated computer-aided control design
system, Proc. IEEE 72(12), 1724-1731. .

Strandridge, C. R., et al. (1986). TESS with SLAM-II, User's Manual,
Version 2,2, Prisker & Associates, Inc., West Lafayette, IN.

Symbolics, Ine. (1983). MACSYMA Reference Manual, Version 10, MIT
and Symbolies, Inc,, Cambridge, MA.

Systems Control Technology (1984)., CTRL-C, A Language for the Com-
puter-Aided Design of Multivariable Control Systems, User's Guide,
Systems Control Technology, Palo Alto, CA,

Taylor, J. H. and Frederick, D. K. (1984). An expert system architecture
for computer-aided control engineering, Proc. IEEE 72(12), 1795—-1805.

Technical Software Systems (1985). SSPACK User’s Manual Including Sample
Problems, Technical Software Systems, Livermore, CA.

Thompson, P. M. (1986). Program CC, Version 3, Personal Communication,
Systems Technology, Inc., Hawthorne, CA.

Uyttenhove, H. J. (1979). SAPS—System Approach Problem Solver, Com-
puting and Systems Consultants, Inc., Binghampton, NY.

Vanbegin, M. and Van Dooren, P. (1985). MATLAB-SC, Appendix B:
Numerical Subroutines for Systems and Control Problems, Technical
Note N168, Philips Research Laboratories, Bosvoorde, Belgium, 40 pp.

Van den Bosch, P. P, J. (1985). Interactive computer-aided control sys-
tem analysis and design, in: Computer-Aided Control System Engineer-
ing, (M. Jamshidi and C. J. Herget, eds.), North-Holland, Amsterdam,
pp. 229-242. -

West, P. J., Bingulac, S. P., and Perkins, W. R. (1985). L-A-S: A com-
puter-aided control system design language in: Computer-Aided Control
Systems Engineering (M. Jamshidi and C. J. Herget, eds.), North-
Holland, Amsterdam, pp. 243—261.

Wieslander, J. (1980a). IDPAC Commands—User's Guide, Report: CODEN:
LUTFD2/(TFRT-3157), Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 108pp.

Wieslander, J. (1980b). MODPAC Commands—User's Guide, Report:
CODEN: LUTFD2(TFRT-3158), Dept. of Automatic Control, Lund
Institute of Technology, Lund, Sweden, 81 pp.

Wieslander, J. and Elmqvist, H. (1978). INTRAC, A Communication Module
for Interactive Programs, Language Manual, Report: CODEN: LUTFD2/
(TFRT-3149), Dept. of Automatic Control, Lund Institute of Technology,
Lund, Sweden, 60 pp.

Computer-Aided Control Systems 679

Wolovich, W. A. (1974). Linear Multivariable Systems, Springer-Verlag,
New York. N = ‘ :

Wonham, W. M. (1974). Linear Multivaricble Systems: A Geometric
Approach, Springer-Verlag, New York. , _

Yandell, D. W. (1985). SAPS-II: Raw Data Analysis in CTRL-C, User's
Manual and Progress Report, Senior Project (F. E. Cellier, adv.),
Dept. of Electrical and Computer Engineering, University of Arizona,
Tueson, AZ,

