Systems
Modeling and
Computer
Simulation

Second Edition

edited by
Naim A. Kheir
Qakland University

chester, Michigan

arcel Dekker, Inc. New Yorke®Basel*Hong Kong

Library of Congress Cataloging-in-Publication Data

Systems modeling and computer simulation / edited by Naim A. Kheir.
2nd ed. ‘
p. cm. — (Electrical engineering and electronics ; 94)
Includes bibliographical references (p.).
ISBN 0-8247-9421-4 (acid free paper)
1. Computer simulation. 2. System design. I. Kheir, Naim A.,
II. Series.
QA76.9.C658975 1995
003—dc20 : ' 95-24572
CIp

The publisher offers discounts on this book when ordered in bulk quantities. For more
information, write to Special Sales/Professional Marketing at the address below.

This book is printed on acid-free paper.

Copyright © 1996 by Marcel Dekker, Inc. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, microfilming, and recording,
or by any information storage and retrieval system, without permission in writing from

the publisher.

Marcel Dekker, Inc.
270 Madison Avenue, New York, New York 10016

Current printing (last digit)
10 9 8 7 6 5 4 3 21

PRINTED IN THE UNITED STATES OF AMERICA

10

Computer-Aided Control System
Design: Techniques and Tools

Francois E. Cellier The University of Arizona, Tucson, Arizona

C. Magnus Rimvall ABB Corporate Research, Heidelberg, Germany

10.1 INTRODUCTION

To this point, this book has mainly discussed diverse types of simulation techniques, and
indeed, simulation has become extremely important in almost every aspect of scientific
and engineering endeavor. According to Korn and Wait (1978), simulation is experimen-
tation with models. Thus, each simulation program consists of two parts:

1. A coded description of the model, which we call the model representation inside
the simulation program (notice the difference compared with Chaps. 1 and 2,
where the term ‘‘model representation’” was used to denote graphic descriptions,
such as block diagrams or signal flow graphs)

2. A coded description of the experiment to be performed on the model, which we
call the experiment representation inside the simulation program.

Analyzing the different types of simulation examples presented so far, it can be
realized that most of these examples, independently of whether they were discrete or
continuous in nature, consisted of a fairly elaborate model on which a rather simple
experiment was performed. The standard simulation experiment is as follows: Starting
with a complete and consistent set of initial conditions, the change in the various variables
of the model (state variables) over time is recorded. This experiment is often referred to
as determining the trajectory behavior of a model. Indeed, when the term “‘simulation,”’
as is often done, is used to denote a solution technique rather than the ensemble of all
modeling-related activities (as is done in this book), simulation can simply be equated
to the determination of trajectory behavior. Most currently available simulation programs
offer little besides efficient means to compute trajectory behavior.

Unfortunately, few practical problems present themselves as pure simulation prob-
lems. For example, it often happens that the set of starting values is not specified at one
point in time. Such problems are commonly referred to as boundary value problems as
opposed to the initial value problems discussed previously. Boundary value problems are
not naturally simulation problems in a puristic sense (although they can be converted to

413

414 ' Cellier and Rimvall

initial value problems by a technique called invariant embedding) (Tsao, 1986). A more
commonly used technique for this type of problem, however, is the so-called shooting
technique, which works as follows:

1. Assume a set of initial values.

2. Perform a simulation.

3. Compute a performance index, for example as a weighted sum of the squares
of the differences between the expected boundary values and the computed
boundary values.

4. If the value of the performance index is sufficiently small, terminate the exper-
iment; otherwise, interpret the unknown initial conditions as parameters, and
solve a nonlinear programming problem, looping through 2 ... 4 while modi-
fying the parameter vector to minimize the performance index.

As can be seen, this “‘experiment’ contains a multitude of individual simulation runs.

To elaborate on yet another example, assume that an electrical network is to be
simulated. The electrical components of the network are associated with tolerance values,
Determine how the behavior of the network changes as a function of these component
tolerances. An algorithm for this problem could be the following:

1. Consider those components with associated tolerances to be the parameters of
the model. Set all parameters to their minimal values.

2. Perform a simulation run. ‘

3. Repeat step 2 by allowing all parameters to change between their minimal and
maximal values until all ‘“worst case’’ combinations are exhausted. Store the
results from all these simulations in a database.

4. Extract the data from the database, and compute an envelope of all possible
trajectory behaviors for the purpose of a graphic display.

As in the previous example, the experiment to be performed consists of many different
individual simulation runs. In this case, there are exactly 2" runs to be performed, where
n denotes the number of parameters.

These examples show that simulation does not live in an isolated world. A scientific
or engineering experiment may involve many different simulation attempts. Unfortu-
.nately, the need for enhanced experimentation capabilities is not properly reflected by
today’s simulation software. Although model representation techniques have become con-
stantly more powerful over the past years, little has been done with respect to enhancing
the capabilities of simulation experiment descriptions (Cellier, 1986a). Some simulation
languages, such as ACSL (Mitchell and Gauthier, 1991), offer facilities for model line-
arization and steady-state finding. Other simulation languages, such as DSL/VS (IBM,
1984), offer limited facilities for frequency domain analysis, such as a means to compute
the Fourier spectrum of a simulation trajectory. i

A general-purpose nonlinear programming package for curve fitting, steady-state
finding, and the solution to boundary value problems, for example, is meanwhile being
offered in SimuSolve (Dow Chemical, 1990), and has recently been added to the ACSL
simulation environment. However, this is only one of the experiment enhancement tools
that are available. For more detail, see Cellier, 1993. One should note that the current
experiment enhancement tools are often difficult to use, and are very specialized and
therefore limited in applicability.

Computer-Aided Control System Design 415

Whenever such a situation is faced, we, as software engineers, realize that something
may be wrong with the data structures offered in the language. Indeed, all refinements
in model representation capabilities, such as techniques for proper discontinuity handling
and facilities for submodel declarations, led to enhanced programming structures, whereas
the available data structures are still much the same as they were in 1960s, when the
CSSL specifications (Augustin et al., 1967) were first formalized.

When we talk about computer-aided design software, as opposed to simulation soft-
ware, it is exactly this enhanced experiment description capability that we have in mind.
Simulation is no longer the central part of the investigation, simply one software module
(tool) among many others that can be called at will from within the ‘‘experiment de-
scription software,”” which from now on is called ‘“‘computer-aided design software.”’
Algorithms for particular purposes are called computer-aided design techniques, and the
programs implementing these algorithms are called computer-aided design tools. Because
many of the design tools are application dependent, our discussion is restricted to one
particular application, namely, the design of control systems.

Until not too long ago, the data structures available in computer-aided control system
design (CACSD) software were as poor as those offered in simulation software. However,
even the available programming structures in these software tools were not helpful. Users
were led through an inflexible question-and-answer protocol. Once an incorrect specifi-
cation was entered by mistake, there was little chance to recover from this error. The
protocol deviated from the designed path and probably led sooner or later to a complete
software crash, after which the user had lost all his previously entered data and had to
start from scratch. :

A true breakthrough was achieved with the development of MATLAB®, a matrix
manipulation tool (Moler, 1980). Its only data structure is a double-precision complex
matrix. MATLAB offers a consistent and natural set of operators to manipulate these
matrices. In MATLAB, a matrix is coded as follows:

A=[1,23;4,56;7,8,09] (10.1)
or alternatively,
A=[1 2 3
4 5 6 (10.2)
7 8 9]

Elements in different columns are separated by either a comma or a space, whereas
elements in different rows are separated by either a semicolon or a carriage return. With
matrices the only available data structure, scalars are obviously included as a special
case. Each element of a matrix can itself again be a matrix. It is therefore perfectly
legitimate to write

A = [0*ones(3,1),eye(3);[—2 —3 —4 —5]] (10.3)

where ones(3,1) is a matrix with three rows and one column full of 1 elements;
O*ones(3,1) is thus a matrix of same size consisting of 0 elements only. Eye(3) represents
a 3 X 3 unity matrix concatenated to the 0 matrix from the right, thus making the total

MATLAB® is a registered trademark of The MathWorks, Inc.

416 Cellier and Rimvali

structure now a matrix with three rows and four columns. Concatenated from below is
the matrix [-2 —3 —4 —35], which has one row and four columus. Thus, the pre-
ceding expression creates the matrix

0 1 1 0

0 0 1 0 (10.4)
0 0 0 1

-2 -3 -4 -3

Suppose it is desired to solve the linear system

A*x=b | (10.5)
For a nonsingular matrix A, it is known that the solution can be obtained as

x = A7T'*p (10.6)
which in MATLAB can be expressed as

x = inv(A)*b

or, somewhat more efficiently,
x = A\b (10.7)

(b from left divided by A), in which case a Gaussian elimination is performed in place
of the computation of the complete inverse. With MATLAB, we finally acquired a tool
that allows us to learn what we always wanted to know about linear algebra [e.g., what
are the eig(A+2*eye(A)) where eye(A) stands for a unity matrix with the same dimen-
sions as A, and eig (. ..) computes the eigenvalues of the enclosed expression?]. In fact,
such a tool had already existed for some time. It was called APL and offered much the
same features as MATLAB. However, APL was characterized by a very cryptic syntax.
The APL user was forced to learn to think in a fashion similar to the computer that
executed the APL program, which is probably why APL never really made it into the
world of applications. Moler, on the other hand, taught the computer to ‘‘think’’ like the
human operator. ‘

The original version of MATLAB was not designed to solve CACSD problems.
MATLAB is simply an interactive language for matrix algebra. Nevertheless, this is
exactly the type of tool the control engineer needs for solving problems. As an example,
let us solve a simple LQG (Linear Quadratic Gaussian) regulator design problem. For
the linear system

dx

— = A+ B (10.8)

it is desired to compute a linear state feedback such that the performance index (PI) is

oo

PI = J (x'Qx + w'Ru) df = min (10.9)
0

where w’ denotes the transpose of the vector u. This LQG problem can be solved by
means of the following algorithm:

Computer-Aided Control System Design 417

1. Check the controllability of the system. If the system is not controllable, return
with an error message.
2. Compute the Hamiltonian of this system:

A -BR'B
H= [_Q A } (10.10)

3. Compute the 2n eigenvalues and right eigenvectors of the Hamiltonian. The
eigenvalues are symmetric not only with respect to the real axis but also with
respect to the imaginary axis, and because the system is controllable, no eigen-
values are located on the imaginary axis itself.

4. Consider those eigenvectors associated with the negative eigenvalues, concate-
nate them into a reduced modal matrix of dimension 2r X #, and split this
matrix into equally sized upper and lower parts:

V= [z;j (10.11)
5. Now, the Riccati feedback can be computed as
K=-R"BP (10.12)
where
P = Re{V,*V;'} (10.13)

The following MATLAB “‘program’ (file RICCATL.MTL)* may be used to implement
this algorithm:

EXEC('contr.mtl!'}

IF ans <> n, SHOW('System not Controllable'), RETURN, END
[v,d] = EIG([a,—b*(r\b');~qg,—a']);

d = DIAG(d); k=0;

FOR j=1,2*n, IF d(j)<0, k = k+1; v(:,k) = v(:,j}; END
p = REAL{v{(n+1:2*n,1:k) /v(1:n,1:k};

k = —r\b'*p

RETURN

which is a reasonably compound way of specifying this fairly complex algorithm. Yet,
contrary to an equivalent APL code, we find this code acceptably readable.

After MATLAB became available, it took amazingly little time until several CACSD
experts realized that this was an excellent way to express control problems. Clearty, the
original MATLAB was not designed for CACSD problems, and much had to be done to
make it truly convenient, but at least a basis had been created. In the sequel, several
CACSD programs have evolved: CTRL-C (Systems Control Technology, 1984; Little et
al., 1984), MATRIX, (Integrated Systems, Inc., 1984; Shah et al., 1985), IMPACT (Rim-
vall, 1983; Rimvall and Bomholt, 1985; Rimvall and Cellier, 1985), PC-MATLAB (Little,
1985), MATLAB-SC (Vanbegin and Van Dooren, 1985), CONTROL.Lab (Jamshidi et

*The file RICCATLMTL is expressed here in terms of the syntax of the original public domain
version of MATLAB (Moler, 1980), not in terms of the more convenient syntax of the currently
available commercial version of MATLAB (The MathWorks, Inc., 1992).

418 Cellier and Rimvall

al., 1992), PRO-MATLAB* (The MathWorks, Inc., 1992), XMath (Gupta et al., 1993),
and MaTX (Koga and Furuta, 1993). All these programs are considered ‘‘spiritual chil-
dren”” of MATLAB.

‘We want to demonstrate in this chapter how simulation software designers can learn
from recent experiences in CACSD program development and how CACSD program
developers can learn from experiences gained in simulation software design.

It would be convenient if a MATLAB-like matrix notation could be used within
simulation languages for the description of linear systems or linear subsystems. The
modeling environment Dymola (Elmqvist, 1978; Cellier, 1991; Cellier and Elmgqvist,
1993) offers such a feature. In Dymola, the user can specify matrices in a convenient
MATLAB-like syntax. However, because of the ‘‘horizontal sorting’’ capability of
Dymola, matrices are expanded by the Dymola preprocessor before the sorting begins.
K, for example, a 2 X 2 matrix A is used in a model

y = A*x (10.14)
with A being:
1 2
A= [3 4] (10.15)

meaning that

n=1% + 2%, (10.16)
¥, = 3%x, + 4%x,

(expanded form), it may turn out that the equations are horizontally sorted by the Dymola
preprocessor into the form

x = ¥y — 2% (16.17)
Y2 = 3%y, — 2%,

It would be useful if the simulation software could apply to linear (sub)systems an
integration algorithm that is more efficient than the regularly used Runge Kutta, Adams-
Bashforth, or Gear algorithms; for example, a Z transform technique currently employed
for linear system simulation in PRO-MATLAB. Linear (sub)systems could automatically
be identified by the modeling language compiler.

On the other hand, it is useful if all knowledge about the simulation of dynamic
systems or processes is integrated into the CACSD software. Because a design usually
involves more than merely simulation, it is definitely beneficial if a flexible interface
between a CACSD program and a simulation language is created such that powerful
simulation runs can be made efficiently at arbitrary points in a more complex design
study. Such interfaces have been created for all the major contenders in CACSD software.
ACSL programs (Mitchell and Gauthjer, 1991) can be invoked from within CTRL-C
(Systems Control Technology, 1984) and PRO-MATLAB (The MathWorks, Inc., 1992).

*Meanwhile, The MathWorks renamed PC-MATLAB and PRO-MATLAB again as MATLAB.
However, we prefer to use the former names in this text to avoid confounding the commetcial (C-
coded) version of MATLAB with the original (Fortran-coded) version, although we frequently refer
to the latter as ‘‘original MATLAB,” “‘classic MATLAB,” or *‘early MATLAB.””

Computer-Aided Control System Design 419

Special simulation systems with graphic front ends have also been developed. System-
Build (Integrated Systems, Inc., 1987) is a nonlinear simulation environment for
MATRIXy, MODEL-C (Systems Control Technology, 1990) is a similar system for
CTRL-C, and SIMULINK (The MathWorks, Inc., 1991) is the corresponding system for
PRO-MATLAB. These three simulation environments are based on block diagrams as
modeling tools.

These are some of the topics this chapter addresses. Note that this chapter discusses
purely digital solutions only. Other simulation techniques (such as analog and/or hybrid
simulation techniques) are discussed in Chap. 4. Although we shall not refer to these
techniques explicitly any further, computer-aided control system design algorithms can
be implemented on hybrid computers very easily. The dynamic process (that is, the model
description) is then programmed on the analog part of the computer, and the experiment
description that triggers individual simulation runs is programmed on the digital part of
the computer. The digital CACSD program looks similar to the purely digital solution,
and the simulation program looks exactly the same as any other analog simulation pro-
gram. For these reasons, a further elaboration on these concepts can be spared.

In the next section, a systematic classification of CACSD techniques is presented.
Different techniques (algorithms) for computer-aided control system design are discussed.

In Sec. 10.3 CACSD tools are classified. This discussion highlights the maJor dif-
ferences between several classes of CACSD tools.

Both Secs. 10.2 and 10.3 help to prepare for Sec. 10. 4 in which a number of
currently available CACSD tools are compared with respect to features (algorithms) of-
fered by these software systems.

The problem of software standardization versus software diversification is discussed
in Sec. 10.5.

In Sec. 10.6, we show how simulations can intelligently be used within CACSD
software. This section helps to create a bridge to other chapters in this book.

Finally, Sec. 10.7 presents our perspective of current and forthcoming developments
in the area of CACSD software design.

10.2 DEVELOPMENT AND CLASSIFICATION OF CACSD TECHNIQUES

Let us look briefly into the history of CACSD problems. CACSD, as we know it foday,
has its roots in a technology that was boosted by the needs created in World War II,
when military leaders started to think about more powerful weaponry, and engineers
produced answers in the form of automatically controlled, in place of manually con-
trolled, weapons systems. (Fortunately, automatic control has since found many other
nonmilitary applications as well. Nevertheless, even .today, a substantial percentage of
research grants in the automatic control field stems either directly or indirectly from
national defense sources, even though funding opportunities for research in automatic
control can become limited at times.)

In the beginning, that is, in the 1930s through 1950s, engineers were dealing with
isolated (small) continuous-time systems with one single input and one single output (so-
called SISO systems). The design of these systems was (at least here in the West) pre-
dominantly done in the frequency domain, most prominently represented by such people
as Evans and Nyquist. Most of the techniques developed were graphic in nature.

420 Cellier and Rimvall

With the need to deal with more complex systems with multiple inputs and outputs
(so-called MIMO systems), these graphic techniques failed to provide sufficient insight.
It was, among others, Kalman who led the scientists and engineers back into the time
domain, where systems were now represented in the so-called state space, that is, by sets
of first-order ordinary differential equations (ODEs) in place of nth-order ODEs. For
further detail, refer to Chap. 2 of this book and to its references. This modern represen-
tation seemed to be better amenable to a systematic (algorithmic) design methodology.
This representation was very naturally extensible from SISO system representations to
MIMO system representations, and many of the algorithms (such as LQG design) would
work as well on MIMO systems as on SISO systems. With the advent of modern digital
computers, it was possible to apply these algorithms also to ‘‘higher’” order systems (say,
fifth- to tenth-order systems), whereas the previous hand computations were limited to
second- to third-order systems. (This was actually the major reason for choosing a fre-
quency domain representation in previous decades: frequency domain design can also be
done for higher order systems.) This was the technology of the 1960s.

What has happened since? What were the major breakthroughs in the 1970s and 1980s?
Earlier research in control theory was fairly well consolidated; with diversification, different
types of approaches were made available to tackle different types of problems.

One of the major drawbacks of the previously used technology was, ironically, found
in the high degree of automation characterizing its algorithms. One jotted down some
values and called on a subroutine, and the answer came in the form of other numbers,
parameter values, or gain factors, for example. The procedure was “‘sterile.”” Somehow
lacking was the intuitive feel for what was going on. What if the LQG design failed to
produce acceptable answers? Where did we go from there? Often, the conclusion was
that the structure of the chosen controller was inappropriate for the task, and thus opti-
mization of the parameters of the inappropriate controller was doomed to failure. There-
fore, the control engineer had to take structural decisions in place of purely parametric
ones. Unfortunately, such decisions can hardly be taken without profound insight into
what was going on. None of the automated algorithms available at that time were able
to determine an adequate controller structure.

For these reasons, several researchers went back to the frequency domain and came
up with some new design tools [such as a generalization of the Nyquist diagram (Ro-
senbrock, 1969}], and some new system representations [such as some varieties of pol-
ynomial matrix representations (Wolovich, 1974; Wonham, 1974)]. Other groups decided
on a different approach to tackle the same problem. Instead of producing individual
solutions in the form of sets of parameter values, they tried to develop algorithms that
would produce entire ‘‘fields”’ of output parameters as a function of input parameters,
to come up with, for example, three-dimensional graphs in the parameter space. For
instance, this is often done in the so-called robust controller design (Ackermann, 1980).
Unfortunately these techniques usually involve multiple sweeping, which is number
crunching at its worst. Fortunately, the sheer increase in the power of modern engineering
workstations makes approaches feasible and even reasonable that would have been quite
unexpected only a few years ago. An elegant and efficient modern implementation of
parameter sweeping techniques’is provided in Boyd and Barratt (1991).

For a somewhat less expensive solution, it may be possible to employ sensitivity
analysis instead (Cellier, 1986a). Recent developments in this area try to do away with
numeric algorithms altogether. Instead of computing numerically one point in the param-
eter space at a time, the new algorithms reproduce what the engineer once did in-the

Computer-Aided Control System Design , 421

paper and pencil age, that is, formula manipulation. The latest developments in nonnu-
meric data processing are employed to obtain algorithmically and automatically a for-
mula that relates the designed output parameters to the given input parameters. These
techniques are still in their infancy, however, and no commercial product of this kind
is available as of today. The most exciting new development in this area represents
Dymola (Elmqvist, 1978; Cellier and Elmgqvist, 1993; Elmqvist, 1994), a modeling
language with powerful symbolic formula manipulation capabilities. More on Dymola
is presented later.

Another development was initiated by the need to deal with even larger systems.
How do you control a large system consisting of many subsystems in an ‘‘optimal’’ way?
Many of the previously used algorithms fail to work properly when applied to 50th- or
200th-order systems. They either compute forever, fail to converge, or produce a result
that is accurate to exactly zero significant digits! One way to tackle this problem is to
try to partition the system into smaller subsystems and find answers for those subsystems
first. This led to decentralized control (Athens, 1978) and hierarchic control (Siljak and
Sundareshan, 1976) schemes. More information about these approaches can be found in
Chap. 14 of this book. Another answer, of course, might be to design new centralized
algorithms that work better on high-dimensional systems (Laub, 1980).

The availability of reliable low-cost microprocessors led to the need to implement
subsystem controllers by a digital computer. This stimulated research into discrete-time
algorithms: the continuous-time algorithms applied to discrete-time systems tend to ex-
hibit very poor stability behavior. '

Finally, the new age of robotic technology led to the need to develop better algo-
rithms for the control of nonlinear systems (Asada and Slotine, 1986). The models de-
scribing the dynamics of robot movements are highly nonlinear. Most of the more refined
algorithms that were previously developed work poorly, or not al all, when applied to
nonlinear systems. Unfortunately, the robustness of an algorithm is often inversely pro-
portional to its refinement; that is, the more specialized an algorithm, the less likely it is
able to handle modified siutations. One way to solve this problem is to view the nonlinear
time-invariant system as a linear time-variant system and to design control algorithms
for this class of problems, such as selftuning regulators (Astrém, 1980), model-reference
adaptive controllers (Monopoli, 1974; Narendra, 1980), and robust controllers (Acker-
mann, 1980). Two major breakthroughs in the design of complex nonlinear systems were
accomplished in the late 1980s and early 1990s. One relates to the use of neural networks
for control (Narendra and Parthasarathy, 1990; Karakasoglu, 1991; Cellier and Pan,
1995); the other involves the use of fuzzy controllers (Pedrycz, 1989; Jamshidi et al.,
1993; Kandel and Langholz, 1994; Cellier and Mugica, 1995).

So far, we have presented the problems to be solved. Problems can be classified into
single-input/single-output, multiple-input/multiple-output, and decentralized problems.
For each class of problems, a different suite of algorithms was developed to solve them.
Until now, we have totally ignored the problem of the numeric aptness of an algorithm,
of numeric accuracy and numeric stability. The numeric behavior of algorithms is highly
dependent on the system order, that is, the number of state variables describing the system
or process. Almost any algorithm can be used to solve a 3rd-order problem. Many al-
gorithms fail when applied to a 10th-order problem, and almost all of them fail to solve
a 50th-order problem correctly. This is true for almost every algorithm in all three classes
of problem types. Since the late 1970s, many researchers, including Moler, Golub, Laub,
Wilkinson, and van Dooren, have designed a series of new algorithms for SISO and

422 Cellier and Rimvall

MIMO system design that are less sensitive to the system order. A major breakthrough
in this area was the development of the singular value decomposition described in Golub
and Wilkinson (1976).

From now on, algorithms that work only for low-order systems are referred to as
LO algorithms, techniques that also work for high-order systems are called HO algo-
rithms, and finally, methods that can be used to treat very high order systems (mostly
discretized distributed parameter systems) are called VHO algorithms.

Let us introduce next the concepts used in the design of the different classes of
algorithms more explicitly. Most of the algorithmic research done so far was concerned
with algorithms based on canonic forms (Kailath, 1980). All these canonic forms, in turm,
are based on minimum parameter data representations. What is a minimum parameter
data representation? A SISO system can be represented in the frequency domain through
its transfer function.

8(s) = (Bo + bis + -+ + byis™)
(ap+a, s+ " +a, 5" +s"

(10.18)

where the denominator polynomial is of nth order (the system order) and the numerator
polynomial is of (n —1)st order. This representation is unique; that is, the system has
exactly 2n degrees of freedom (the degrees of freedom equal the number of linearly
independent parameters of any unique data representation). The parameters of this rep-
resentation are the coefficients of the numerator and denominator polynomials. Any set
of parameter values describes one system, and no two different sets of parameters de-
scribe the same system. Any data representation sharing this property is a minimum
parameter representation. The controller-canonic representation of this system can be
written as

0 1 0 0 0 0
0 0 1 0 0 0
X = 0 0 0 1 0 x+ |0 |u (10.19)
~ay —ay —a@, —ay .. —a, 1
y = [bO b1 b:_) b3 ree b,,_l]X

Counting the number of parameters of this representation, it can easily be verified that
this representation has exactly 2n parameters, and they are the same as before. Also, the
Jordan-canonic representation

A O 0O 0 .00 1
0 N 0 O 0 1

x=|0 0 X O 0 x+ |1 |u (10.20)
0 0 0 0 X, 1

Y= [n mn mnn r .. rx

(assuming all eigenvalues A; to be distinct) has exactly the same number of parameters.
This is true for all canonic forms. For LO systems, these representations are perfectly
acceptable. However, we require redundancy to optimize the numeric behavior of algo-
rithms for HO systems. Thus, all algorithms that are based on canonic forms are clearly
LO algorithms.

Computer-Aided Control System Design 423

HO algorithms can be obtained by sacrificing this “‘simple’” system representation
through the introduction of redundancy. These new system representations contain more
than 2n parameters with linear dependencies existing between them. This redundancy
can now be used to optimize the numeric behavior of control algorithms by balancing
the sensitivities of the parameters (Laub, 1980). Some of the better HO algorithms are
based on Hessenberg representations (Patel and Misra, 1984).

VHO systems (that is, systems of higher than about 50th order) typically result from
discretization of distributed parameter systems. Most of the algorithms developed for this
class of systems until now exploit the fact that, in general, VHO systems have sparsely
populated system matrices. Thus, algorithms have been designed that address matrix
elements through their indices. Careful bookkeeping ensures that only elements that are
different from zero are considered in the evaluations. These so-called sparse matrix tech-
niques are associated with a certain overhead. Thus, they are not cost effective for the
treatment of 1O systems, and even many HO systems are handled more efficiently by
the regular algorithms. As a rule of thumb, sparse matrix techniques become profitable
for systems of higher than about 20th order.

Contrary to the algorithms for HO problems just described, sparse matrix techniques
do not influence the numeric behavior of the involved algorithms, only their execution
time. Therefore, the numeric problems discussed for HO systems remain the same. (In
most of the published papers discussing VHO problems, sparse matrix techniques have
been applied to one or another of the classic canonic forms.) Unfortunately, the intro-
duction of redundancy also reduces the sparsity of the system matrices and eventually
annihilates it altogether. Therefore, these two approaches are in severe competition. More
research is needed to find a solution to this serious problem.

Most of the research described so far was concerned with time domain algorithms.
It has often been said that frequency domain operations are numerically less stable than
time domain operations and it is believed that this statement is incorrect. It is not the
frequency domain per se that makes the algorithms less suitable; it is the data represen-
tation currently used in frequency domain operations that has these undesirable effects.
As previously discussed, if one wants to minimize the numeric sensitivity of an algorithm,
one must balance the sensitivities of the system parameters; that is, each output parameter
should be about equally sensitive to changes in the input parameters (Laub, 1980). Also,
the sensitivities of algorithmic parameters should be balanced. In the time domain, this
has been achieved by the process of orthonormalization, by operating on Hermitian forms
(Golub and Wilkinson, 1976). In the frequency domain, it is less evident how the bal-
ancing of sensitivites can be achieved. If we represent a polynomial through its coeffi-
cients, even the evaluation of the polynomial at any value of the independent variable
with a norm much larger or much smaller than 1 leads to extremely unbalanced parameter
sensitivities. Let us consider the polynomial

g(s) = " + @, 15"+ o+ as +oag (10.21)

If this polynomial is evaluated at s = 0, obviously the only parameter that has any
influence on the outcome is a,; that is, a, is sensitive to this operation, but all other
parameters are not. However, if we evaluate the polynomial at s = 1000, obviously a,
exerts the strongest influence, and &, can easily be neglected. This problem disappears
when we represent the polynomial through its roots:

qg(s) = k(s — s)(5s — s2) - (8 — 83) (10.22)

424 » Cellier and Rimvall

Here, the parameters are (k) and (s ... s,) instead of (a, . . . @,). However, if we want
to add two polynomials, we do not get around to (at least partially) defactorizing the
polynomials and refactorizing them again after performing the addition. The processes
of defactorization and refactorization have badly balanced sensitivities and are thus nu-
merically harmful.

Traditionally, these were the only two data representations considered, and both
are obviously unsatisfactory. There is little we can do to improve the numeric algo-
rithms based on these data representations: both are minimum parameter representa-
tions. However, we have other choices. For instance, it is possible to represent a poly-
nomial through a set of supporting values. Let us evaluate g(s) at any » + 1 points. If
we store these n + 1 values of s together with those of g(s), we know that there exists
exactly one polynomial of nth order that fits these » + 1 points. We can ‘‘reconstruct’’
the polynomial at any time (that is, find its coefficients), and this therefore gives rise
to another data representation (Sawyer, 1986). If we choose more points, we can make
use of redundancy and reconstruct the polynomial by regression analysis, reducing the
numeric errors involved in this computation. The basic operations (addition, subtrac-
tion, multiplication, and division) all become trivial in this data representation if all
involved polynomials are evaluated over the same base of supporting values (we merely
apply them to each data point separately), and because most algorithms are based solely
on repeated application of these basic operations, they can also be performed easily
within this data representation. The redundancy inherent in this data representation can
eventually be used to balance parameter sensitivities by selecting the supporting values
(values of s) carefully. A preliminary study (Sawyer, 1986) indicates that the best choice
might be to place the supporting values equally spaced along the unit circle. More
research is still needed, but it is believed this approach might lead to a breakthrough
in the numeric algorithms for frequency domain operations. Another data representation
that shares most of the numeric properties of supporting value representation is to
interpret the coefficients of the polynomial as a vector, compute the fast-Fourier trans-
form of that vector, and use the transformed vector as the base representation for
polynomial and polynomial matrix operations (Chi and Cellier, 1991).

To summarize this discussion, CACSD techniques can be classified in several ways:
techniques for SISO, MIMO, and decentralized systems; techniques for frequency versus
time domain operations; techniques for continuous-time versus discrete-time systems;
techniques for linear versus nonlinear systems; and, finally, techniques for low-order,
high-order, and very high order systems.

Amnother classification distinguishes between user-friendly and non—user-friendly al-
gorithms; user-friendly algoritlims allow us to concentrate on physical design parameters
rather than on algorithmic design parameters. As a typical example of user-friendly al-
gorithms, we may mention the variable-order, variable-step integration algorithms, which
enable us to specify the required accuracy (a physical design parameter) as opposed to
the integration step length and order (which are algorithmic design parameters).

Finally, one should distinguish between numeric and nonnumeric algorithms. Non-
numeric algorithms make use of formula manipulations and ‘‘reasoning’’ techniques that
are usually connoted as artificial intelligence (AI) techniques. Becanse none of the
CACSD programs discussed in Sec. 10.4 makes extensive use of such techniques, we
shall save a more intimate discussion of Al techniques for Sec. 10.7 on outlook.

Computer-Aided Control System Design 425

10.3 DEVELOPMENT AND CLASSIFICATION OF CACSD TOOLS

Although control theory as we know it today is a child of the early part of this century,
computer-aided control system design really did not start until 1970. At that time, it
would take roughly half a day merely to find the eigenvalues of a matrix because this
involved the following procedure:

1. Develop a program to calculate eigenvalues by calling a library subroutine with
about six call parameters ('/, h).

Walk to the computer center to prepare the data input (20 mmutes)

Wiait for a card puncher to become available (*/, h).

Prepare input data (10 minutes). -

Submit card deck to input queue, and wait for output to be returned (turnaround
time roughly 1 h).

Correct typographic errors after waiting for another card puncher to become
available, and resubmit card deck; wait again for output (90 minutes).

7. Walk back to office (20 minutes).

R

o

The solution of a true control problem (e.g., the simple LQG design problem de-
scribed earlier) took a considerably longer time, possibly as much as 1 or 2 weeks. No
wonder most colleagues detested the computer at that time and preferred to specialize in
other topics that did not require involvement in this denervating process.

Around 1972, the writers undertook the effort to ask colleagues in the department
not to throw away their control programs (after they were done with a particular study),
but rather document their subroutines and hand them over for inclusion in a ‘‘control
library’’ to be built. By 1976, an impressive (and somewhat formidable) set of (partially
debugged) control algorithms had been collected (Cellier et al., 1977). At this time, we
decided to ask colleagues from other universities to join in the effort and share their
control routines and libraries with us as well. We started the PIC service, a program
information center for programs in the control area, and circulated a short newsletter
twice a year providing information in the form of a ‘“who has what’’ in control algorithms
and codes. Meanwhile, as first computer terminals became available to us, and using our
control library, we were able to reduce the time needed to solve most (simple) control
problems to 1 or 2 days ‘of work.

At that time, it was considered important to work toward reducing further the turn-
around time by creating an interactive ‘‘interface’” to our control library. This required
conversion of the program to a PDP 11, because the CDC machine of the computer
center could be used for batch operation only. Clearly, the interface was meant to be a
relatively small add-on to our library, and most of our effort and time were spent in
improving the control subroutines themselves. Nevertheless, this activity resulted in
INTOPS (Agathoklis et al., 1979), one of several interactive control system design pro-
grams made available around the same time. The first generation of true CACSD pro-
grams was, however, very limited in scope. To keep the interface simple, the programs
were sirictly question-and-answer driven, with the effect that they were almost useless
for research. True research problems simply do not present themselves in the form of
classroom examples that follow a prepaved route as foreseen by the developers of the
CACSD software. INTOPS proved very useful for undergraduate control education,
though. Suddenly, the use of computers became real fun to many. As a research tool,

426 -Cellier and Rimvall

however, INTOPS failed to provide the necessary flexibility, and it became clear that a
true full-fledged programming language was required for this purpose. Unfortunately,
such a language could no longer be considered a small and inexpensive add-on to the
control library.

In the fall of 1980, Astrom and Golub undertook the commendable effort to bring
recognized numeric analysts and control experts together in the first conference on nu-
meric techniques in control ever held. On this occasion, we met with Moler, who dem-
onstrated his newly released MATLAB software. It took us only minutes to realize the
true value of this instrument for our task. When we returned to Zurich, we implemented
MATLARB first on a PDP 11/60, and a short while later on the freshly acquired VAX 11/
780. Within 1 year, MATLAB became the single most often used program on that ma-
chine (which belonged to the department of electrical engineering). Students were able
to learn the use of this tool within half an hour, and suddenly, researchers also became
interested in our ‘‘gadgets.”” MATLAB was fully command driven.

An often-heard criticism of command-driven languages is that they are too compli-
cated for the occasional user. Who can remember all those commands and their param-
eters except someone who uses the tool on a daily basis? This was simply not true. Our
students were enchanted, and they found MATI.AB actuaily much easier to use than the
question-and-answer—driven INTOPS program. Extensive interactive HELP information
is available to aid in the use of any particular function, and this proved completely
satisfactory to our users. ' '

As noted earlier, the original MATLAB was not designed to be a CACSD tool.
There are many shortcomings of the early MATLAB for our purpose. These were sum-
marized as follows (Cellier and Rimvall, 1983):

1. The programming facility (EXEC-file) of MATLAB is insufficient for more de-
manding tasks; EXEC-files have no formal arguments; EXEC-files cannot be
called as functions but only as subroutines; WHILE, FOR, and IF blocks cannot
be properly nested; there is neither a GOTO statement nor an (alternative) loop
exit statement; and the input/output capabilities of EXEC-files are too limited.

2. The SAVE/LOAD concept of MATLAB is insufficient: this immediately results
in large numbers of files that are difficult to maintain in an organized fashion.
A true database interface would be valuable. Moreover, users want the possibility
to interface data produced or used by their own programs with MATLAB.

3. Control engineers prefer results in graphic form. The output facilities offered by

MATLAB are insufficient in every respect. A database interface would at least

soften this request: it would allow the use of a separate stand-alone program,

outside MATLAB, to view data produced by MATLAB graphically.

MATLAB does not lend itself easily to operations in the frequency domain.

Many control systems call for nonlinear controllers (e.g., windup techniques for

treatment of saturations and adaptive controllers for time-varying systems). MA-

TLAB does not provide a mechanism to describe nonlinear systems.

6. A library of good and robust control algorithms is needed. (This final request is
actually the one that is easiest to satisfy.)

oo

It should be noted that these shortcomings relate to the original (classic) version of
MATLAB, and not to the more recent commercial version, where most of these short-
comings have been addressed and removed.

Computer-Aided Control System Design 427

In the sequel, a number of CACSD programs were made available that provide answers
to one or several of these demands. These (and others) are reviewed in the following section.

In summary CACSD tools can be classified into sub-program libraries versus inte-
grated design suites. The first generation of CACSD tools was of the former type; the
more recent are mostly of the latter type. This new type of CACSD tool can be further
classified as either comprehensive design tools or design shells. The former type tries to
provide algorithms that handle all imaginable control situations. This may eventually
result in very large programs offering many different features; KEDDC (Schmid, 1979,
1985} is an example of this type. The design shells type provides an open-ended operator
set that allows the user to code his or her own algorithms within the frame of the CACSD
software; MATLAB (Moler, 1980) is an example of this type. Of course, a combination
of these two categories is possible (and probably most useful) to the control engineer.

CACSD programs can furthermore be either batch operated or fully interactive, or
both. The interactive mode is useful for a quick analysis and understanding of what is
going on in a particular project. However, there are many control design problems, such
as optimal design of nonlinear systems, that call for an extensive amount of number
crunching. These problems are best executed in batch mode.

CACSD program can be either code driven or data driven or a combination of the
two (e.g., by incremental compiler techniques). Code-driven programs are compiled pro-
grams that implement their algorithms and operators in program code. They are faster
executing, but they are less flexible and less easy to augment. On the other hand, data-
driven programs implement algorithms and operators as data statements interpreted dur-
ing program execution. They are powerful tools for experimentation, but not necessarily
for production. It is usually a good idea to develop a new CACSD software first as a
data-driven program. Later, once the features and format of the new software are stabi-
lized, it can be reimplemented as a code-driven program for improved efficiency. Com-
pilers can eventually be used to (at least partially) automate the step from the data-driven
to the code-driven implementation.

The user inferface of CACSD programs can be question and answer driven, com-
mand driven, menu driven, form driven, graphics driven, or window driven. In a question-
and-answer-driven program, the user is asked questions to determine what must be com-
puted next. Thus, the program flow is completely pre-determined. This type of user -
interface is easiest to implement, but it is inflexible and probably not very useful in a
research environment. '

Newer CACSD programs are often command driven. Here, the initiative stays com-
pletely with the user. The CACSD program sends a “‘prompt’ to the terminal indicating
its readiness to receive the next command in the same manner as an interactive operating
system (e.g., VMS or Unix) would. In fact, an interactive operating system is nothing
but a command-driven interactive program. Turning the argument over, command-driven
CACSD programs can also be viewed as special-purpose operating systems. One dis-
advantage of this type of user interface is the need to remember what commands are
available at every interface level. This problem is today mostly remedied by providing
an extensive interactive help facility.

Another alternative is to use a menu-driven interface. Here, the CACSD program
displays a menu of the currently available commands on the screen instead of merely
sending a prompt. It then waits for the user to choose one of the items on the list,
normally by use of a pointing device, such as a crosshair cursor or a mouse. This
interface type is quite easy to implement, and it can be very powerful. One of its major

428 . Cellier and Rimvall

drawbacks is the amount of information that must be exchanged between the program
and the user.

A form-driven interface is most profitably used during the setup period of the
CADSD program for supplying (or modifying) default values for large numbers of de-
faulted parameters of more intricate CACSD commands or operators. Here, the screen is
split into separate alphanumeric fields. Each field is used to supply one parameter value.
The user can jump from one field to the next to supply (override) parameter values. This
interface requires a direct addressing mode to position the alphanumeric curser on the
screen. Although there meanwhile exists an American National Standards Institute (ANSI)
standard for this task, many hardware manufacturers already offered such a feature when
the standard became available and refused to modify their hardware and system software
to comply with the standard. A laudable exception is Digital, which adopted the ANSI
standard when switching from the VT52 series terminals to the VT100 series terminals.
Most modern graphics workstations support XTerm, a protocol that is VI'100 compatible.

A graphics-driven interface was originally used to display results from a CACSD
analysis, such as a Bode diagram or a simulation trajectory, in a graphic form (and this
is about all that can be done on a mainframe computer with a serial asynchronous user
interface). However, one obstacle has always been the high degree of terminal depen-
dence of any graphics solution. One way to overcome this problem was to employ a
graphics library providing for a large variety of terminal drivers to be placed between
the CACSD software and the terminal hardware. In the past, several such libraries were
developed (e.g., DISSPLA and DI-3000). Unfortunately, all these commercially available
libraries were expensive, and no true standard existed. Advanced graphics call for high-
speed communication links. Meanwhile, special-purpose graphics workstations have been
developed (e.g., APOLLO Domain and Sun) that provide the necessary speed for en-
hanced graphics capabilities. Such workstations support X, a recent low-level window
graphics protocol that has become an industry standard. On top of X, a higher level
window graphics protocol by the name of Motif has also become a de facto standard
and is supported on most engineering workstations. However, even simple personal com-
puters (PCs) have meanwhile become so powerful that they can be used almost inter-
changeably with workstations. Contrary to the engineering workstations, PCs support
another window graphics standard called Microsoft Windows. Even higher level software,
such as C++/Views, has recently become available that allows programming graphic
applications at an even higher abstraction level. C++/Views can then be compiled down
to either Motif or Microsoft Windows, making C+-+/Views applications even more hard-
ware independent.

A first generation of simulation programs was meanwhile made availabie that offers
a true animation feature. A mechanism is provided to synchronize the simulation clock
with real time, and the user can watch results from a simulation either on-line (that is,
while the simulation is going on) or off-line (that is, driven from the simulation database),
in a true relation to real time (slower than, equal to, or even faster than real time). For
an increased feeling of reality, the color graphics screen is divided into a static back-
ground picture and an overlaid dynamic foreground picture on which the simulation results
are displayed. TESS (Standridge and Pritsker, 1987) and CINEMA (Systems Modeling
Corp., 1985) are two such programs. Some flight simulators use a ‘‘wallpaper’” concept
to make the background picture even more realistic. Polygons can now be filled with
patterns that represent a blue sky with slight haziness and a few fluffy clouds or a green
meadow with flowers and some trees. Here, the background picture is partly dynamic as

Computer-Aided Control System Design 429

well, fed from a three-dimensional database, and a projection program automatically cal-
culates the currently visible display (Evans, 1985). This research led more recently to
amazingly powerful virtual reality environments. Virtual reality is only another word for
high-level real-time simulation with hardware (2 human) in the loop and with extremely
powerful three-dimensional animation facilities. For trends in visualization, see Sect. 5.5.

Graphic input has also become a reality. Control circuits can be drawn on the screen
as block diagrams, which are then automatically translated by a graphic compiler into a
coded model representation. MATRIX (Integrated Systems, Inc., 1984, Shah et al., 1985)
already provides this feature when operated from a Sun workstation (the program module
implementing this feature is called SystemBuild). The most fancy implementation, how-
ever, is provided in HIBLIZ (Elmqvist, 1982; Elmqvist and Mattsson, 1986). This pro-
gram uses a virtual screen concept similar to that used in a modern spreadsheet program.
The virtual screen is a portion of memory that maintains the entire graph. The physical
window can be ““moved’’ over the virtual screen such that only part of the total graph
is visible at any one time. A zoom feature is provided to determine the percentage of
the virtual screen to be depicted on the physical screen. The program is hierarchic.
Breakpoints are used to determine the amount of detail to be displayed. In a typical
application, when the entire virtual screen is made visible, a box may be seen containing
a verbal description of the overall model. Once the user starts to zoom in on the model,
a breakpoint is passed at which the previously visible text suddenly disappears and is
replaced by a diagram showing a couple of smaller boxes with interconnections between
them. When the user zooms in on one of these (so far empty) boxes, a new text may
suddenly appear that describes the model contained in this box, and so on. At the in-
nermost level, boxes are described through sets of differential equations, a table, a graph,
a transfer function, or a linear system description. The connections (paths between boxes)
are labeled with their corresponding variable names placed in a small box located at both
ends of the path. Pointing to any of these variables, all connections containing this
variable are highlighted. During compilation, an arrow points to the part of the graph
that is currently being compiled. During simulation, the user can zoom in on any path
until the ““small box’’ containing the names of variables in this path becomes visible.
Pointing to any of these variables now, the user immediately obtains a display of a graph
of that variable over time. :

One should note that at the time when HIBLIZ was designed, neither the then avail-
able computer hardware nor the necessary implementation software were adequate for
the task at hand; thus, HIBLIZ is no longer in use. However, a recent replacement with
similar features, based on high-resolution screens, professionally-made window software,
and object-oriented programming, is Dymodraw (Dynasim, 1995).

A window-driven interface permits splitting the physical screen into several logical
windows. Fach window is now associated with one logical unit in the same manner as
different physical devices once were. Each window by itself can theoretically be alpha-
numeric or graphic, question and answer driven, command driven, menu driven, or form
driven. Thus, the window interface is actually .at a slightly different level of abstraction
than the previously described interface types. Windows can often be overlaid. In this
case, the most recently addressed window automatically becomes the top window, which
is completely visible.. On some occasions, windows are attached to a logical screen. The
concept here is to allow multiple screens that can be pulled down on the physical screen
in a fashion similar to a roll shutter. In practice, window management calls for high-
resolution bit-mapped displays (at least 700 X 1000 pixels).

430 Cellier and Rimvall

The different interface modes just described are by no means incompatible. In IM-
PACT (Rimvall, 1983; Rimvall and Bomholt, 1985; Rimvall and Cellier, 1985), we ex-
perimented with combinations of several interface types. IMPACT is largely command
driven. However, in IMPACT, an extensive query facility is available that goes far beyond
the interactive help facility offered in previous programs. By use of the query feature,
the user can obtain guidance at either the individual command level or the entire session
level; thus, one can decide on an almost continuous scale at which level of guidance to
operate the software (with the pure question-and-answer-driven mode as the one extreme
and the pure command-driven mode as the other). A form-driven interface is being pro-
vided for particular occasions, for example, to determine the format of graphs to be
produced by IMPACT. A window-driven interface is provided for the management of
multiple sessions. Multiple sessions are created by a SPAWN facility that works similarly
to that provided in VAX/VMS. However, our SPAWN facility goes far beyond that of
VMS. At any instant, even while entering parameters to a function, the user can SPAWN
a new subprocess as a scratchpad for intermediate computations.

These interface discussions do not pertain to CACSD programs alone. In fact, they
are crucial considerations in any interactive program. The most modern operating systems
experiment with precisely the same elements. For instance, the operating system of the
MaclIntosh can be classified as a window-driven graphic operating system in which the
windows themselves are sometimes menu driven and sometimes form driven.

10.4 CACSD TOOLS—A SURVEY

In the first edition of this book, a bewildering multitude of CACSD programs were
discussed. This was justified then, since indeed, no true de facto standard had been
established yet, although even at that time, it was suspected that most of these programs
would fade before long. This suspicion has become true. Most of the previously men-
tioned programs are no longer in use. Thus we decided to scrap this entire section of the
chapter, and replace it by what can be conceived as the current state-of-the-art in CACSD
software.

MATLAB and its brethren indeed made it! The MATLAB syntax (inherited from
the original MATLAB by all of its versions) is so convenient and natural to use that
there can hardly be any reason why someone would not wish to employ it.

However, even among the many children of the original MATLAB, there are only
two true survivors: modern MATLAB (formerly PRO-MATLAB and PC-MATLAB) and
Xmath (formerly MATRIXy). The market for such products has (to the benefit of their
end users) become so competitive that only products with a strong commercial outfit
behind them are able to continue in use.

Both companies realized several years ago that the simulation market is vitally im-
portant. Whereas controllers for linear systems can be designed within the framework of
linear algebra alone (the trademark of the early years), controllers for nonlinear systems
must be designed in a trial-and-error fashion, by iterating over simulation runs. Thus, it
is essential that CACSD software be able to call upon a simulation engine. To this end,
MATRIXy was equipped with a simulation engine called SystemBuild, and MATLAB
was enhanced by SIMULINK.

Computer-Aided Control System Design 431

Just as their parent programs, SystemBuild and SIMULINK are like twin brothers.
Each of the two software systems consists of three separate modules. In both systems,
the user models a nonlinear continuous-time plant with continuous or discrete-time con-
trollers using a graphical block-diagram description. The block diagram is then compiled
into an internal representation by a graphical compiler. The internal representation is
finally simulated by a code interpreter. Both systems offer a fairly slick and intuitive user
surface. However, block diagrams are not truly modular as we shall discuss in due course,
and the technology used is less geared toward large industrial systems. Also, the run-
time execution is comparatively slow because the model is usually interpreted rather than
compiled. Again, for small systems this is not a serious problem, but large systems are
much better simulated in more advanced simulation software such as ACSL.

Both companies have realized this shortcoming, and offer options for true compi-
lation of simulation programs. For example, The MathWorks offers a program called the
“SIMULINK Accelerator’” that compiles SIMULINK graphics into C code to be linked
with MATLAB. However, the facility is still of limited power in comparison with e.g.
ACSL, since user-written code (so-called S-functions) are not compiled, and hand-
encoding models directly in C instead of using S-functions, while manually retrieving
the input variables from the MATLAB-maintained stack and depositing the output vari-
ables back onto the stack by referencing required MATLAB functions in their C-format,
is rather painful.* In addition, it is paramount that a continuous-system simulation lan-
guage offer event handling capabilities to describe discontinuous models. ACSL offers
such a facility that works satisfactorily well. The newest versions of SIMULINK and
SystemBuild have added some limited event handling capabilities also. In SIMULINK,
for example, the step-size control of the integration algorithm is used to locate state
events, rather than offering proper event indicator functions. This is both dangerous and
inefficient (Cellier, 1995). Another drawback is that SIMULINK doesn’t offer means to
express discrete actions to take place in response to events.

Yet overall, both MATLAB and XMath are excellent products, and, because of their
fierce competition, are marketed at reasonable prices. One of these software tools should
be in the “‘software toolbox’’ of every engineer today. Of the two products, MATLAB
has more users. In 1986, it was just the other way around. The reason is that The
MathWorks, wisely, made stronger efforts at opening up the architecture. It is an essential
feature of MATLAB that external users can generate MATLAB toolboxes that are indis-
tinguishable in appearance from system-maintained function libraries. In particular, the
documentation of the functions contained in these toolboxes is immediately and auto-
matically accessible through the MATLAB help facility.

Indeed, a number of second-source software developers have already created a wealth
of powerful MATLAB toolboxes for various aspects of control system design as well as
other purposes. Most of these are marketed through The MathWorks, who offer to market
MATLAB toolboxes for any second-source software developer, again a wise decision.

A series of textbooks for control education offer either an entire chapter on CACSD
software or at least an appendix, and a number of textbooks have recently appeared that
are basically CACSD software manuals (see the references at the end of this chapter).
Almost without exception, these books advertize the use of MATLAB (Hanselman and
Kuo, 1995; Ogata, 1994a, 1994b). In this way, MATLAB has found its way into the

*This problem will be remedied by the new M-file to C-code compiler.

432 Cellier and Rimvall

university classrooms, and into the brains of the next generation of practicing control
engineers.

It is believed that the future in CACSD software is in the direction of open archi-
tectures that standardize the software interfaces, rather than the tools themselves (Barker,
1994), and MATLAB’s source of success is that The MathWorks bought early on into
this concept. Educators choose MATLAB over other products because they are enabled
and encouraged to develop. their own MATT.AB toolboxes, which they can then present
together with all the other toolboxes that are already on the market. Open architectures
are clearly the way of the future.

However, Xmath is by no means out of acceptance or use. A serious drawback of
MATLAB is that it still offers no means to declare variables. Xmath has superior capabilities
in this respect. It is somewhat inconvenient for a designer of toolboxes to have to rely on
matrices alone to represent data structures, as in the course of designing algorithms for MIMO
systems in the frequency domain. Also SystemBuild has some important advantages over
SIMULINK. In particular, it already supports differential algebraic equations.

Is there nothing else out there worth mentioning? Evidently, neither MATLAB nor
Xmath have much to offer in terms of symbolic processing.* Whereas some general-
purpose symbolic formula manipulation tools, such as Mathematica, are widely used,
they are not suited for use in large-scale control system design. Even on a fast processor,
the design is time-consuming, and, yet more devastatingly, the formulae generated by
Mathematica (and similar tools) have a tendency to explode. What is needed are much
more specialized tools for symbolic model manipulation.

Such tools have meanwhile become available. Dymola (Cellier and Elmqvist, 1993;
Elmgqvist et al., 1993) is perhaps the most exciting new development on the modeling,
simulation, CACSD, and concurrent engineering software markets. Originally a university
prototype (Elmgqvist, 1978), Dymola recently grew into a fully-supported industrial prod-
uct (Elmqvist, 1994).

Dymola was built on the premise that physics doesn’t understand the difference
between cause and effect as long as they are simultaneous. There is no physical experi-
ment that allows us to determine whether the car smashed into the tree, or whether it
was the tree that hit the car (Cellier et al., 1995). In simulation, we don’t know whether
a resistor is a ‘“voltage-drop causer’” (V =R - i) or a “‘current-flow causer’” (i = V/R).
Physically, there is only one type of resistor; what we need inside a state-space model
has to do with the peculiarities of the chosen solution technique and not with the physical
foundations of the equation. Physical equations should be declarative in nature.

A decent modeling system should allow a user to specify the model in terms of
physical conservation laws rather than in the derived state-space form. Dymola does
precisely that. In addition to ‘‘vertical equation sorting’’ (a feature offered by most sim-
ulation software), Dymola also offers ‘‘horizontal equation sorting,”” i.e., the Dymola
compiler makes a structural analysis of all equations in order to determine what variable
to solve for from each equation and provides a solution. This makes Dymola a truly
modular modeling system, much more so than block-diagram languages.*

*There meanwhile exists a Symbolic Toolbox interfacing MATLAB with MAPLE V.

"There exists a second tool called Omola (Andersson, 1994) offering features similar to those
available in Dymola. However, Omola is still-a university prototype.

*Support of a differential algebraic equation solver (e.g., DASSL) at run time, as Xmath does, is
an alternative approach that overcomes the causality assignment problem at least in some cases.

Computer-Aided Contrel System Design 433

While this feature is certainly a very important asset of an object-oriented modeling
system, it also revolutionizes the way, control-system design can be accomplished.
Whereas in simulation, the inputs and the model parameters are known and the outputs
are computed, control-system design uses exactly the same model, but declares inputs
and outputs as known and the controller parameters as unknown. If the controller param-
eter happens to be the value of a potentiometer, Dymola would then simply turn the
above equation into R = u/i.

Control-system design implicitly solves the problem of plant inversion. Given the
desired system outputs, if only we knew the inverse plant dynamics, we could calculate
the necessary plant input (controller output) easily. Evidently, if the plant itself is strictly
proper (has no direct input/output coupling), then the inverse plant would be nonproper.
To overcome this difficulty, we may need a reference model with sufficiently more poles
than zeros, such that the cascade model of the reference model and the inverse plant
model is at least proper. In Mugica and Cellier, 1994, it was shown by means of a highly
nonlinear tanker ship model how Dymola can tackle this problem by simply connecting
the output of the plant model to the output of the reference model and declaring the input
of the plant as the desired output. In general, such a model will be a higher-index dif-
ferential algebraic equation (DAE) model (Brenan et al,, 1989), but Dymola has no
problem reducing such a higher-index DAE model to state-space form (Cellier and
Elmgqvist, 1993). Dymola then generates a traditional simulation program in any one
among a variety of different formats, including ACSL, Simnon, Desire, the textual (S-
function) SIMULINK format, as well as plain Fortran or C.

It is believed that the future in CACSD lies in mixed symbolic and numerical formula
and data processing, and Dymola offers a highly sophisticated, effective, and efficient
tool to do so.

Dymola comes with a graphical front end of its own called Dymodraw. Dymodraw
replaces the earlier HIBLIZ system. It offers visual object-oriented modeling of physical
processes. Models of physical objects are represented through icons with interface points.
Two objects can be connected through their interface ports by drawing a line between
two ports of the two objects. An icon editor can be invoked to encapsulate an entire
topological layer into a hierarchically higher-level object. Note that this is fundamentally
different from a block-diagram editor, since connections between objects are nondirec-
tional. They simply denote that two objects share some common variables, but do not
impose any constraints on the direction of information flow between these objects. For
example, an electrical circuit diagram is a special instance of an object diagram. In this
example, every connection represents a wire connecting fwo circuit elements, making
them share two variables, namely the electrical potential and the current flowing through
the wire. v

Figure 1 shows a screen dump of a Dymodraw session. The top center window is
an object diagram window used to describe the electronic control circuitry driving a dc
motor, which in turn drives the gear train of a robot joint. The control logic used to drive
the electronics is shown in the bottom center window. This is a more traditional block-
diagram window computing from the reference position gr and its derivative gr’ together
with the actual position g and its derivative g’ the current ir for driving the motor. The
overall robot model is shown in the right window. It is a six-degree-of-freedom robot
arm. Six separate instantiations of the control, electronics, dc motor, and gear train mod-
ules are used to interface with the six limbs of the robot. To the left, some other windows
are shown containing icons representing library modules, as well as some tools.

434 Cellier and Rimvall

2= Electrical ' | B Mechan

File Edit View Help i Eil 7' ew

File View

Controt

el

Figure 10.1 Dymodraw screen dump.

Dymodraw has made programs such as SIMULINK and SystemBuild perhaps less
popular. However, Dymodraw is not yet as refined and user-friendly as its two compet-
itors. Note that what is wrong with SIMULINK and SystemBuild is not their graphics
processors; they are fine. What need to be addressed are the underlying graphics com-
pilers that are (assignment) statement-oriented rather than (declarative) equation-oriented.
Dymodraw is a by now fairly standard object-oriented graphics processor due to its
underlying symbolic formula manipulator, i.e., Dymola.

10.5 STANDARDIZATION VERSUS DIVERSIFICATION

The matrix notation of MATLAB-like languages is so natural that we do not see a need
for any other notation in this respect. Although the division operators / and \ for right
and left division are not “‘standard’’ operators in the classical mathematical sense, after
MATLAB became available and popular, even theoretical papers started using this no-
tation for simplicity. It is hoped that a MATL.AB-like notation will also be introduced
into CSSLs as an additional tool for the description of state-space models as this has
already happened in Dymola.

Computer-Aided Control System Design 435

In IMPACT, we used additional operators for a third dimension, thus operating ef-
fectively on complex tensors in place of complex matrices. Multivariable systems can be
expressed in terms of polynomial matrices in which each matrix element may be a poly-
nomial in the linear operator s (or z in the discrete case). We introduced the ~ operator
to separate polynomial coefficients and (alternatively) the | operator to separate polyno-
mial roots. Thus, the polynomial matrix

_1(Bs* + 10s + 3) (2s — 3)
P= s (—=s* — 7s — 10) (10.23)
can, in IMPACT, be coded as
P = [[3'10°3], [-3'2] (10.24)
(1], [-10-7-1]]
or alternatively as
PF = [3*[-3|-(1/3)], 2*[|1.5]
10.25
[olofol. —1%[-2]-5]] (10.29)
to denote the factorized form
3+ 3 13 2 — 1.5)
PE = s¥s*s ~(+ 2)s + 5) (10.26)

The two operators ~ and | naturally extend the previously introduced operators ““,”” (used
to separate matrix columns) and ‘‘;>’ (used to separate matrix rows). Once selected, the
data representation is maintained until the user decides to convert the polynomial matrices
into another data representation, for example, by writing PF=FACTOR(P) or
P=DEFACTOR(PF). Factorized polynomial matrices and defactorized polynomial ma-
trices are two different data structures in IMPACT. Note that FACTOR(PF) results in an
error message. This notation has meanwhile been adopted by the developers of M as
well (Gavel and Herget, 1984).
Of course, it is natural to define once and forever

s =[] (10.27)

(which in fact is an IMPACT system variable). Thus, one can also write a polynomial
as

pl = 3%s**2 4+ 10*s + 3 (10.28)
or alternatively as
pl =3*(s + 3)*(s + (1/3)) (10.29)

which nevertheless, in both cases, results in a polynomial of type defactorized polyno-
mial, because the s operator was coded in a defactorized form. To prevent this from
happening, the user could write

sf = [|0] | (10.30)
and thereafter

plf = 3%(sf + 3)*(sf + (1/3)) (10.31)

436 Cellier and Rimvall

which is not recommended, however, because frequent defactorizations and refactoriza-
tions take place in this case. Note the consequent overloading of the + and * operators
in these examples. Depending on the types of operands, a different algorithm is employed
to perform the operation.

Also, with respect to the embedded procedural language, an informal standard can
be achieved. The procedural language of MATLAB, for instance, is very powerful. It
basically extends the PASCAL programming style, operating conveniently on the new
matrix data structures. Very useful, for instance, is the extension of the PASCAL-like
‘“for’” statement:

for | = [1, 3, 7, 28],
This ““for”” loop shall be executed precisely four times with J (10.32)
=1,1=3,1=7, and [= 28, respectively.

IMPACT employs an ADA style instead of the previously advocated PASCAL style. It
actually does not matter too much which style is adopted in a forthcoming standard, but
any standard would be highly welcome to allow smooth exchange of the extensive avail-
able soft-coded macro libraries. There is really no good reason to stick to the prevalent
variety of only marginally different procedural languages.

Also with respect to the user interface, de facto ‘‘pseudostandards’” have already
been established. Window interfaces look more and more similar to the Macintosh
interface. (Although the Macintosh was not the first machine to introduce windowing
mechanisms, it was this machine that made this new technique popular.) The mouse is
a very convenient, flexible, and fast-input device and has made the previously fashion-
able crosshair cursors and light pens obsolete; crosshair cursors are both uncomfortable
to use and slow, and light pens demand very expensive screen sensors. However, there
are mice with one, two, or three buttons. Any standard would be equally acceptable,
but a standard must be found. Once the fingers are used to one system, it is hard to
adjust to another.

With respect to the actual functions offered, we shall probably not see a standard
quickly. The current diversification into different application areas and design method-
ologies is most likely to be around for some time, and we actwally welcome this: too
early a standard can freeze the lines and hamper the introduction of innovative new
concepts. ’

Logically related functions should be combinable into libraries. Whereas CTRL-C
offers a library facility, it is not flexible enough. In particular, it is unfortunate that user
functions in CTRL-C cannot be accompanied by help text to be included in the standard
CTRL-C help facility. Also, the necessity to define functions before their use is incon-
venient: one changes CTRL-C functions quite frequently. If the altered functions are not
immediately redefined, CTRL-C still uses the previous version, and the user waits for
the introduced modification to have the desired effect. MATLAB’s toolbox concept is
much more powerful and should become a standard.

Another interface, which is rarely even noticed by the casual CACSD software user,
is the interface to a database in which results of computations, as well as programming
modules, notebook files, and so on, may be stored. To promote the state of the art of
CACSD software further, it is imperative that a database interface standard be defined.
Lacking such a standard, most current CACSD software developers do not even offer a

Computer-Aided Control System Design 437

database interface but rely fully on the file-handling mechanism (directory structure) of
the embedding operating environment. This mechanism is computationally efficient (the
record manager, on every computer, is strongly optimized to suit the undeslying hard-
ware), but the mechanism is entirely insufficient for our task. The immediate effect of
the lack of an appropriate database concept is a jungle of small and smallest data and
program files scattered over different subdirectories, which makes it bard to retrieve data
and programs that were previously stored for later reuse. As an example, a particular A
matrix of a linear system is probably not related to the problem under investigation at
all but is stored as a nonmnemonic file A.DAT located somewhere in the directory struc-
ture of the underlying operating system. Little has been done to address this pertinent
problem. Probably most advanced in this context is the work of Maciejowski (1984) and
Maciejowski and Szymkat (1994).

An TFAC working group discussing guidelines for CACSD software was generated,
which consists of three subgroups for the discussion of the following:

1. CACSD program interfaces (including graphics)
2. CACSD program data exchange
3. CACSD program algorithm exchange

A similar IEEE working group exists as well. It is hoped that these two bodies will be
able to promote a forthcoming CACSD standard (Maciejowski and Taylor, 1994).

10.6 SIMULATION AND CACSD

Let us discuss next how especially linear system simulation has been implemented in
some of the current CACSD programs:
In CTRL-C, there is a simulation function that takes the following form:

[¥, x] = simufa, b, ¢, 4, u, t) (10.33)

where a, b, ¢, and d are the system matrices describing a linear continuous-time MIMO
system, t is a time base (that is, t is a vector of time instants), m is the input vector
sampled over the time base (that is, u is actually a matrix; each row denotes one input
variable, and each column denotes one time instant), y is the output vector (that is, y is
a matrix with rows denoting output variables and columns denoting time instants), and
x is the state vector (which is also a matrix with according definitions). Initial conditions
can be specified in a previous call of the same function:

simu('IC',x()
and the integration method can also be declared in a similar manner:
simu(’ ADAMS’ relerr,abserr,maxstp)

An equivalent function dsimu exists for discrete-time systems. The system matrices can
be constructed from subsystem descriptions by a series of interconnection functions
(series, parallel, interc, and minreal).

In IMPACT, we chose a slightly different. approach Because systems and trajectories
are identifiable as separate data structures, we can once again overload the meaning of
the primitive operators. Time bases (‘‘domains’’) are created by means of the functions

438 Cellier and Rimvall

lindom and logdom and/or by use of the & operator (concatenation operator):
| 't = lindom(0.,1,0.1) & lindom(2.,20,1.) & 50. & 100 (10.34)

which generates a domain consisting of 23 points: [0., 0.1, 0.2, . . ., 0.9; 1, 2,
3., ..., 19, 20, 50., 100.]. Trajectories are functions over domains; thus,

u = [sin(t); cos(t)] | (10.35)

which creates a trajectory column vector u evaluated over the previously defined domain
t. Linear systems are generated by the lincont and lindisc functions:

s; = lincont(a,,b,,¢,,D=>d1,x,=>[0.5;2.;—3.7]) (10.36)

The three matrices a;, b;, and ¢, are compulsory positional parameters, whereas the input-
output matrix (D) and the initial condition vector (x;) are optional (defaulted) named
parameters.

Series connection between two sybsystems is expressed as s,*s,, that is, multipli-
cation in reverse order (exactly what-it would be if the two subsystems were expressed
through two transfer function matrices g,*g;); parallel connection is expressed by the +
operator, and feedback is expressed by the \\ operator:

g =g\ (Th) (10.37)

(g fed back with —h), independently of whether g and h are expressed as transfer function
matrices or as linear system descriptions. Simulations finally are expressed by overload-
ing the * operator once more:

Yy = s.*u (10.38)

which simulates the system s, (which in our example must have two inputs) from 0. to
time 100., interpolating between the specified values of the input trajectory vector u, and
sampling the output trajectory vector y over the same domain. Thus,

tc;ut = (SZ*SI)*tin (10.39)

series connects the two subsystems s, and s, and then performs one simulation over the
combined system. On the other hand,

tou = 82%(8:7t:) (10.40)

simulates the subsystem s, using t, as input, samples the resulting output trajectory over
the same domain, and then simulates the subsystem s, using the previous result as an
input by reinterpolating it between its supporting values. Of course, numerically the
results of these two operations are slightly different, but conceptually, the associative law
of multiplication holds.

In standard CSSLs, simulation is always viewed as the execution of a special-purpose
program (the simulation program) producing simulation results (mostly in the form of a
result file). There, the simulation program is viewed as the central part of the undertaking.
No wonder such a concept does not lend itself easily to embedding into a larger whole
in which simulation is only one task among many.

Computer-Aided Control System Design 439

In CTRL-C, simulation is viewed as a function mapping an input vector (or matrix)
into an output vector (or matrix). Clearly, simulation is here only one function among
many others that can be performed on the same data.

In IMPACT, finally, simulation is viewed as a binary operator that maps two different
data structures, namely, one of type system description (eventually also nonlinear) and
the other type of trajectory into another data structure of type trajectory.

Of course, all three descriptions mean ultimately the same thing, yet the accents are
drastically different. To prove our case, the reader versed in the use of one or the other
of the CSSLs may try to code the IMPACT statement t,,. = $,*(5;*t,,) as a CSSL simu-
lation program. In most CSSLs, this simply cannot be done. The task would require two
separate programs to be executed one after the other. The output from the first simulation
run (implementing t,,, = §,*t;,) would have to be manually edited into a ‘‘tabular func-
tion”” and used by the second simulation run (implementing t,, = s;*t,..).

To give another example, when solving a finite-time Riccati differential equation,
one common approach is to integrate the Riccati equation backward in time from the
final time # to initial time #,, because the ‘‘initial condition’’ of the Riccati equation is
stated as K(z =) = 0 and because the Riccati equation is numerically stable in the
backward direction only. The solution K(7) is stored away during this simulation and
then reused (in reversed order) during the subsequent forward integration of the state
equations with given x(¢ =). Some of the available CSSLs allow solving this problem
(mostly in a very indirect manner); others simply cannot be used at all to tackle this
problem.

How can one handle this problem in CTRL-C? The first simulation is nonlinear (and
autonomous), and the second is linear (and input dependent) but time varying; thus, we
cannot use the simu function in either case. CTRL-C provides for a second means of
simulation, though. A graphical model builder called Model-C (Systems Control Tech-
nology, 1990) and also an interface to the well-known simulation language ACSL were
introduced. These interfaces allow making use of the modeling and simulation power of
a full-fledged simulation language, and one is still able to control the experiment from
within the more flexible environment of the CACSD program. Several of the CACSD
programs discussed here follow this path, and it might indeed be a good answer to our
problem if the two languages that are combined in such a manner are sufficiently com-
patible with each other and if the interface between them is not too slow. Unfortunately,
this is currently not yet the case with any of the CACSD programs that use this route.

Let us illustrate the problems. We start by writing an ACSL program that implements
the matrix Riccati differential equation

% = —Q + K*B*R*B'*K — K*A — A’*K K@) =0 (10.41)
Because ACSL does not provide for a powerful matrix environment, we must separate
this compact matrix differential equation into its component equations. [ACSL provides
a vector integration function, and matrix operations, such as multiplication and addition,
could be (user-)coded by use of the ACSL MACRO language. However, this is a slow
and inconvenient replacement for the matrix manipulation power offered in such lan-
guages as CTRL-C.] Furthermore, bécause ACSL does not handle the case t; < #, we
must substitute ¢ by

t*:t:f—to_t

440 Cellier and Rimvall

and integrate the substituted Riccati equation

;_‘ff -Q - K*B*R*B*K + K*A + AK K(0)=0 (10.42)

forward in time from #* = 0 to ¢* = ¢, — f,. Through the interface (A2CLIST), we export
the resulting K;(t*) back into CTRL-C, where they take the form of ordinary CTRL-C
vectors. Also in CTRL-C, we must manipulate the components of K(¥) individually,
because K(¢) is a trajectory matrix, that is, a three-dimensional structure. However,
CTRL-C handles only one-dimensional structures (vectors) and two-dimensional struc-
tures (matrices), but not three-dimensional structures (tensors). Backsubstitution can be
achieved conveniently in CTRL-C simply by reversing the order of the components of
each of the vectors, as follows:

[n’m] = SIZB(KU)
nm = n*m (10.43)
K, = K (nm:—1:1)

Now, we can set up the second simulation:

% = [A ~ K@*BI*x x(t) = % (10.44)

What we would like to do is to ship the reversed K;(¢) back through the interface
(C2ALIST) into ACSL and use them as driving functions for the simulation. Unfortu-
nately, ACSL is not (yet!) powerful enough to allow us to do so. Contrary to the much
older CSMP-III system, ACSL does not offer a dynamic table load function (CALL
TVLOAD). Thus, once the K;(¢) functions have been sent back through the interface
into ACSL, they are no longer trajectories, but simply arrays, and we are forced to write
our own interpolation routine to find the appropriate value of K for any given time .
After all, the combined CTRL-C/ACSL software is indeed capable of solving the posed
problem, but not in a very convenient manner. This is basically because ACSL is not
(yet!) sufficiently powerful for our task and the interface between the two languages is
still awkward. Because of the weak coupling between the two software systems, it might
indeed have been easier to program the entire task in ACSL alone, although this would
have meant doing without any of the matrix manipulation power offered in CTRL-C.

What about IMPACT? in IMPACT, it was decided not to rely on any existing sim-
ulation language but rather to build simulation capabilities into the CACSD program
itself. This is partly because (as the preceding example shows) the currently available
simulation languages are really not very well suited for our task and partly a result of
our decision to employ ADA as implementation language. Currently no CSSL has been
programmed in ADA, so that we would have had to rely on the ‘‘pragma concept’
(which is the ADA way to establish links to software coded in a different language).
However, we tried to limit the use of the pragma concept as much as possible because
this feature does not belorig to the standardized ADA kernel (and thus may be imple-
mentation dependent).

Until now, only the use of linear systems in IMPACT has been demonstrated. How-
ever, nonlinear systems can be coded as special macros (called system macros). The two

Computer-Aided Control System Design 441

linear system types (lincont and lindisc) are, in fact, special cases of system macros. The
Riccati equation can be coded as follows:

SYSTEM ricc_eq{a,b,q,rb) RETURNK IS
k = zerof{a):

BEGIN
K =—q + k*b*rb*k — k*a — a'*k;
END ricc_eq

The state equations can be coded as

SYSTEM sys eq(a,b,rb,x0) INPUT k RETURN x IS

X = x0
BEGIN

x = (a — rb*k)*x;
END sys eq

The total experiment can be expressed in another macro (of type FUNCTION MACRO):

FUNCTION fin_tim ricc(a,b,q, r,xbeg,time_base) 1S

BEGIN
back_time = REVERSE(time base);
rb = r\b’;

k1 = ric_eqf(a,b,q,rb) *back _time;
k2 - REVERSE (k1};
x = sys_eq{a,b, rb,xbeg}*k2;
RETURN <x,k2>;

END fin_tim_ricc;

Note the difference in the call of the two simulations. The first system (ricc —eq) is
autonomous. Therefore, simulation can no longer be expressed as a multiplication of a
system macro with a (nonexistent) input-trajectory vector. Instead, the system macro here
is multiplied directly by the domain variable, that is, the time base. The second system,
on the other hand, is input dependent. Therefore, the multiplication is done (as in the
previously discussed linear systems) with the input trajectory. FIN _ TIM _ RICC can
now be called just like any of the standard IMPACT functions (even nested). The result
of this operation are two variables, y and K, of the trajectory vector and trajectory matrix
type, respectively. :

= [0;0]; a = [0,1;-2,-3]; b = [0;1];

= [10,0;0;100]; v = 1;
forw time = LINDOM(0,10,0.1,METHOD=>'ADAMS', ABSERR=>0.001);
ly.k] = fin_tim_ricc(a,b,q,r,x0, forw_time); «
plot{y)

{\S can be seen from this example, the entire integration information in IMPACT is stored
In the domain variables, which makes sense because these variables contain part of the
Tuntime information (namely, the communication points and the final time anyway. More-

442 : Cellier and Rimvall

over, this gives us a neat way to differentiate clearly between the model description, on
the one hand, and the experiment description, on the other.

Obviously, this is a much more powerful tool for our demonstration task than even
the combined ACSL/CTRL-C software. Unfortunately, contrary to CTRL-C, IMPACT
has never been released. IMPACT, being a university prototype could simply not compete
with professionally developed and maintained industrial products such as MATLAB or
MATRIX,. Even CTRL-C doesn’t seem to carry a significant portion of customer base
of matrix manipulation tools any longer.

10.7 OUTLOOK

How will the field of CACSD develop further over the next decade or so? To understand
where we are heading, we need to assess where we currently stand. In the past, and this
still holds for the first generation of CACSD tools, the application programmer was
talking about program development. A program is a tool that calculates something in a
sequential manner when executed on a digital computer. Some programs were param-
eterized, that is, accepted input data to determine partly what was to be calculated. The
major emphasis was on the program, whereas the data were of relatively minor impor-
tance. There was a clear distinction between the program (a piece of static code in
memory) and the data (a portion of memory that changed its content during execution
of the program).

With the new generation of CACSD tools, we departed from this viewpoint drasti-
cally. New CACSD programs are in themselves true programming languages; that is, the
application programmer no longer relies on the computer manufacturer to provide the
languages to be used but creates his or her own special-purpose languages. The difference
is simply that less and less of the computational task is frozen in code, and more and
more of it is parameterized, that is, data driven. The data in itself reached such a degree
of complexity that their appropriate organization became essential. The user interface,
previously an unimportant detail, turned into a central question that decided whether a
particular CACSD tool was good or bad, even more than the algorithmic richness pro-
vided within the program. What we gained by this change in accent was a dramatic
increase in flexibility offered by the CACSD tools; what had to be paid in return was a
certain decrease in runtime efficiency. However, with the advent of more powerful com-
puters (an engineering workstation of today compares in number-crunching power easily
with a mainframe computer of no more than a decade ago), this sacrifice could be gladly
made. Moreover, it was often true that the compilation and linkage of a simulation
program took 10 times longer than the actual execution of the program (at least for
sufficiently simple applications). With the advent of the direct-executing (that is, fully
data driven) simulation languages, such as SIMNON (Elmqvist, 1975, 1977), DESCTOP,
and DESIRE (Korn, 1985, 1987, 1989), one can obtain simulation results immediately,
and even if the simulation program executes 50% slower than it would if it were properly
compiled, the increased flexibility of the tool (ease of model change) pays off easily
even with respect to the total time spent at the computer terminal. This is useful within
a CACSD environment, especially, for relatively small simulation models. This is also
the route that The MathWorks took with SIMULINK and that ISI took with SystemBuild.
For larger models, interactivity is less important than modularity, and this is where Dy-
mola fits in. Dymola has already begen integrated with MATLAB, since Dymola can either

Computer-Aided Control System Design 443

generate (textual) SIMULINK code, or directly C code to be simulated using Dymosim
(Otter, 1995), which develops its output in the form of MATLAB data files to be imported
easily and conveniently into MATLAB for further processing and/or graphing.

However, we are currently at the edge of taking yet another step. We have already
gotten used fo multiwindow user interfaces, to object-oriented programming style, to
language-sensitive editors, to CAD databases, and so on. Are these really issues that can
(or should) be tackled at the level of a programming language? Are these not rather
topics to be discussed at the level of the underlying operating systems? If we say that
we need a CAD database to store our models and resulting data files, do we not simply
express that the file storage and retrieval system of the operating system in which the
tool is being embedded is not powerful enough for our task? Are not interactive lan-
guages, such as MATLAB and DESCTOP, (very primitive) special-purpose operating
systems in themselves? We indeed believe that future programming systems will blur the
previously clear-cut distinction between programming languages and the operating sys-
terns in which they are embedded. This problem was realized by the developers of ADA,
who understood that a complex tool, such as ADA, cannot be designed as a programming
language with a clean interface to the outside, implementable independently of the op-
erating system under which it is to run. Instead, its developers considered an ADA
environment to be offered together with the ADA language. The ADA environment is
basically nothing but a (partial) specification of the operating system in which the ADA
language is to be embedded. The same is true with respect to CACSD tools. In IMPACT,
we were not yet able to address this question in full depth: the ADA environment itself
was not yet completely defined and we would like to borrow as much as possible from
ADA concepts. In M (Gavel and Herget, 1984), this question was addressed and led to
the development of yet another tool, EAGLES (Lawver, 1985), an object-oriented, mul-
titasking, multiwindowing operating system, under which M is to run. The import/export
of M variables between different sessions (windows) is not programmed in M itself but
is supported by EAGLES. The entire graphics system is a facility provided by the
EAGLES operating system rather than being implemented as an M tool. EAGLES op-
erates on a rather involved database that serves as a buffer for all data to be shuffled
back and forth between the different tools (such as M) and the operating system EAGLES
itself.

One way to overcome the previously mentioned problems may be to standardize the
operating system itself. The UNIX operating system presents one step in this direction.
There already exist a large number of UNIX implementations for various computers. The
idea is splendid. UNIX has already largely replaced older operating systems such as
VMS; the reason for its success is its open architecture. UNIX is vendor-independent
and completely open to the system programmer and offers the ultimate in flexibility to
the system programmer. Unfortunately, the original UNIX kernel (the UNIX “‘standard,”’
so to speak) was too small, and there is therefore unnecessary and unjustified diversity
in UNIX implementations.

What about new facilities offered in future CACSD tools? We expect to see more
and more flexibility with respect to the data interface. The ultimate data-driven program-
ming is a language in which there is essentially no longer a difference between code and
data. Each operation that can be performed in the language is itself expressed as an entry
in a database and can thus be altered at any moment.

One such environment is LISP. Basically, the only primitive operations in LISP are
addition and removal of entries from lists. These operations are themselves expressed as

444 ' Cellier and Rimvall

entries in lists. When interpreted as operation, the first entry in the list is the operator,
and all further entries are its parameters. For these reasons, LISP programs exhibit a
serious runtime inefficiency. A numeric algorithm implemented in LISP will probably
execute two to three orders of magnitude more slowly than the same algorithm imple-
mented in a conventionally compiled language. Moreover, LISP is often rather unwieldy
with respect to how a particular numeric algorithm must be specified. However, LISP
certainly also presents the ultimate in flexibility. Suddenly, self-modifying code has be-
come a feasibility and can be employed to achieve amazing results. Moreover, in LISP,
numeric data are entries in lists just like any other data. Thus, nonnumeric data processing
is as efficient as numeric data processing, and in this arena, LISP competes a little more
favorably with conventional programming techniques. Also, steps have been taken to
alleviate some of this inherent inefficiency. Incremental compilers in place of pure in-
terpreters can increase the runtime efficiency by roughly one order of magnitude. Fur-
thermore, a LISP interpreter is an extremely simple program compared with a conven-
tional compiler. A (basic) LISP interpreter can be coded in roughly 600 lines of (LISP)
code. Owing to this simplicity, it may make sense to implement part of this task in
hardware rather than in software. The machine instructions of a special-purpose LISP
machine can be tuned to optimize the efficiency of executing LISP primitives. Such
machines have already become available and have helped overcome at least part of the
inefficiency of LISP. Unfortunately, they have disappeared again from the market about
as fast as they had appeared before, since few were willing to code all their programs
in LISP.

With respect to the user interface, many of the difficulties of LISP can be avoided
by changing the world view once more. LISP is basically process oriented, but PROLOG
is activity oriented. That is, in LISP, the programmer takes the standpoint of the operator
(What do I do next with my data?), whereas in PROLOG, the programmer takes the
standpoint of the data (What needs to happen to me next?). This helps to concentrate
activities to be performed into one piece of code rather than having them spread all over.
Unfortunately, digital computers are still sequential machines, whereas activity program-
ming is not procedural in nature. As a consequence, PROLOG is expected to be more
inefficient even than LISP. (However, PROLOG can rather easily be implemented in
LISP, and thus, there also exist PROLOG environments on LISP machines, and they
function amazingly well.) PROLOG primitives are more compound than LISP primitives.
The natural consequences of this enhanced degree of specialization are shorter and better
readable PROLOG programs, on the one hand, but less flexibility, on the other. Not every
program that can be conceived in LISP can easily be implemented in PROLOG, whereas
PROLOG programs can be implemented in LISP.

An area that will be boosted by such concepts as advertised in PROLOG and LISP
is the integration of CACSD software with expert systems. Expert systems are programs
that evaluate a set of parameterized rules (conditional statements with mostly nonnumeric
operands) by plugging in appropriate parameter values. The set of available parameter
values is called the knowledge of the expert system. Each evaluation may generate new
knowledge, and eventually even new rules. To accommodate this new knowledge (new
rules), the rules of the expert system are evaluated recursively until no further facts
(knowledge) can be derived from the current state of the program.

Why is it that many computer experts smile at the current efforts in expert system
technology? To design an expert system, one needs expert knowledge. For this reason,
most of the early expert systems were written by experts in the application area rather

Computer-Aided Control System Design 445

than by experts in the implementation tool. Such programs did not always exploit the
latest in software technology. Expert systems are thus often envisaged as question-and-
answer—driven programs with very limited capabilities. However, our definition of the
term “‘expert system’’ did not mention the user interface at all. In fact, the user interface
(that is, the port through which new knowledge is entered into the knowledge base of
the expert system) is completely decoupled from the mechanisms of rule evaluations (the
inference engine) and can be any of the previously mentioned interface types (question
and answer, command, menu, form, graphic, and window interface).

Indeed, have not expert systems been further developed than what most people think?
Is not MATLAB in fact an expert system for linear algebra? Is not every single CACSD
tool an expert system for control system design? They surely exhibit all properties of
expert systems. To prove our case, let us examine the MATLAB statement

x = bla (10.45)

a little more closely. Certainly, the interpreter of this statement performs symbolic pro-
cessing. Once it has determined the type of operation to be performed (division), it checks
the types of the operands. If a is a scalar, all elements of b must be divided by a. If a
is a square maftrix, a Gaussian elimination must take place to determine x. Finally, if a
is a rectangular matrix, x is evaluated as the solution of an over- or under-determined
set of equations in a least-squares sense. Quite obviously, these are rules to be evaluated.

Of course, most people would not call MATLAB an expert system (and neither
would we). However, more expert system technology is readily available than what is
commonly exploited. For example, most expert systems today constantly perform oper-
ations on symbolic data. It is true that the data to be processed are input in a symbolic
form. Howevet, this does not mean that they must be processed within the expert system
in a symbolic form as well. Compiler writers have known this for years. The scanner
interprets the input text, maps tokens (symbols) into more conveniently processable in-
tegers, and stores them in fast addressable data structures. This process is called hashing.
During the entire operation of compilation (and eventually also symbolic debugging), the
system operates on these numeric quantities in place of the symbolic ones. Only upon
output (e.g., for generating the cross-reference table), are the original symbols retrieved
through the hash table. For example, Dymola performs symbolic formula manipulation
with high speed due to appropriate data structures and efficient algorithms based on a
bipartite graph representation of the model structure. Such mechanisms could easily be
used in expert systems to increase their efficiency, but this is rarely done today. SAPS
(Uyttenhove, 1979; Klir, 1985; Cellier and Yandell, 1987; Cellier et al., 1994), for in-
stance, can be used for qualitative simulations of input/output models (that is, models
described through sets of input and output trajectories rather than by a symbolic struc-
ture). The trajectories can be either discretized continuous variables or variables that
are discrete in nature. Often, one would like to characterize a signal as being [much
too_ small, too __small, just _right, too __large, or much _too _ large]. These symbols
are mapped into the set of integers [0, 1, 2, 3, and 4]. The authors of SAPS called this
process recoding.

How can the emerging expert system technology be exploited by CACSD software?
As a first step, the error-reporting facility, the help facility, and the tutorial facility of
CACSD tools should be made dynamic. Today, such facilities exist in most CACSD
programs, but they are static; that is, the amount and detail of information provided by
the system are insensitive to the context from which it was triggered. The idea is quite

446 Cellier and Rimvalil

old. IBM interactive operating systems have offered for many years a two-level error-
reporting facility. When an error occurs, a short (and often cryptic) message is displayed
that may suffice for the expert but is inadequate for the novice. Thus, after receiving
such a message, the user can type ? which is honored by a more detailed analysis of the
problem. The query facility of IMPACT is another step in this direction. Another imple-
mentation has been described by Munro et al. (1986).

Also, Astréom and Ljung are working on such a facility for IDPAC (private com-
munication). The idea is the following: Rather than allowing students to queue in front
of Karl Johan’s office, his knowledge about the use of the IDPAC algorithms (when to
use what module) should be coded into the program itself, providing the students with
an adaptive tutorial facility for identification algorithms. Thus, a computer-aided instruc-
tion facility is being built into the CAD program. A similar approach has been proposed
by Taylor and Frederick (1984).

Another related idea was expressed by Astrdm (private communication). That is, to
add a command spy to his IDPAC software. Here, the idea is as follows: instead of
waiting until the student realizes that he is doing something wrong, and therefore seeks
the professor’s advice, the professor stands, in a figurative sense, behind the student and
watches over his shoulder to see what he is doing. As long as the student is doing fine,
the professor (that is, the command spy) keeps quiet, but when the student tries to perform
an operation that is potentially dangerous to the integrity of his data or that is likely to
lead to illegitimate conclusions, the command spy becomes active and warns the student
about the consequences of what he is doing.

A similar feature could be built into a language-sensitive editor. This would allow
checking a CACSD program early not only for syntactic correctness but also for semantic
correctness. Some of the semantic tests are, of course, data dependent, and these can be
performed only at execution time.

Other improvements can be expected from screening data for automated selection
of the most adequate algorithms. This is similar to the previously mentioned operator
overloading facility, but here the algorithm is selected not on the basis of the types of
the operands but on the basis of the data itself. As a typical example, we could mention
the problem of inverting a matrix. Obviously, if the matrix is unitary, its inverse can be
obtained by simply computing the conjugate complex transpose of the matrix, which is
much faster and gives rise to less error accumulation than computation of the inverse by
Gaussian elimination, for example. If the matrix is (block) diagonal, each diagonal block
can be inverted independently. If the matrix presents itself in a staircase form, yet another
simplified algorithm can be used, and so on. Thus, the matrix should be checked for
particular structural properties, and the most appropriate algorithm should be selected on
the basis of the outcome of this test. A good amount of knowledge about data classifi-
cation algorithms exists, knowledge that is not being exploited by many of today’s
CACSD programs.

Finally, we expect that even new control algorithms will arise from expert system
technology. Today’s control algorithms are excellent for local control of subsystems.
They are not as good for global assessment of complex systems. A complex system, such
as a space station or a nuclear power plant, must be monitored, and expert system tech-
nology may be used to decide when something odd has happened or is about to happen.
A global control strategy must then take over and decide what to do next. Currently,
human operators do a much better job in this respect than automatic confrollers. However,
they do not solve Riccati equations in their heads. Instead, they decide on the basis of

Computer-Aided Control System Design 447

qualitative, that is, highly discretized, information processed by use of a mental mode!
of the process,

De Albornoz and Cellier (1993) investigated the use of inductive reasoning for moni-
toring a nuclear power station. A detailed 5000-page emergency procedure manual exists
for any such plant. Thus, if something goes awry (a so-called transient occurs), the
problem is not to figure out how to handle the situation: the problem is which page of
the emergency procedure manual to read. Thus, the supervisory control system is sup-
posed to do nothing but provide the operator with a (set of) page number(s) of the
emergency procedure manual. Cellier et al. (1993) provide a picture of the major issues
that need to be tackled in computer-aided design of intelligent controllers. This paper
introduced the terminology ‘‘fault-tolerant controller’” to mean a robust controller that
watches over the integrity of the plant and either adjusts its control activities whenever
it notices a qualitative change in plant behavior or, at least, initiates a graceful shutdown
procedure and calls for help. The terminology ‘‘self-aware controller’’ was introduced
to denote the capability of a controller fo watch over its own sanity and find out if
something has gone awry within the controller. An elaborate example of a self-aware
control application is given in the paper. Finally, the terminology ‘‘cognizant controller’’
is introduced to mean the ability of a controller to assess ahead of time the effects of its
control actions and base its decisions on a mental assessment of a mental simulation
performed on a mental model of the plant to be controlled in faster than real time. The
proceedings of the most recent CACSD conference (Mattsson et al., 1994), indicate that
issues of intelligent controller design occupy a significant portion of reported activities.

In summary, CACSD is still a very active research field, as recent books on this
topic show (Jamshidi and Herget, 1993; Linkens, 1993), and more results are expected.
1t is hoped that our survey and discussion may stimulate more research.

REFERENCES

Ackermann, J. (1980). Parameter space design of robust control systems, IEEE Trans. Automatic
Control, AC-25, 1058-1072.

Agathoklis, P, Cellier, F. E., Djordjevic, M., Grepper, P. O., and Kraus, F. J. (1979). INTOPS,
educational aspects of using computer-aided design in automatic control, in: Proceedings of
the IFAC Symposium on Computer-Aided Design of Conirol Systems, Ziirich, Switzerland,
August 29-31, 1979, M. A. Cuénod, ed., Pergamon Press, Oxford, pp. 441—-446.

Andersson, M. (1994). Object-oriented modeling and simulation of hybrid systems, Ph.D. disser-
tation LUTFD2/TFRT-1043-SE, Department of Automatic Control, Lund Institute of Technol-
ogy, Lund, Sweden.

Aplevich, J. D. (1986). Waterloo control system design packages (WCDS and DSC), personal
communication, Dept. of Electrical Engineering, University of Waterloo, Waterloo, Ontario,
Canada.

Asada, H., and Slotine, J. J. E. (1986). Robot Analysis and Control, Wiley, New York.

Astrom, X. J. (1980). Self-tuning regulators—adesign principles and applications, in Applications
of Adaptive Control, K. S. Narendra and R. V. Monopoli, eds., Academic Press, New York,
pp. 1-68. ‘

Astrom, K. 1. (1985). Computer-aided tools for control system design, in: Computer-Aided Control

Systems Engineering, M. Jamshidi and C. J. Herget, eds., North Holland, Amsterdam, pp. 3—
40.

448 Cellier and Rimvall

Athens, M,, ed. (1978). On large scale systems and decentralized control, IEEE Trans. Automatic
Control, AC-23, special issue.

Atherton D. P, and Wadey, M. D. (1981). Computer-aided analysis and design of relay systems,

in: IFAC Symposzum on CAD of Multivariable Technological Systems, Pergamon Press, New
York, pp. 355-360.
Atherton, D. P., McNamara, O. P., Wadey, M. D, and Goucem, A. (1986). SUNS: The Sussex Uni-
* versity Nonlinear Control System Software, in: Proceedings of the 3rd IFAC Symposium on Com-
puter-Aided Design in Control and Engineering Systems (CADCE ’85), Copenbagen, July 31 to
Angust 2, 1985, P. M. Larsen and N. E. Hansen, eds., Pergamon Press, Oxford, pp. 133-136.

Augustin, D. C., Fineberg, M. S., Johnson, B. B, Linebarger, R. N., Sanson, F. J., and Strauss, J. C.
(1967). The SCi continuous system simulation language (CSSL), Simulation, 9, 281-303.

Barker, H. “A. (1994). Open environments and object-oriented methods: the way forward in
computer-aided control system design, Proceedings IEEE/IFAC Joint Symposium on Computer-
Aided Control System Design, Tucson, AZ, pp. 3—-12.

Bartolini, G., Casalino, G., Davoli, F., and Minciardi, R. (1983). A package for multivariable
adaptive control, in: Proceedings of the 3rd IFAC/IFIP Symposium on Software for Computer
Control (SOCOCO ’82), Madrid, Spain, G. Ferrate and E. A. Puente, eds., Pergamon Press,
Oxford, pp. 229-235.

Birdwell, J. D., Cockett, J. R. B., Heller, R., Rochelle, R. W., Lamb, A. J., Athans, M., and Hatfield,
L. (1985). Expert systems techniques and future trends in a computer-based control system
analysis and design environment, in: Proceedings of the 3rd IFAC Symposium on Computer-
Aided Design in Control and Engineering Systems (CADCE ’85), Copenhagen, July 31 to
August 2, 1985, P. M. Larsen and N. E. Hansen, eds., Pergamon Press, Oxford, pp. 1-8.

Borrie, J. A. (1986). Modern Control Systems, Prentice-Hall, Englewood Cliffs, NJ. '

Boyd, S. P, and Barratt, C. H. (1991). Lirear Controller Design, Limits of Performance, Prentice-
Hall, Englewood Cliffs, NJ.

Brenan, K. E., Campbell, S. L., and Petzold, L. R. (1989). Numerical solution of initial-value
problems in differential algebraic eguations, North-Holland, New York.

Buenz, D. (1986). CATPAC—Computer-aided techniques for process analysis and control, per-
sonal communication, Philips Forschungslaboratorium Hamburg, Hamburg, Germany

Cellier, F. E. (1986a). Enhanced run-time experiments in continuous system simulation languages,
in: Proceedings of the 1986 SCSC Multiconference, F. E. Cellier, ed., SCS Publishing, San-
Diego, CA, pp. 78-83.

Cellier, F. E. (1986b). Combined continuous/discreie simulation-—applications, tools, and tech-
niques, Invited Tutorial, in Proceedings of the Winter Simulation Conference (WSC ’86), Wash-
ington, D.C., J. R. Wilson, J. O. Henriksen, and S. D. Roberts, eds., pp. 24-33.

Cellier, F. E. (1991). Continuous System Modeling, Springer-Verlag, New York.

Cellier, F. E. (1993). Integrated continuous-system modeling and simulation environments, in: CAD
for Control Systems, D. A. Linkens, ed., Marcel Dekker, New York, pp. 1-29.

Cellier, F. E. (1995). Continuous System Simulation, Springer-Verlag, New York.

Cellier, F. E., and Elmgvist, H. (1993). Automated formula manipulation supports object-oriented
continuous-system modeling, Control Systems, 13(2), 28-38.

Cellies, F. E., and Mugica, F. (1995). Inductive reasoning supports the design of fuzzy controllers,
J. Fuzzy Intelligent Systems, accepted for publication.

Cellier, F. E., and Pan, Y. (1995). Fuzzy adaptive recurrent counterpropagation neural networks: A
tool for efficient implementation of qualitative models of dynamic processes, J. Systems En-
gineering, accepted for publication.

Cellier, F. E., and Rimvall, M. (1983). Computer-aided control systems design, invited survey
paper, in: Proceedings of the European Simulation Conference (ESC ’83), Aachen, Germany,
W. Ameling, ed., Springer-Verlag, New York, pp. 1-21.

Cellier, F. E., and Yandell, D. W. (1987). SAPS-II: A new implementation of the systems approach
problem solver, Int. J. General Systems, 13(4), 307-322.

Computer-Aided Control System Design ' 449

Cellier, F. E., Grepper, P. O., Rufer, D. E,, and Todtli, J. (1977). AUTLIB, automatic control library,
educational aspects of development and application of a subprogram package for control, in:
Proceedings of the IFAC Symposium on Trends in Automatic Conirol Education, Barcelona,
Spain, March 30 to April 1, 1977, Pergamon Press, Oxford, pp. 151-159.

Cellier, F. E., Schooley, L. C., Sundareshan, M. K., and Zeigler, B. P. (1993). Computer-aided
design of intelligent controllers: Challenge of the nineties, in: Recent Advances in Computer-
Aided Control Systems Engineering, M. Jamshidi and C. I. Herget, eds., Elsevier, Amsterdam,
pp. 53-80.

Cellier, F. E., Nebot, A., Mugica, F,, and de Albomoz, A. (1995). Combined qualitative/quantitative
simulation models of continuous-time processes using fuzzy inductive reasoning techniques,
Int. J. General Systems, accepted for publication.

Cellier, F. E., Otter, M., and Fimgvist H. (1995). Bond graph modeling of variable structure
systems, Proceedings ICBGM °95, Second International SCS Conference on Bond Graph Mod-
eling and Simulation, Las Vegas, NV, E. E. Cellier and J. J. Granda, eds., SCS Publ., La Jolla,
CA. pp. 49--55.

Chi, S., and Cellier, F. E. (1991). Numerical properties of trajectory representations of polynornial
matrices, in: Proceedings CADCS °91, Computer-Aided Design in Control Systems, Swansea,
Wales, H. A. Barker, ed., Pergamon Press, Oxford, pp. 173-177.

Chow, J. H., Bingulac, J. H.,, Javid, S. H., and Dowse, H. R. (1983). User’s Manual for L-A-S
Language, System-Dynamics and Control Group, General Electric, Schenectady, NY.

De Albornoz Bueno, A., and Cellier, F. E. (1993). Variable selection and sensor fusion in automatic
hierarchical fault monitoring of large scale systems, in: Proceedings QUARDET 93, Qualitative
Reasoning and Decision Technologies, Barcelona, Spain, June 16—18, 1993, N. Piera Carreté
and M. G. Singh, eds., CIMNE, Barcelona, pp. 722-734.

Denham, M. I. (1984). Design issues for CACSD systems, Proc. [EEE, 72(12), 1714-1723.

Dow Chemical Company (1990). SimuSelv Manual, Midland, MI.

Dynasim. (1995). Dymodraw User’s Manual, Dynasim AB, Lund, Sweden.

Elmgyist, H. (1975). SIMNON—An Interactive Simulation Program for Nonlinear Systems—
User’s Manual, Report CODEN: LUTFD2/TFRT-7502), Dept. of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Elmgvist, H. (1977). SIMNON—An interactive simulation language for nonlinear systems, in:
Proceedings of the International Symposium SIMULATION 77, Montreux, Switzerland, M.
Hamza, ed., Acta Press, Anaheim, CA, pp. 85-90.

Elmgqvist, H. (1978). A structured model language for large continuous systems, Ph.D. Thesis,
Report: CODEN: LUTFD2/(TRFI-1015). Dept. of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden.

Elmqvist, H. (1980). A structured model language for large continuous systems, IMACS TC3
Newsletter, 10.

Elmqvist, H. (1982). A graphical approach to documentation and implementation of control sys-

" tems, in: Proceedings of the 3rd IFAC/IFIP Symposium on Software for Computer Control
(SOCOCO ’82), Madrid, Spain, G. Ferrate and E. A. Puente, eds., Pergamon Press, Oxford,
pp- 95-100.

Elmgqvist, H. (1994). Dymola User’s Manual, Dynasim AB, Lund, Sweden.

Elmgqvist, H., and Mattsson, S. E. (1986). A simulator for dynamic systems using graphics and
equations for modeling, in: Proceedings of the 3rd Symposium on Computer-Aided Control
System Design, Washington, DC.

Elmqvist, H., Astrom, K. J., Schonthal, T., and Wittenmark, B. (1990). SIMNON —User’s Guide
for MS-DOS Computers, SSPA Systems, Gothenburg, Sweden.

Elmgqvist, H., Cellier, F. E., and Otter, M. (1993). Object-oriented modeling of hybrid systems, in:
Proceedzngs ESS °93, European Simulation Symposium, Delft, Netherlands, A. Verbraeck and
E. J. H. Kerckhoffs, eds., October 25-28, SCS Publ., La Jolla, CA. pp. xxxi-xli.

450 Cellier and Rimvall

Evans, D. C. (1985). The art of visual simulation, keynote address, Proceedings of the Winter
Simulation Conference (WSC °85), San Francisco, Evans & Sutherland Computer Corp., IEEE
Publishing, Piscataway, NJ.

Fleming, P. J. (1979). A CAD program for suboptimal linear regulators. in: Proceedings of the
IFAC Symposium on Computer-Aided Design of Control Systems, Ziirich, Switzerland, August
29-31, 1979, M. A. Cuénod, ed., Pergamon Press, Oxford, pp. 259-266.

Frederick, D. K. (1985). Software summaries, in: Computer-Aided Control Systems Engineering,
M. Jamshidi and C. J. Herget, eds., North Holland, Amsterdam, pp. 349-384.

Gavel, D. T,, and Herget, C. J. (1984). The M language—an interactive tool for manipulating
matrices and matrix ordinary differential equations, International Report, Dynamics and Controls
Group, Lawrence Livermore National Laboratory, University of California, Livermore, CA.

Golub, G. H., and Wilkinsen, J. H. (1976). Ili-conditioned eigensystems and the computation of
the Jordan canonical form, SIAM Rev., 18(4), 578—619.

Gorez, R. (1986a). The ICARE project—an interactive computing aid for research and engineering,
personal communication, Laboratoire d’Automatique, de Dynamique et d’Analyse des
Systémes, Université Catholique de Louvain,- Bitiment Maxwell, Louvain-la-Neuve,
Belgium. ‘

Gorez, R. (1986b). PAAS—programme d’aide 2 I’analyse des systémes. Personal Communication,
Laboratoire d’ Automatique, de Dynamique et d’Analyse des Systémes, Université Catholique
de Louvain, Bétiment Maxwell, Louvain-la-Neuve, Belgium.

Gray, J. O. (1986). SANCAD and SATRES, personal communication, Dept. of Electronic and
Electrical Engineering, University of Salford, Salford, United Kingdom.

Gupta, N. K., Groshans, D., and Houtchens, S. P. (1993). MATRIX, in: CAD for Control Systems,
D. A. Linkens, ed., Marcel Dekker, New York, pp. 395-421.

Hanselman, D. C,, and Kuo, B. C. (1995). MATLAB Tools for Control System Analysis and Design,
2nd Edition, Prentice Hall, Englewood Cliffs, NJ.

IBM (1984). Dynamic Simulation Language/VS (DSL/VS). Language Reference Manual, Program
Number 5798:PXJ, Form SH20-6288-0, IBM Corp., Cottle Road, San Jose, CA.

Integrated Systems, Inc. (1984). Matrix, User’s Guide, Matrix, Reference Guide, Matrix, Training
Guide, Command Summary, and On-line Help, Integrated Systems, Inc., Palo Aito, CA.

Integrated Systems, Inc. (1987). SystemBuild User’s Guide, Santa Clara, CA.

Jamshidi, M., and Herget, C. J., (1993). Recent Advances in Computer-Aided Control Systems
Engineering, Elsevier, Amsterdam.

Jamshidi, M. Tarokh, M., and Shafai, B. (1992). Computer-Aided Analysis and Design of Linear
Control Systems, Prentice-Hall, Englewood Cliffs, NIJ.

Jamshidi, M., Marchbanks, R., Bisset, K., Kelsey, R., Baugh, S., and Barak, D. (1993). Computer-
aided design of fuzzy control systems: Software and hardware implementations, in: Recent
Advances in Computer-Aided Control Systems Engineering, M. Jamshidi and C. J. Herget, eds.,
Elsevier, Amsterdam, pp. 81-126.

Kailath, T. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs, NJ.

Kandel, A., and Langholz, G. (1994). Fuzzy Control Systems, CRC Press, Boca Raton, FL.

Karakasoglu, A. (1991). Neural network-based approaches to controller design for robot manipu-
lators, Ph.D. Dissertation, University of Arizona, Tucson, AZ.

Klir, G. 1. (1985). Architecture of Systems Problem Solving, Plenum Press, New York.

Koga, M., and Furuta, K. (1993). Programming language MaTX for scientific and engineering
computations, in: CAD for Control Systems, D. A. Linkens, ed., Marcel Dekker, New York,
pp- 287-317.

Ko, G. A. (1985). A new interactive environment for computer-aided experiments, Simulation,
45(6), 303—305. ' .

Korn, G. A. (1987). Control-systemn simulation on small personal-computer workstations, Int. J.
Modeling Simulation, 8(4).

Ko, G. A. (1989). Interactive Dynamic-System Simulation, McGraw-Hill, New York.

Computer-Aided Control System Design 451

Korn, G. A., and Wait, J. V. (1978). Digital Continuous System Simulation, Prentice-Hall, Engle-
wood Cliffs, NJ.

Laub, A. (1980). Computation of balancing transformatlons, Proc. JACC, 1, Paper FAS-E.

Lawver, B. (1985). EAGLES, an interactive environment and program development tool, personal
communication, Dynamics and Controls Group, Lawrence Livermore National Laboratory, Uni-
versity of California, Livermore, CA.

Linkens, D. A. (1993). CAD for Control Systems, Marcel Dekker, New York.

Little, J. N. (1985). PC-MATLAB, User’s Guide, Reference Guide, and On-Line HELP, BROWSE,
and Demonstrations. MathWorks, Inc., Sherborn, MA. -

Little, J. N., Emami-Naemi, A., and Bangert, S. N. (1984). CTRL-C and matrix environments for
the computer-aided design of control systems, in: Proceedings of the 6th International Con-
ference on Analysis and Optimization (INRIA), Nice, France, Lecture Notes in Control and
Information Sciences, Vol. 63(2), Springer-Verlag, New York, pp. 191-205.

Little, J. N., Herskovitz, S., Laub, A. I., and Moler, C. B. (1986). MATLAB and control design
on the MaclIntosh, in: Proceedings of the 3rd Symposium on Computer-Aided Control Systems
Design, Washington, DC.

Maciejowski, J. M. (1984). Data structures for control system design, in: Proceedings of the 6th
European Conference of Electrotechnics, Computers in Communication and Control (EURO-
CON ’84), Brighton, UK, Peter Percgrinus Ltd., London.

Maciejowski, J. M., and Szymkat, M. (1994). Containers—a step towards objects with MATLAB,
in: Proceedings of CACSD 94, Joint IEEE/IFAC Symposium on Computer-Aided Control Sys-
tem Design, S. E. Mattsson, J. O. Gray, and F. E, Cellier, eds., Tacson, AZ, March 7-9, IEEE,
Piscataway, NJ, pp. 277-285.

Maciejowski, J. M., and Taylor, J. H. (1994). A report on the 1993 IFAC World Congress Standards
and Guidelines Session, in: Proceedings of CACSD °94, Joint IEEE/IFAC Symposium on
Computer-Aided Control System Design, S. E. Mattsson, J. O. Gray, and F. E. Cellier, eds.,
Tucson, AZ, March 7-9, IEEE, Piscataway, NI, pp. 377-380.

MathWorks, Inc. (1991). SIMULINK User’s Guide, South Natick, MA.

MathWorks, Inc. (1992). The Student Edition of MATLAB for MS-DOS or Macintosh Computers,
Prentice-Hall, Englewood Cliffs, NIJ.

Mattsson, S. E., Andersson, M., and Astrom, K. J. (1993). Object-oriented modeling and simula-
tion, in: CAD for Control Systems, D. A. Linkens, ed., Marcel Dekker, New York, pp. 31-69,

Mattsson, S. E., Gray, J. O., and Cellier, F. E. (1994). Proceedings of CACSD *94, Joint IEEE/
IFAC Symposium on Computer-Aided Control System Design, Tucson, AZ, IEEE, Piscataway,
NJ. :

Mitchell, E. E. L., and Gauthier, J. S. (1991). ACSL: Advanced Continuous Simulation Language—
User/Guide Reference Manual, Mitchell & Gauthier, Assoc., Concord, MA.

Moler, C. (1980). MATLAB User’s Guide, Dept. of Computer Science, University of New Mexico,
Albuquerque, NM.

Monopoli, R. V. (1974). Mode} reference adaptive control with an augmented error signal, JEEE
Trans. Automatic Control, AC-19, 474—484.

Mugica, F., and Cellier, F. E. (1994). Automated synthesis of a fuzzy controller for cargo ship
steering by means of qualitative simulation, Proceedings SCS European Simulation Mulsi-
Conference, Barcelona, Spain, A. Guasch and R. Huber, eds., SCS Publ., La Jolla, CA, pp.
523-528.

Munro, N., Palaskas, Z., and Frederick, D. K. (1986). An adaptive CACSD dialogue facility, in
Proceedings of the 3rd Symposzum on Computer-Aided Control System Design, Washmgton
D.C

Narendra, K. S. (1980) Recent developments in adapiive control, in: Methods and Applications
in Adaptive Control, H. Unbehauen, ed., Springer-Verlag, New York. ‘

Narendra, XK. S., and Parthasarathy, K. (1990). Identification and control of dynamical systems
using neural networks, JEEE Trans. Neural Networks, 1(1), 4-27.

452 : Cellier and Rimvall

Norsworthy, R., Kohn, W., and Arellano, 3. (1985). A symbolic package for analysis and design of
digital controllers, Honeywell, Inc., and NASA Johnson Space Center, private communication,

Ogata, K., (1994a). Designing Linear Control Systems with MATLAB, Prentice-Hall, Englewood
Cliffs, NJ.

Ogata, K. (1994b). Solving Control Engineering Problems with MATLAB, Prentice Hall, Englewood
Cliffs, NIJ. '

Otter, M. (1992). DSblock: A neutral description of dynamic systems, OPEN-CACSD FElectronic

. Newsletter, 1(3), February 28.

Otter, M. (1995). Dymosim—Dynamic Model Simulator, Dynasim AB, Lund, Sweden.

Patel, R. V., and Misra, P. (1984). Numerical algorithms for eigenvalue assignment by state feed-
back, Proc. IEEE, 72(12), 1755-1764.

Pedrycz, W. (1989). Fuzzy Control and Fuzzy Systems John Wiley & Sons, New York.

Rand Corp. (1985). REDUCE User’s Manual. Santa Monica, CA.

Rimvall, M. (1983). IMPACT, Interactive Mathematical Program for Automatic Control Theory,
User’s Guide, Dept. of Automatic Control, Swiss Federal Institute of Technology, ETH-
Zentrum, Ziirich, Switzerland.

Rimvall, M., and Bomholt, L. (1985). A flexible man-machine interface for CACSD applications,
in: Proceedings of the 3rd IFAC Symposium on Computer-Aided Design in Control and En-
gineering Systems (CADCE ’85). Copenhagen, July 31 to August 2, 1985, P. M. Larsen and
N. E. Hansen, eds., Pergamon Press, Oxford, pp. 98—-103.

Rimvall, M., and Cellier; F. E. (1985).-The matrix environment as enhancement to modeling and
simulation, in: Proceedings of the 11th IMACS World Conference, Oslo, August 5-9, 1985,
North Holland, Amsterdam.

Rimvall, M., Frederick, D. K., Herget, C., and Kook, R. (1985). ELCS—Extended List of Control
Software, Newsletter, Dept. of Automatic Control, ETH-Zentrum, Ziirich, Switzerland.

Rosenbrock, H. H. (1969). Design of multivariable control systems using the inverse Nyquist array,
Proc. IEE, 116, 1929-1936.

Sawyer, W. (1986). Polynomial operations with a trajectory representation, term project, M. Rim-
vall, advisor, Dept. of Automatic Control, ETH-Zentrum, Ziirich, Switzerland.

Schmid, C. (1979). KEDDC, User’s Manual and Programmer’s Manual, Lehrstuhl fiir Elektrische
Steuerung und Regelung, Ruhr University Bochum, Germany.

Schmid, C. (1985). KEDDC—a comniputer-aided analysis and design package for control systems,
in: Computer-Aided Control Systems Engineering, M. Jamshidi and C. J. Herget, eds., North
Holland, Amsterdam, pp. 159-180.

Shah, S., Shah, S. C., Floyd, M. A., and Lehman, L. L. (1985). Matrix,: Control design and model
building CAE capability, in: Computer-Aided Control Systems Engineering, M. Jamshidi, and
C. J. Herget, eds., North Holland, Amsterdam, pp. 181—207.

Siljak, D. D., and Sundareshan, M. K. (1976). A multilevel optimization of large-scale dynamic
systems, IEEE Trans. Automatic Control, AC-21, 70—84.

Spang, H. A., III (1984). The federated computer-aided control design system, Proc. IEEE, 72(12),
1724-1731.

Strandridge, C. R., and Pritsker, A. A. B. (1987). TESS—The Extended Simulation Support System,
Halsted Press, John Wiley and Sons, New York.

Symbolics, Inc. (1983). MACSYMA Reference Manual, Version 10, MIT and Symbolics, Inc.,
Cambridge, MA.

Systems Control Technology (1984). CIRL-C, a Language for the Compuier-Aided Design of
Multivariable Control Systems, User’s Guide, Systems Control Technology, Palo Alto, CA.

Systems Control Technology, Inc. (1990). Model-C User’s Guide, Palo Alto, CA.

Systems Modeling Corp. (1985). CINEMA User’s Guide, Systems Modeling Corp., State College,
PA. :

Taylor, J. H., and Frederick, D. K. (1984). An expert system architecture for computer-aided control
engineering, Proc. IEEE, 72(12), 1795—-1805.

Computer-Aided Control System Design 453

Technical Software Systems (1985). SSPACK User’s Manual Including Sample Problems, Tech-
nical Software Systems, Livermore, CA.

Thompson, P. M. (1986). Program CC, Version 3, personal communication, Systems Technology,
Inc., Hawthorme, CA.

Tsao, L.-P. (1986). Interactive Nonlinear Programming, MS thesis, University of Arizona, Tucson,
AZ.

Uyttenhove, H. J. (1979). SAPS—System Approach Problem Solver, Computing and Systems Con-
sultants, Inc., Binghampton, NY. '

Vanbegin, M., and Van Dooren, P. (1985). MATLAB-SC, Appendix B: Numerical Subroutines for
Systems and Control Problems, Technical Note N168, Philips Research Laboratories, Bos-
voorde, Belgium.

Van den Bosch, P. P. J. (1985). Interactive computer-aided control system analysis and design, in
Computer-Aided Control System Engineering, M. Jamshidi and C. J. Herget, eds., North Hol-
land, Amsterdam, pp. 229-242.

West, P. J., Bingulac, S. P, and Perkins, W. R. (1985). L-A-S: A computer-aided control system
design language in: Computer-Aided Control Systems Engineering, M. Jamshidi and C. J. Her-
get, eds., North Holland, Amsterdam, pp. 243-261.

Wieslander, J. (1980a). IDPAC Commands—User’s Guide, Report: CODEN: LUTFD2/(TFRT-
3157), Dept of Automatic Control, Lund Institute of Technology, Lund, Sweden.

Wieslander, J. (1980b). MODPAC Commands— User’s Guide, Report: CODEN: LUTFD2(TFRT-
3158), Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden.

Wieslander, J. and Elmgvist, H. (1978). INTRAC, A Communication Module for Interactive Pro-
grams, Language Manual, Report: CODEN: LUTFD2/(TFRT-3149), Dept. of Automatic Con-
trol, Lund Institute of Technology, Lund, Sweden.

Wolovich, W. A. (1974). Linear Multivariable Systems, Springer-Verlag, New York.

Wonham, W. M. (1974). Linear Multivariable Systems: A Geometric Approach, Springer-Verlag,
New York.

