1.7.2 Software for Modeling and Simulating
Control Systems

Martin Otter
Institute for Robotics and System Dynamics, German Aerospace Research Establishment Oberpfaffenhofen (DLR),
Postfach 1116, D-82230 Wessling, Germany, e-mail: Martin.Otter@DLR.de

Francois E. Cellier
Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, U.S.A.,

e-mail: Cellier@ece.arizona.edu

1 Introduction

Software for the simulation of continuous—time systems was first standardized in 1967 [Au-
gustin et al., 1967]. The standard committee consisted largely of control engineers. Thus,
one would expect that today’s simulation languages for continuous system simulation should
be particularly well suited for modeling and simulating control systems. This article shall
answer the question of whether this expectation holds true or not.

There has always been a strong link between the control and simulation communities.
On the one hand, simulation is an extremely important tool for all and every control engineer
who is doing practical control system design in industry. For arbitrarily nonlinear plants,
there is often no alternative to designing controllers by means of trial and error, using
computer simulation. Thus, there is hardly any control engineer who wouldn’t be using
simulation at least occasionally. On the other hand, although simulation can be (and has
been) applied to virtually all fields of science and engineering (and some others as well),
control engineers have always been among the most cherished of its customers — after all,
they have paid the butter on the bread of many a simulation software designer for years.
Moreover, a good number of today’s simulation researchers received their graduate education
in control engineering.

There exist on the market many highly successful special-purpose simulation software
tools, e.g. for the simulation of electronic circuitry, or for the simulation of multibody
system dynamics, and there is (or at least used to be) a good reason for that. However,
there is no market to speak of for special-purpose control system simulators, in spite of the
fact that control is such an important application of simulation. The reason for this seeming
discrepancy is that control systems contain not only a controller, but also a plant, which
can be basically anything. Thus, a simulation tool that is able to simulate control systems
must basically be able to simulate pretty much anything.

Hence a substantial portion of this article shall be devoted to a discussion of general—
purpose simulation software. Yet, control systems do call for a number of special features
in a simulation tool, and these features shall be pointed out explicitly.

This article is structured in three parts. In a first section, the special demands of control
systems to a general-purpose simulation tool are outlined. In a second part, the article
classifies the existing modeling and simulation tools and mention a few of them explicitly.

The article ends with a critical discussion of some of the shortcomings of the currently
available simulation tools for modeling and simulating control systems.

This article is written with several different customer populations in mind. It should
be useful reading for the average practical control engineer who needs to decide which
simulation tool to acquire and, maybe even more importantly, what questions to ask when
talking to a simulation vendor. It should, however, also be useful for simulation software
vendors who wish to upgrade their tools to better satisfy the needs of an important subset of
their customer base, namely the control engineers. It should finally appeal to the simulation
research community by presenting a state—of-the—art picture of what has been accomplished
in control system simulation so far, and where some of the still unresolved issues are that
might be meaningful to address in the future.

2 Special Demands of Control Engineers to a
Simulation Tool

This section shall discuss special requirements of control engineers as far as simulation tools
are concerned.

2.1 Block Diagram Editors

Block diagrams are the most prevalent modeling tool of the control engineer. Figure 1 shows
a typical block diagram of a control loop around a single—input single—output (SISO) plant.
Evidently, control engineers would like to describe their systems in the simulation model in

r e f u

—()—— Controller Actuator — Plant y

A J
v

A

Sensor

Figure 1: Typical control loop around a SISO plant.

exactly the same fashion. After all, a “model” is simply an encoded form of the knowledge
available about the system under study.

Why are block diagrams so essential to control engineers? Most control systems of
interest are man—made. Thus, the control engineer has a say on how the signals inside the
control system influence each other. In particular, control engineers have learned to design
their control systems such that the behavior of each block is, for all practical purposes,
independent of the block(s) that it feeds. This can be accomplished by placing voltage
follower circuits in between neighboring blocks, as shown in Fig. 2.

In the block diagram, these voltage follower circuits are never actually shown. They are
simply assumed to be present at all times. Control engineers do this because it simplifies the
control system analysis, and thereby indirectly also the control system design. Furthermore,

U | Consumer
u Block

Generator
Block

Figure 2: Voltage follower circuit for decoupling neighboring blocks.

it is exactly the same mechanism that helps with decoupling the reaction of the control
system to different control inputs. If you depress the gas pedal of your car, you want your
car to speed up, and not make a left turn at the same time.

Evidently, it is possible to use block diagrams also to describe any other type of system,
such as the simple electrical circuit shown in Fig. 3. However, this is an abuse of the concept

R R 1 1
1 2 ?1 Cs Uc
¥ u
. J @ L.

1 i

C L Ls L
'R, |
L2]

Figure 3: Electrical circuit described as block diagram.

of a block diagram. Signals, such as the electrical potential on and the current through a
wire, that physically belong together and are inseparable from each other, get separated in
the block diagram into two totally independent signals. Thereby, the block diagram loses
all of its topological significance.

The article entitled “Block Diagrams” by Frederick and Close in this handbook discusses
explicitly the use of block diagrams in control engineering. Because control engineers are so
important to them, most simulation software vendors offer today a block—diagram editor as
the graphical modeling tool. Unfortunately, block—diagram editors are not a panacea for all
graphical modeling needs. Block—diagram editors are certainly not the right tool to describe
e.g. electrical circuits or multibody systems.

2.2 Hierarchical Modeling

Control systems are frequently built like an onion. One control loop encompasses another.
For example, it is quite common that a local nonlinear control loop is built around a non-
linear robot arm with the purpose of linearizing the behavior of the robot arm, such that,
from the outside, the arm with its local controller looks like a linear system. This system
then becomes a block in another control system at a hierarchically higher level. The purpose
of that control layer may be to decouple the control inputs from each other, such that each
control input drives precisely one link (the physical configuration may be different). This
control system then turns into a series of blocks in a yet higher—level control configuration,
in which each individual control input is controlled for performance.

Evidently, control engineers would like their block—diagram editors to behave in exactly
the same fashion. One entire block diagram may become a single block at the next higher
level. Most of the block—diagram editors currently on the market offer such a hierarchical
decomposition facility.

2.3 Plant Modeling

One part of the control system to be simulated is the plant to be controlled. As was
mentioned earlier, this plant can represent anything that is controllable. It can be a thermal
power plant, or an aircraft, or an aquarium for tropical fish. In order to test his or her
controller design, the control engineer should be able to simulate the plant with the control
system around it.

As was mentioned before, block diagrams are hardly the right tool to model a physical
plant. In the article entitled “Modeling from Physical Principles” by Cellier et al. in this
handbook, the problem of modeling physical systems is discussed in greater detail.

However, it should still be mentioned that also the controllers, after having been desi-
gned in an abstract fashion, need to be implemented using physical components. Although
the control engineer can choose these components, they may still have some non—ideal cha-
racteristics, the effect of which ought to be analyzed before the system is actually built.
In this case, even the controller blocks become physical systems, and the same restrictions
that were previously mentioned with respect to the physical plant to be controlled apply to
them as well.

In summary, block diagrams are only useful to describe the higher levels of the control
system architecture, but are rarely a good choice for describing the physical layer at the
bottom of the hierarchy.

2.4 Coupling Models From Different Sources

Control systems are often interdisciplinary. A car manufacturer may want his control en-
gineers to simulate the behavior of the engine before the new model is ever built. However,
the engine contains the fuel delivery system, the electrical spark plugs, fans that blow air
after being driven by some belts that are hooked to the mechanical subsystem, the thermal
comportment of the engine, and vibrations produced by the interaction between the various
components, to mention just a few of its facets.

Simulation is, in practice, mostly done to save money. If it takes more time to build a
simulation model than to build the real system, simulation will hardly be a viable option,
because time is money.

Car manufacturers don’t build their entire product from scratch anymore. If you open
the hood of your American—built car, you may encounter a Japanese engine, a German
transmission, and a French fuel-injection system. Car manufacturers buy many of the com-
ponents of their cars from other sources. More and more often, car manufacturers request
that these components be delivered together with simulation models capturing their beha-
vior, because it cannot be expected of the control engineers working for the car manufacturer

that they first start modeling each of the second—source components separately. They would
never have their simulation models ready by the time the new car model needs to be built.
What cannot, however, be expected is that all these simulation models are delivered enco-
ded in the same simulation language. The transmission may have been modeled in Adams,
the electrical system in Spice, the fuel injection system in ACSL, etc.

The control engineers are at the top of the hierarchy. It is their job to ensure that all the
components work properly together. Hence it is important that a control engineer can bond
together models encoded in different modeling languages in a single simulation environment.
This is a very tough problem.

2.5 Linearization

One way that control engineers deal with control systems is to linearize the plant to be
controlled or at least a part thereof. This then enables them to perform the controller
design in a simplified fashion, since there exist analytical controller design strategies for
linear systems, whereas the nonlinear control system design would have to be done by trial
and error.

Control engineers want the linearization of the original model to be done in an automated
fashion. Moreover, this has to happen inside the modeling environment, since the original
nonlinear model needs to be interpreted in this process.

This feature is very important for control engineers. They want to be able to compare
the behavior of the linearized model with that of the original nonlinear model before they go
about designing the controller. Then, after the controller has been synthesized, they would
like to simulate the control behavior of the controller when applied to the original nonlinear
plant. Finally, they may want to use the linear control system design only as a first step
on the way to determining an appropriate controller for the original nonlinear plant. The
so synthesized controller can be interpreted as an approximation of the ultimately used
controller. It has the right structure, but the previously found parameter values are only
approximations of the final parameter values. The parameters are then fine-tuned using
the nonlinear plant model together with some parameter optimization algorithm.

Some of the currently available simulation environments, such as ACSL and SIMULINK,
offer a limited model linearization capability. A linear model of the type:

x=A-x+B-u (1)

is obtained from the original nonlinear model:

k= fx,u,1) @)
by approximating the two Jacobians:
of of
A=— ; B=—
ox du 3)

through numerical differences. The facility is limited in three ways: (i) There is no control
over the quality of the numerical difference approximation, and thereby over the lineariza-
tion. The problem can be arbitrarily poorly conditioned. A symbolic differentiation of the

model to generate the Jacobians may be more suitable and is entirely feasible. (ii) The
approximation is necessarily local, i.e., limited to an operating point < xg,u¢ >. If, during
simulation, the solution starts to deviate a lot from this operating point, the approximation
may be meaningless. (iii) The approximation makes the assumption that the state variables
must be preserved. This assumption may be too strong. If a subsystem is represented by
the state-space model:

x = f(x,u,t)
y = g(Xvuvt) (4)

all one may wish to preserve is the input-output behavior, but this behavior should be
preserved over an entire trajectory or even set of trajectories. This can often be accomplished
by a model of the type:

z = A-z+B-u (5)
y = C-z+D-u (6)

if only the length of the linear state vector z is chosen sufficiently larger than that of the
original state vector x [Ljung, 1987].

2.6 Parameter Identification

Contrary to the plant parameters that can be determined (at least in an approximate fas-
hion) from physical considerations, controller parameters are technological parameters that
can be freely chosen by the designer. Hence a tool is needed to determine optimal controller
parameter values in the sense of minimizing (or maximizing) a performance index.

Although some simulation environments offer special tools for parameter identification,
they all proceed in a purely numerical fashion. The authors of this article are convinced
that much can be done to improve both the convergence speed and the convergence range
of the optimization by proceeding in a mixed symbolic and numerical fashion.

Let p be the vector of unknown parameters, and Pl the performance index to be optimi-
zed. It is fairly straightforward to augment the model at compile time by a sensitivity model
that computes the sensitivity vector P /0p. If there are k parameters and n equations in
the original model, the augmented model will have n(k + 1) equations.

The control engineer can then look at the magnitude of the sensitivity parameters as a
function of time, and pick a subset of those (those with large magnitudes) for optimization.
Let us assume the reduced set of parameters pr is of length kr < k. Optimizing PI(pr)
implies making dPI/dpr = 0. The latter problem can be solved by Newton iteration:

0*PlI, 0PI,
opr? B e)
pr,., = pr;+4é (8)

Each iteration implies solving the augmented set of the original equations and the equations
partially differentiated with respect to design parameters. Even equations for the Hessian
matrix (the second partial derivative) can be generated symbolically at compile time, if code
is generated simultaneously that prevents these additional equations from being executed
during each function evaluation.

2.7 Frequency Domain

Control engineers like to switch back and forth between the time domain and the frequency
domain when they are dealing with linear (or linearized) systems.

Most simulation systems offer the capability to enter blocks as transfer functions. The
polynomial coefficients are used in a set of differential equations (using the controller—
canonical form), thereby converting the transfer function back into the time domain.

Although this feature is useful, it doesn’t provide the control engineer with true frequency
analysis capabilities. Control engineers like to be able to find the bandwidth of a plant, or
determine the loop gain of a feedback loop. Such operations are much more naturally
performed in the frequency domain, and it seems therefore useful to have a tool that would
transform a linear (or linearized) model into the frequency domain, together with frequency
domain analysis tools operating on the so transformed model.

2.8 Real-Time Applications

Control systems are often not fully automated, but represent a collaborative effort of human
and automatic control. Complex systems (such as an aircraft or a power—generation system)
cannot be controlled by human operators alone, because of the time-critical nature of the
decisions that must be reached. Humans are not fast and not systematic enough for this
purpose. Yet, safety considerations usually mandate at least some human override capability,
and often, humans are in charge of the higher echelons of the control architecture, i.e., they
are in control of those tasks that require more intelligence and insight, yet are less time—
critical.

Simulation of such complex control systems should allow human operators to drive the
simulation in just the same manner as they would drive the real system. This is useful
for both system debugging as well as operator training. However, since humans cannot be
time-scaled, it is then important to perform the entire simulation in real time.

Another real-time aspect of simulation is the need to download controller designs into
the digital controllers that are used to control the actual plant once the design has been
completed. It does not make sense to ask the control engineer to reimplement the final
design manually in the actual controller, since this invariably leads to new bugs in the
code. It is much better if the modeling environment offers a fully automated real-time code
generation facility, generating real-time code in either C, Fortran, or Ada.

Finally, some simulators contain hardware in the loop. For example, flight simulators
for pilot training are elaborate electro-mechanical devices by themselves. It is the purpose
of these simulators to make the hardware components behave as closely as possible to those
that would be encountered in the real system. This entails simulated scenery, simulated
force feedback, possibly simulated vibrations, etc. Evidently, also these simulations need to
be performed in real time.

3 Overview of Modeling and Simulation Software

There currently exist hundreds of different simulation systems on the market. They come
in all shades and prices, specialized for different application areas, for different computing
platforms, and embracing different modeling paradigms. Many of them are simply compe-
titors of each other. It does not serve too much purpose to try to survey all of them. A list
of current products and vendors is published in [Rodrigues, 1994].

Is such a multitude of products justified? Why are there many more simulation languages
around than general-purpose programing languages? The answer is easy. The general—-
purpose programing market is much more competitive. Since millions of Fortran and C
compilers are sold, these compilers are comparatively cheap. It is almost impossible for a
newcomer to penetrate this market, because he or she would have to work under cost for
too long a period to ever make it. Simulation software is sold in hundreds or thousands of
copies, not millions. Thus, the software is comparatively more expensive, and individuals,
who sell ten copies may already make a modest profit. Yet, the bewildering diversification
on the simulation software market is certainly not overly productive.

Rather than trying to be exhaustive, the authors decided to concentrate here on a few of
the more widely used products, a discussion that, in addition, shall help explain the different
philosophies embraced by these software tools. This serves the purpose of consolidating the
classification of modeling and simulation paradigms that had already been attempted in the
previous section of this article. A more elaborate discussion of modeling and simulation
software in general (not focused on the modeling and simulation of control systems) can be

found in [Cellier, 1993].

3.1 Block Diagram Simulators

The natural description form of the higher echelons of a control architecture is block dia-
grams, i.e., a graphical representation of a system via input—output blocks (cf. also the
article entitled “Block Diagrams” by Frederick and Close in this handbook). As already
mentioned, most of the major simulation software producers offer a block—diagram editor
as a graphical front end to their simulation engines.

Three of the most important packages of this type currently on the market are briefly
discussed. All of them allow the simulation of continuous—time (differential equation) and
discrete-time (difference equation) blocks and mixtures thereof. This is of particular im-
portance to control engineers, since it allows them to model and simulate sampled—data
control systems. Some of the tools also support state events, but their numerical treatment
is not always appropriate. Modeling is done graphically, and block diagrams can mostly be
structured in a hierarchical fashion.

e SIMULINK from The MathWorks Inc. [MathWorks, 1992, 1994]:
An easy-to—use point—and—click program. SIMULINK is an extension to MATLAB,
the widely—used program for interactive matrix manipulations and numerical compu-
tations in general. Of the three programs, SIMULINK offers the most intuitive user
interface. MATLAB can be employed as a powerful pre— and postprocessing facility

for simulation, allowing e.g. parameter variation and optimization (although not em-
ploying the more advanced semi—symbolic processing concepts that were discussed in
the previous section of this article) as well as displaying the simulation results in a rich
set of different formats. SIMULINK and MATLAB are available for a broad range
of computing platforms and operating systems (PC/Windows, MacIntosh, Unix/X-
Windows, VAX/VMS). SIMULINK supports the same philosophy that is used within
MATLAB. By default, the equations of a SIMULINK model are preprocessed into
an intermediate format, which is then interpreted. This has the advantage that the
program is highly interactive, and simulations can run almost at once. It has recently
become possible to alternatively compile built—in elements of SIMULINK into C, to be
used in the simulation or in a real-time application. However, user—defined equations
programmed in the powerful MATLAB language (as M—files) are still executed many
times slower due to their being interpreted rather than compiled. SIMULINK enjoys a
lot of popularity, especially in academia, where its highly intuitive and easily learnable
user interface is particularly appreciated.

e SystemBuild from Integrated Systems Inc. [Integrated Systems, 1994]:

Overall, SystemBuild offers more powerful features than SIMULINK. For example, it
offers much better event specification and handling facilities. A separate editor for
defining finite—state machines is available. Models can be described by differential—
algebraic equations (DAEs), and even by overdetermined DAEs. The latter are needed
if e.g. general-purpose multibody system programs shall be used within a block—
diagram editor for the description of complex mechanical mechanisms such as vehicles®.
The price to be paid for this flexibility and generality is a somewhat more involved user
interface that is a little more difficult to master. For several years already, SystemBuild
offers the generation of real-time code in C, Fortran, and Ada. SystemBuild is an
extension to Xmath (formerly MATRIXx, the main MATLAB competitor). Xmath
is very similar to MATLAB, but supports more powerful data structures and a more
intimate connection to X-Windows. This comes at a price, though. Xmath and
SystemBuild are not available for PC/Windows or Macintosh computers. Due to
their flexibility and the more advanced features offered by these tools, these products
have a lot of appeal to industrial customers, whereas academic users may be more
attracted to the ease—of—use and platform—independence offered by SIMULINK.

e EASY-5 from Boeing:

Available since 1981, EASY-5 is one of the oldest block—diagram editors on the market.
It is designed for simulations of very large systems. The tool is somewhat less easy
to use than either SIMULINK or SystemBuild. It uses fully—compiled code from the
beginning. After a block diagram has been built, code is generated for the model as a
whole, compiled to machine code, and linked to the simulation run—time engine. This
has the effect that the compilation of a block diagram into executable run—time code
is rather slow, yet, the generated code executes generally faster than in the case of
most other block diagram programs.

As already mentioned, block—diagram editors have the advantage that they are (usually)
easy to master by even novice or occasional users, and this is the main reason for their

!Multibody programs that can be utilized within SystemBuild include SIMPACK [Rulka, 1990] and
DADS [Smith and Haug, 1990].

great success. On the other hand, nearly all block—diagram editors on the market, including

SIMULINK and SystemBuild, suffer from some severe drawbacks:

First, they don’t offer a “true” component library concept in the sense used by a higher—
level programming language. Especially, the user can store model components in a (so
called) “library” and retrieve the component by “dragging” it from the library to the model
area, with the effect that the component is being copied. Consequently, every change in the
library requires to manually repeat the copying process, which is error prone and tedious?.

Second, it is often the case that differential equations have to be incorporated directly
in textual form, because the direct usage of block—diagram components becomes tedious. In
SIMULINK and SystemBuild, the only reasonable choice is to program such parts directly
in C or Fortran, i.e., by using a modeling technique from the 60s. In this respect, the
general-purpose simulation languages, to be discussed in the next section of this article,
offer much better support, because differential equations can be specified directly, using
user—defined variable names rather than indices into an array. Furthermore, the equations
can be provided in an arbitrary order, since the modeling compiler will sort them prior to
generating code.

3.2 General-Purpose Simulation Languages

Block—diagram simulators became fashionable only after the recent proliferation of graphics
workstations. Before that time, most general-purpose modeling and simulation was done
using simulation languages that provided textual user interfaces similar to those offered
by general-purpose programming languages. Due to the success of the aforementioned
graphical simulation programs, most of these programs have meanwhile been enhanced by
graphical front ends as well. However, the text—oriented origin of these programs often
remains clearly visible through the new interface.

e ACSL from Mitchell & Gauthier Assoc. [Mitchell and Gauthier, 1991]:

Available since 1975, ACSL has long been the unchallenged leader in the market
of simulation languages. This situation changed in recent years due to the success
of SIMULINK and SystemBuild. ACSL is a language based on the CSSL—standard
[Augustin at al., 1967]. An ACSL program is preprocessed to Fortran for platform in-
dependence. The resulting Fortran program is then compiled further to machine code.
As a consequence, ACSL simulations always run efficiently, which is in contrast to the
simulation code generated by most block—diagram simulators. User—defined Fortran,
C, and Ada functions can be called from an ACSL model. ACSL can handle ODEs and
DAEs, but no overdetermined DAEs. For a long time already, ACSL has supported
state—event handling in a numerically reliable way (by means of the schedule state-
ment), such that discontinuous elements can be handled. Recently, ACSL has been
enhanced by a block—diagram front end, a post—processing package for visualization
and animation, and a MATLAB-like numerical computation engine.

A block in ACSLs block-diagram modeler can take any shape and the input/output
points can be placed everywhere, contrarily e.g. to the much more restricted graphical

’In a higher-level programming language, a change in a library function just requires to repeat the
linking process.

10

appearance of SIMULINK models. Consequently, with ACSL it is easier to get a
closer correspondence between reality and its graphical image. Unfortunately, ACSL
is not (yet) truly modular. All variables stored in a block have global scope. This
means that one has to be careful not to use the same variable name in different
blocks. Furthermore, it is not possible to define a block once, and to use several
copies of this block. As a result, it is not convenient to build up user-defined block
libraries. ACSL is running on a wide variety of computing platforms ranging from PCs
to supercomputers. Due to the 20 years of experience, ACSL is fairly robust, contains
comparatively decent integration algorithms, and many small details that may help
the simulation specialist in problematic situations. Although the ACSL vendors have
lost a large percentage of their academic users to SIMULINK, ACSL is still fairly
popular in industry.

Simnon from SSPA Systems [Elmqvist, 1975; Elmqvist et al., 1990]:

Simnon was the first direct—executing fully—digital simulation system on the market.
Designed originally as a university product, Simnon is a fairly small and easily manage-
able software system for the simulation of continuous—time and discrete-time systems.
Simnon offered, from its conception, a mixture between a statement-oriented and a
block—oriented user interface. Meanwhile, a graphical front end has been added as
well. Simnon has been for years a low—cost alternative to ACSL, and enjoyed wide—
spread acceptance especially in academia. Due to its orientation, it suffered more than

ACSL from the SIMULINK competition.

Desire from G.A. & T.M. Korn [Korn, 1989]:

Desire is another direct—executing simulation language, designed to run on small com-
puters at impressively high speed. It contains a built—in microcompiler that generates
machine code for Intel processors directly from the model specification. Since no de-
tour is done through a high-level computer language, as is the case in most other
compiled simulation languages, compilation and linking are nearly instantaneous. It
is a powerful feature of the language that modeling and simulation constructs can be
mixed. It is therefore easy to model and simulate systems with varying structure.
For example, when simulating the ejector seat of an aircraft, several different models
are simulated one after another. This is done by chaining several Desire models in
sequence, that are compiled as needed and then run at once. Desire also offers fairly
sophisticated high—speed matrix manipulation constructs, e.g. optimized for the for-
mulation of neural network models. Desire is used both in academia and industry, and
has found a strong market in real-time simulation of small- to medium-sized systems,
and in digital instrumentation of measurement equipment.

3.3 Object-Oriented Modeling Languages

It had been mentioned earlier that block—diagram languages are hardly the right choice for
modeling physical systems. The reason is that the block—diagram languages as well as their
underlying general-purpose simulation languages are assignment statement oriented, i.e.,

each equation has a natural computational causality associated with it. It is always clear,
what are the inputs of an equation, and which is the output.

Unfortunately, physics doesn’t know anything about computational causality. Simulta-

11

neous events are always acausal. Modeling an electrical resistor, it is not evident ahead of
time, whether an equation of the type:

u=R-i (9)

shall be needed, or one of the form:

i=g (10)

It depends on the environment in which the resistor is embedded.

Consequently, the modeling tool should relax the artificial causality constraint that has
been imposed on the model equations in the past. By doing so, a new class of modeling
tools results. This concept has been coined the object—oriented modeling paradigm, since it
provides the modeling language with a true one—to—one topological correspondence between
the physical objects and their software counterparts inside the model. The details of this
new modeling paradigm are discussed more thoroughly in the article entitled “Modeling
from Physical Principles” in this handbook and shall not be repeated here.

¢ Dymola from Dynasim AB [Elmqvist, 1978, 1995]:

The idea of general object—oriented modeling, and the first modeling language imple-
menting this new concept, Dymola, were created by Elmqvist as part of his Ph.D.
dissertation [Elmqvist, 1978]. Dymola offered already then a full topological descrip-
tion capability for physical systems, and demonstrated the impressive potential of this
new modeling approach by means of an object—oriented model of a quite complex ther-
mal power station. However, the demand for such general-purpose large—scale system
modeling tools had not awakened yet, and neither was the computer technology of
the era ready for this type of tool. Consequently, Dymola remained for many years
a university prototype with fairly limited circulation. The book Continuous System
Modeling [Cellier, 1991], which assigned a prominent role to object-oriented modeling
and Dymola, reignited the interest in this tool, and since the fall of 1992, Dymola
has become a commercial product. Many new features have been added to Dymola
since then such as (even multiple) inheritance, a MATLAB-like matrix capability, a
high—level object—oriented event—handling concept able to correctly deal with multiple
simultaneous events, handling of higher—index differential algebraic equations, to men-
tion only a few. Dymola is a model compiler that symbolically manipulates the model
equations and generates a simulation program in a variety of formats including ACSL,
Simnon, Desire, and SIMULINK (C-SimStruct). It also supports a simulator based on
the DSblock format (to be discussed in the next subsection), called Dymosim. A gra-
phical front end, called Dymodraw, has been developed. It is based on object diagrams
rather than block diagrams. Models (objects) are represented by icons. Connections
between icons are non—directional, representing a physical connection between physi-
cal objects. An electrical circuit diagram is a typical example of an object diagram.
Also available is a simulation animator, called Dymoview, for graphical representation
of motions of two— and three-dimensional mechanical bodies.

e Omola from Lund Institute of Technology [Andersson, 1990, 1992, 1994]:
Omola was created at the same department that had originally produced Dymola. At
the time when Omola was conceptualized, the object—oriented programming paradigm
had entered a phase of wide-spread proliferation, and the researchers in Lund wanted

12

to create a tool that made use of a terminology that would be closer to that cur-
rently employed in object—oriented programming software. Omola is still a university
prototype only. Its emphasis is primarily on language constructs, whereas Dymola’s
emphasis is predominantly on symbolic formula manipulation algorithms. Omola is
designed for flexibility and generality, whereas Dymola is designed for high—speed
compilation of large and complex industrial models into efficient simulation run—time
code. Omola supports only its own simulator, called Omsim. In order to provide a
user—friendly interface, Omola also offers an experimental object—diagram editor. Yet,
Omola’s object—diagram editor is considerably less powerful than Dymola’s.

e VHDL-A a forthcoming IEEE standard [Vachoux and Nolan, 1993; Vachoux, 1995]:
VHDL is an IEEE standard for hardware description languages. It provides a mo-
deling language for describing digital circuitry. VHDL has been quite successful in
the sense that nearly all simulators for logical devices on the market are meanwhile
based on this standard. This allows an easy exchange of models between different
simulators. Even more importantly, libraries for logical devices have been developed
by different companies and are being sold to customers, independently of the simula-
tor in use. The VHDI—standard is presently under revision for an analog extension,
called VHDL-A [Vachoux, 1995], to include analog circuit elements. The main goal
of VHDL-A is to define a product—independent language for mixed-level simulations
of electrical circuits [Vachoux and Nolan, 1993]. Different levels of abstractions and
different physical phenomena shall be describable within a single model. This deve-
lopment could be of interest to control engineers as well, since the VHDL-A definition
is quite general. It includes assignment statement based input/output blocks as well
as object—oriented (physical) model descriptions, and supports differential-algebraic
equations. It may well be that VHDL-A becomes a standard not only for electronic
circuit descriptions, but also for modeling other types of physical systems. In that
case, this emerging development could gain central importance to the control com-
munity as well. However, the VHDIL-A committee is currently focusing too much on
language constructs without considering the implications of their decisions on efficient
run—time code generation. The simulation of analog circuits (and other physical sy-
stems) is much more computation intensive than the simulation of digital circuitry.
Thus, efficient run—time code is of the essence. A standard like VHDL-A would
however solve many problems. First, model exchange between different simulation sy-
stems would become feasible. This is especially important for mixing domain—specific
modeling systems with block—diagram simulators. Second, a new market for model
component libraries would appear, because third—party vendors could develop and sell
such libraries in a product—independent way. From a puristic point of view, VHDL-A
is not truly object—oriented, because some features, such as inheritance, are missing.
However, since VHDL-A contains the most important feature of object—oriented mo-
deling systems, namely support for physical system modeling, it was discussed in this
context.

In order to show the unique benefits of object—oriented modeling for control applications,
as compared to the well-known but limited traditional modeling systems, additional issues
are discussed in more detail in the following subsections.

13

3.3.1 Object Diagrams and Class Inheritance

The concept of object diagrams is meanwhile well understood. The former “blocks” of the
block diagrams are replaced by mnemonically shaped icons. Fach icon represents an object.
An icon can have an arbitrary number of pins (terminals) through which the object that
the icon represents exchanges information with other objects. Objects can be hierarchically
structured, i.e., when the user double—clicks on an icon (“opening” the icon), a new window
may pop up showing another object diagram, the external connections of which correspond
to the terminals of the icon that represents the object diagram. Connections are non—
directional (they represent physical connections rather than information paths), and one
connection can (and frequently does) represent more than one variable.

Figure 4 shows a typical object—diagram as managed by the object—diagram editor of
Dymola. Different object diagrams can use different modeling styles. The three windows

j'-' J_[— [THETTH _-|;[i-| [T M

| loole ==
Ela w N Bl Bl Vs Hap Jon Ean i
Y - [} - 3 . : ||pr_
® |[|B| -)
I Patetio (oSl € [s]] " o] ™
[] | 1 : i @ I

® |
v [== B

Eda Eal ¥iew Hel

mm | P | — |k
Al e — =

1Ll Elg e
B : PPN o T
gis - - e — Bk 3 l
13 o el ML
. : f R
1 | | 5] [FX] ol
T | = |Ir-'L | mea [' I
4 Lol Tlemii =
B o~ [=1 Tacho Aba .
L IFLh

Figure 4: Object—-oriented view of mechatronic model.

to the right of Fig. 4 show an electrical circuit diagram, a multibody system, and a block
diagram (a special case of an object diagram). Another frequently used object—diagram re-
presentation would be a bond graph. Mechatronics systems use components from different
domains, and hence it makes sense to use the modeling mechanism that is most natural to
the individual domain, when modeling the different subsystems. Drive trains are attached
to each joint of the robot (left part of the window Mechanical). A drive train class contains
instances of the model classes Control and Electrical. The three windows in the second co-
lumn from the left show different model libraries. Each model is represented by an icon that
can be picked and dragged into the corresponding object—diagram window for composing
models from components (in some cases hierarchical models by themselves) and their inter-

14

connections. Contrary to the case of block—diagram editors, these are true libraries in the
sense that changes in a library are reflected at once (after compilation) in the models using
this library. This is due to the fact that the libraries contain model classes, i.e., definitions
of generic model structures, rather than the model objects themselves, and dragging an icon
into an object diagram only establishes a link to the desired model class rather than leading
to an object instantiation being made at once.

One important aspect of object—oriented modeling has not been discussed yet. It con-
cerns class inheritance. Resistors, capacitances, and inductors have in common that they
are all one—port elements. They all share the fact that they have two pins, each carrying a
potential and a current, that the voltage drop across the one—port element can be computed
as the difference between its two terminal potentials, and that current in equals current out.

It would be a pity if these common facts would have to be repeated for each model class.
In terms of a Dymola notation, the generic superclass OnePort could be described as:

model class OnePort
cut WireA(Va/i), WireB(Vb/ — i)
local u
u=Va—-Vb

end

Resistors and Capacitors could then incorporate the properties of the superclass OnePort
into their specific definitions through a mechanism of inheritance:

model class Reststor model class Capacitor
inherit OnePort inherit OnePort
parameter R parameter C
u= Rx*1i Cxder(u) =4
end end

The use of class inheritance enhances the robustness of the model, because the same code
is never being manually copied and migrated to different places inside the code. Thereby, if
the superclass is ever modified, the modification gets automatically migrated down into all
individual model classes that inherit the superclass. Otherwise, it could happen that a user
implements the modification as a local patch in one of the model classes only, being totally
unaware of the fact that the same equations are also used inside other model classes.

The 3D—multibody system library supplied with Dymola makes extensive use of class
inheritance in the definition of joints. RevoluteJoint and PrismaticJoint have in common
that they both share the base class OneDofJoint. However, every OneDofJoint inherits the
base class Joint.

3.3.2 Higher Index Models and Feedback Linearization

Higher index models are models with dependent storage elements. The simplest such model
imaginable would be an electrical circuit with two capacitors in parallel or two inductors
in series. Fach capacitor or inductor is an energy storage element. However, the coupled
models containing two parallel capacitors or two inductors in series still contain only one
energy storage element, i.e., the coupled model is of first order only, and not of second order.
Models of systems that contain algebraic equations which explicitly or implicitly relate state

15

variables algebraically to each other, are called higher index models. To be more specific,
the (perturbation) index of the DAE

f (x(t),x(t),w(t),t) = 0 (11)

is the smallest number j such that after j — 1 differentiations of Equation (11), x and w can
be uniquely determined as functions of x and ¢. Note that w are purely algebraic variables,
whereas x are variables that appear differentiated within Equation (11). Currently available
DAE solvers, such as DASSL [Petzold, 1982; Brenan et al., 1989], are not designed to solve
DAEs with an index greater than one without modifications in the code that depend on
the model structure. The reasons for this property are beyond the scope of this article
(cf. [Gear, 1988; Hairer and Wanner, 1991] for details). Rather than modifying the DAE
solvers such that they are able to deal with the higher index problems in a numerical fashion
(which can be done, cf. e.g. [Bujakiewicz, 1994]), it may make sense to preprocess the model
symbolically in such a way that the (perturbation) index of the model is reduced to one. A
very general and fast algorithm for this purpose was developed by [Pantelides, 1988]. This
algorithm constructs all the equations needed to express x and w as functions of x and ¢ by
differentiating the necessary parts of Equation (11) sufficiently often. As a by—product, the
algorithm determines in an automatic way the (structural) index of the DAE. The Pantelides
algorithm has meanwhile been implemented in both Dymola and Omola.

Higher index modeling problems are closely related to inverse models, and in particular
to feedback linearization, an important method for the control of nonlinear systems, cf.
e.g. the article entitled “Feedback Linearization of Nonlinear Systems” by Isidori and Di
Benedetto in this handbook, or [Isidori, 1989; Slotine and Li, 1991]. Inverse models arise
naturally in the following control problem: given a desired plant output, what is the plant
input needed to make the real plant output behave as similarly as possible to the desired
plant output? If only the plant dynamics model could be inverted, i.e., its outputs treated
as inputs and its inputs as outputs, solving the control problem would be trivial. Of course,
this cannot usually be done, because if the plant dynamics model is strictly proper (or in the
nonlinear case: exhibits integral behavior), which is frequently the case, the inverse plant
dynamics model is non—proper (exhibits differential behavior). This problem can be solved
by introducing a reference model with sufficiently many poles, such that the cascade model
of the reference model and the inverse plant dynamics model is at least proper (doesn’t
exhibit differential behavior). This idea is illustrated in Fig. 5.

Cascade Model - Controller

desired attainable

plant plant

output | | Reference| °UPUt | |nverse Plant | Plant y
Model Dynamics

Figure 5: Control through inverse plant dynamics model.
Using the object—oriented modeling methodology, this approach to controller design can

be implemented elegantly. The user would start out with the reference model and the plant
dynamics model. The input of the reference model is then declared as external input, the

16

output of the reference model is connected to the output of the plant dynamics model,
and the input of the plant dynamics model is declared as external output. Object—oriented
modeling systems, such as Dymola, are capable of generating either a DAE or an ODE model
from such a description. However, the original set of equations resulting from connecting
the submodels in such a fashion is invariably of higher index. The Pantelides algorithm is
used to reduce the index down to one, leading to a DAFE formulation containing algebraic
loops but no dependent storage elements.

Inverse dynamic models can also be used for input—output linearization, a special case of
feedback linearization. The main difference to the feedforward compensation discussed above
consists in using the measured state of the system instead of reconstructing this state in a
separate dynamic model. To be more specific, the output equation (13) of the state-space
model

x = f(x)+B(x)-u (12)
y = 8(x) (13)

is differentiated sufficiently often, in order that the input u occurs in the differentiated
output equations. Solving these equations for u allows the construction of a control law,
such that the closed-loop system has purely linear dynamics. For details, cf. the article
entitled “Feedback Linearization on Nonlinear Systems” by Isidori and Di Benedetto in this
handbook. By interpreting Equations (12,13) as a DAE (of the type of Equation (11)), with
w = u and y as known functions of time, it can be noticed that the necessary differentiations
to determine u and x explicitly as functions of x correspond exactly to the differentiations
needed to determine the index of the DAE. In other words, the Pantelides algorithm can
be used to carry out this task, instead of forming the Lie brackets of Equation (13) as is
usually done.

To summarize, inverse models, and in particular input-output linearization compen-
sators, can easily be constructed by object—oriented modeling tools such as Dymola and
Omola. This practical approach was described in [Mugica and Cellier, 1994].

3.3.3 Discontinuity Handling and Events

Discontinuous models play an important role in control engineering. On the one hand,
control engineers often employ discontinuous control actions, e.g. when they use bang—bang
control. However, and possibly even more importantly, the actuators that transform the
control signals to corresponding power signals often contain lots of nasty discontinuities.
Typically, switching power converters may exhibit hundreds if not thousands of switching
events within a single control response [Glaser et al., 1995].

Proper discontinuity handling in simulation has been a difficult issue all along. The pro-
blem is that the numerical integration algorithms in use are incompatible with the notion
of discontinuous functions. Event detection and handling mechanisms to adequately deal
with discontinuous models have been described in [Cellier, 1979]. However, many of the
available modeling and simulation systems in use, such as SIMULINK, Simnon, and Desire,
still don’t offer appropriate event handling mechanisms. This is surprising since disconti-
nuous models are at the heart of a large percentage of engineering problems. Only ACSL,
Dymosim, SystemBuild, and some other systems offer decent event—handling capabilities.

17

Unfortunately, these basic event-handling capabilities are still on such a low level that
it is very difficult for a user to construct a valid model of a discontinuous system even in
the simplest of cases. In order to justify this surprising statement, a control circuit for the
heating of a room, as shown in Fig. 6, is discussed. The heating process is described by a

el w e T a u k y
~ -b ,_‘ | P .

J ‘b - s(Trs + 1)
L, i} a

Figure 6: Simple control circuit with discontinuities.

PT1 element. The controller consists of a 3—point element together with an actuator with
integral behavior, which is combined with the PT1 element in Fig. 6. At a specific time
instant ¢,, the set point w jumps from zero to w,. This system can be described by the

following ACSL model:

program HeatConlrol
initial
constant kp=1, Tp=01,a=1,6=0.05, ws=1, ts=0.5, z10=0, 220=0
integer mode
! initialize input and mode (valid for x10=0, x20=0)
w =0
mode = (

! define time instant when w is jumping
schedule setpoint .at. ts

end
dynamic
derivative
! calculate model signals
e=w—y
u = mode * a
r = integ(u, z10)
y = kpsrealpl(Tp, z, £20)
! define switching of 3-point controller
schedule switch .xz. (e —b) .or. (e+b)
end
discrete setpoint
W= ws
end

discrete switch

if (e .1t. —b) then

mode = —1

elseif (e .gt. b) then
mode = +1

else
mode = 0

endif

end
end

end

18

During numerical integration, only the derivative section is executed. Since variable mode
changes its value only when an event occurs, no discontinuity is present when integrating
this section. An event occurs, when ¢ — b or ¢ + b crosses zero in either direction, or when
the integration reaches time t,. However, the above code will not always work correctly.
Let us analyze some problematic situations:

1. Initialization:

Before the integration starts, the initial, derivative, and discrete sections are evaluated
once in the order of appearance. However, this does not help with the proper initia-
lization of the variable mode. From the block diagram of Fig. 6, it is easy to deduce
that for zero initial conditions (x19 = 0, 290 = 0) of the dynamic elements and zero
input of w, the control error is zero, and therefore, mode has to be initialized with
zero as well. However, when any of the initial conditions are non-zero, it is by no
means obvious, how the variable mode must be initialized. A proper initialization can
be done in the following way:

initial
! initialize mode

e=w—x20

if (e .t. —b) then

mode = —1

elseif (e .gt. b) then
mode = +1

else
mode = 0

endif

end

In other words, the plant dynamics must be analyzed in order to determine the correct
initial value for variable mode. Usually this requires doubling of code of the derivative
and discrete sections. This process becomes more involved as the plant grows in
complexity, or when the plant itself contains discontinuous elements. Furthermore,
it creates a serious barrier for modularization, because the correct initialization of a
local element such as the 3—point controller, requires global analysis of the model.

It should be noted that, even with the above initialization scheme, the simulation will
be incorrect if 99 = b and k, - 219 > x30. This is due to a subtle artifact of the crossing
functions. If x99 = b, mode = 0 and the crossing function e 4 b is identical to zero.
If k- 210 > 220, y 1s growing, and therefore e decreases to a value smaller than —b
shortly after the integration started. Since an event occurs only if a crossing function
crosses zero, no event is scheduled. As a consequence, mode remains zero, although it
should become —1 shortly after the integration starts. The initialization section will
become even more involved if such situations are to be handled correctly.

2. Sitmultaneous events:
What happens if a state event of the 3—point controller and the time event of the set
point occur at the same time instant? In the above example, this situation can easily
be provoked by simulating first with w = 0, determining the exact time instant at
which a state event occurs and then use this time instant as initial value for ¢,.

When two events occur simultaneously, the corresponding discrete sections are execu-
ted in the order of appearance in the code. Obviously, this can lead to a wrong setting

19

of variable mode. Assuming that at the time of the event, w = 0 and e crosses b in the
negative direction, i.e., e = b—e. Due to the discrete section switch, the variable mode
will be set to zero. However, when the integration starts again, w = ws; > 0 and e > b,
i.e., mode should be 1. In other words, mode has the wrong value, independently of
the ordering of the discrete sections! The correct treatment of such a situation requi-
res merging the two discrete sections into one and doubling code from the derivative
section. Again, this results in a serious barrier for modularization.

It should have become clear by now that separating the modeling code into initial, derivative,
and discrete sections, as done in ACSL, Omola, VHDL-A and other systems, is not a good
idea in the presence of state events. For the user it is nearly impossible to manually generate
code that is correct in all circumstances.

In [Elmqvist, et al., 1993], a satisfactory solution to the problems mentioned above is
proposed for object—oriented modeling systems, and the proposed solution has been imple-
mented in Dymola. It is beyond the scope of this article to discuss all the details. In a nut
shell, higher language elements are introduced that allow the selective activation of equati-
ons based on boolean expressions becoming true. These instantancous equations are treated
in the same way as continuous equations. In particular, they are sorted together with all the
other equations. The sorting process automatically guarantees that the code at the initial
time and at event instants is executed in the correct sequence, so that the simultaneous
event problem mentioned above can no longer occur. Furthermore, the model is iterated at
the initial time and after event handling to find automatically the correct switching states
to prevent the initialization problem explained above from ever occurring.

To summarize, the object—oriented modeling paradigm allows a satisfactory handling of
discontinuous models. This is not the case with the traditional modeling systems in use
today.

3.4 Coupling of Simulation Packages

In the last section, it was discussed that modeling languages could use some sort of stan-
dardization, in order to improve the capability of simulation users to exchange models and
even entire model libraries among each other. VHDIL-A was mentioned as one attempt at
answering this demand.

However, it had also been mentioned that more and more producers of technical equip-
ment, such as car manufacturers, depend on second-source components and second—source
models thereof in their system design. If every second—source provider could be forced to
provide models encoded in a subset of VHDL-A, this might solve the problem. However,
this will not happen for years to come. At least as an intermediate (and more easily achie-
vable) solution, one could try to create a much lower—level standard, one for simulation
run—time environments.

For efficient simulation, models have to be compiled into machine code. Portability is-
sues suggest to generate first code in a high—level programming language, such as Fortran,
C, or Ada, which is then compiled to machine code using available standard compilers. The-
refore, it is natural to ask for a standardization of the interfaces of modeling and simulation
environments at the programming language level. This allows to generate program code

20

from a modeling tool A, say a mechanical or electronic circuit modeling system, and use it
as a component in another modeling tool B, say a block—diagram package. It is much easier
to use a model at the level of a programming language with a defined interface, than writing
a compiler to transform a VHDL-A model down to a programming language.

Some simulation researchers have recognized this need, and, in fact, several different
low-level interface definitions are already in use:

e DSblock interface definition [Otter, 1992]:

This was the first proposal for a neutral, product-independent low-level interface.
It was originally specified in Fortran. The latest revision uses C as specification
language, and supports the description of time—, state—, and step—event driven ordinary
differential equations in state—space form, as well as regular and overdetermined DAEs
of indices 1 and 2. All signal variables are characterized by text strings that are
supplied through the model interface. This allows an identification of signals by their
names used in the higher—level modeling environment, and not simply by an array
index. Presently, Dymola generates DSblock code as interface for its own simulator,
Dymosim. Also, the general-purpose multibody program SIMPACK [Rulka, 1990]
can be optionally called as a DSblock.

e SimStruct from The MathWorks [MathWorks, 1994]:

In the newest release of SIMULINK (Version 1.3), the interface to C—coded submodels
is clearly defined, and has been named SimStruct. Furthermore, with the SIMULINK
accelerator, and the SIMULINK C-Code generator, SIMULINK can generate a Sim-
Struct model from a SIMULINK model consisting of any built—in SIMULINK elements
and from SimStruct blocks (S—functions written in the MATLAB language cannot yet
be compiled). A SimStruct block allows the description of input/output blocks in
state—space form consisting of continuous— and discrete—time blocks, with multi-rate
sampling of the discrete blocks®. However, neither DAEs nor state-events are suppor-
ted. DAEs are needed in order to allow the incorporation of model code from domain
specific modeling tools like electric circuits or mechanical systems. State—events are
needed in order to properly describe discontinuous modeling elements and variable
structure systems.

e User Code Block (UCB) interface from Integrated Systems [Integ. Systems, 1994]:
The UCB-interface used with SystemBuild allows the description of time— and state—
event dependent ordinary differential equations in state—space form, as well as regular
and overdetermined DAFEs of index 1. It is more general than the SimStruct interface.
Some commercial multibody packages (e.g. SIMPACK [Rulka, 1990], DADS [Smith
and Haug, 1990]) already support this interface, i.e., can be used within SystemBuild
as an input/output block. Two serious drawbacks are still present in this definition.
First, the dimensions of model blocks have to be defined in the SystemBuild envi-
ronment. This means that model blocks from other modeling environments, such
as mechanical and electrical systems, cannot be incorporated in a fully automated
fashion, because the system dimensions depend on the specific model components.
Contrarily, in the DSblock interface definition, the model dimensions are reported

3Multi-rate sampling is a special case of time—events.

21

from the DSblock to the calling environment. Second, variables are identified by in-
dex in the SystemBuild environment. This restricts the practical use of the tool to
models of low to medium complexity only.

4 Shortcomings of Current Simulation Software

As already discussed, a serious shortcoming of most simulation tools currently on the market
is their inability to treat discontinuous models adequately. This is critical because most real—
life engineering problems contain discontinuous components. Sure, a work—around for this
type of problem consists in modeling the system in such a detail that no discontinuities
are present any longer. This is e.g. done in the standard electric circuit simulator SPICE.
However, the simulation time increases then by a factor of 10-100, and this limits the size
of systems that can be handled economically. Note that proper handling of discontinuous
elements is not accomplished by just supplying language elements to handle state events,
as 1s done e.g. in ACSL or SystemBuild. The real problem has to do with determining the
correct mode the discontinuous system is in at all times. Object—oriented modeling can
provide an answer to this critical problem.

Block—diagram editors are, in the view of the authors of this article, a cul-de—sac. They
look modern and attractive, because they employ modern graphical input/output technology.
However, the underlying concept is unnecessarily and unjustifiably limited. Although it is
trivial to offer block—diagram editing as a special case within a general-purpose object—
diagram editor, the extension of block—diagram editors to object—diagram editors is far
from trivial. It is easy to predict that block—diagram editors will be replaced by object—
diagram editors in the future, in the same way as block—diagram editors have replaced the
textual input of general-purpose simulation languages in the past. However, it may take
several years before this will be accomplished. Most software vendors only react to pressure
from their customers. It may still take a little while before sufficiently many simulation
users tell their simulation software providers that object—diagram editors is what they need
and want.

Although the introduction of block—diagram simulators has enhanced the user—
friendliness of simulation environments a lot, there is still the problem with model compo-
nent libraries. As previously explained, the “library” technique supported by block—diagram
simulation systems, such as SIMULINK and SystemBuild, is only of limited use, because
a modification in a component in a library cannot easily be incorporated into a model in
which this component is being used. Again, the object—oriented modeling systems together
with their object—diagram editors provide a much better and more satisfactory solution.

Beside from the modeling and simulation issues discussed in some detail in this article,
there exists the serious practical problem of organizing and documenting simulation experi-
ments. To organize the storage of the results of many simulation runs, possibly performed
by different people, and to keep all the information about the simulation runs necessary in
order to reproduce these runs in the future, i.e., store the precise conditions under which
the results have been produced, is a problem closely related to version control in general
software development. At present, nearly no support is provided for such tasks by available
simulation systems.

22

5 Conclusions

The survey presented in this article is necessarily somewhat subjective. There exist several
hundred simulation software packages currently on the market. It is evident that no single
person can have a working knowledge of all these packages. Furthermore, software is a very
dynamic field that is constantly enhanced and upgraded. The information provided here
represents our knowledge as of July 1995. It may well be that some of our criticism will
already be outdated by the time the reader lays his eyes on this handbook.

To summarize, the textual simulation languages of the past have already been largely
replaced by block—diagram editors, since these programs are much easier to use. Most simu-
lation programs entered through block—diagram editors still have problems with efficiency,
because equations are interpreted rather than compiled into machine code. For larger sy-
stems, the right choice of the simulation package is therefore still not easy. The future
belongs definitely to the object—oriented modeling languages and their object—diagram edi-
tors, since these new techniques are much more powerful, reflect more closely the physical
reality they try to capture, and contain the popular block—diagrams as a special case.

Acknowledgments

The authors would like to acknowledge the valuable discussions held with and comments
received from Hilding Elmqvist and Ingrid Bausch—Gall.

References

Andersson, M. 1990. Omola — An Object-Oriented Language for Model Representation, Licenciate thesis
TFRT-3208, Dept. of Automatic Control, Lund Inst. of Technology, Lund, Sweden.

Andersson, M. 1992. Discrete event modelling and simulation in Omola. Proc. IEEE Symp. Computer—Aided
Control System Design, Napa, CA, pp. 262-268.

Andersson, M. 1994. Object-Oriented Modeling and Simulation of Hybrid Systems, Ph.D. thesis TFRT—
1043, Dept. of Automatic Control, Lund Inst. of Technology, Lund, Sweden.

Augustin, D.C., Fineberg, M.S., Johnson, B.B., Linebarger, R.N., Sansom, F.J., and Strauss, J.C. 1967.
The SCi Continuous System Simulation Language (CSSL). Simulation, 9:281-303.

Brenan, K.E., Campbell, S.L.; and Petzold, L.R. 1989. Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations, Elsevier Science Publishers, New York, new ed. to appear in 1995.

Bujakiewicz, P. 1994. Mazimum Weighted Matching for High Index Differential Algebraic Equations, Ph.D.
thesis, Technical University Delft, The Netherlands.

Cellier, F.E. 1979. Combined Continuous/Discrete System Simulation by Use of Digital Computers: Tech-
niques and Tools, Ph.D. dissertation, Diss ETH No 6483, ETH Zurich, Zurich, Switzerland.

Cellier, F.E. 1991. Continuous System Modeling, Springer—Verlag, New York.

Cellier; F.E. 1993. Integrated continuous—system modeling and simulation environments. In CAD for
Control Systems, ed. D.A. Linkens, p. 1-29, Marcel Dekker, New York.

Elmgvist, H. 1975. Simnon — An Interactive Simulation Program for Nonlinear Systems, Report
CODEN:LUTFD2/(TFRT-7502), Dept. of Automatic Control, Lund Inst. of Technology, Lund, Sweden.

Elmqgvist, H. 1978. A Structured Model Language for Large Continuous Systems, Ph.D. dissertation. Report
CODEN:LUTFD2/(TFRT-1015), Dept. of Automatic Control, Lund Inst. of Technology, Lund, Sweden.

23

Elmqgvist, H. 1995. Dymola — User’s Manual, Dynasim AB, Research Park Ideon, Lund, Sweden.

Elmqvist, H., Astrém, K.J., Schénthal, T., and Wittenmark, B. 1990. Simnon — User’s Guide for MS-DOS
Computers, SSPA Systems, Gothenburg, Sweden.

Elmgvist, H., Cellier, F.E., and Otter, M. 1993. Object—oriented modeling of hybrid systems. Proc. ES55’93,
Furopean Stmulation Symp., Delft, The Netherlands, pp. xxxi—xli.

Gear, C.W. 1988. Differential-algebraic equation index transformations. STAM J. Scientific and Statistical
Computing, 9:39-47.

Glaser, J.S., Cellier, F.E., and Witulski, A.F. 1995. Object—oriented power system modeling using the
Dymola modeling language. Proc. Power Electronics Specialists Conf., Atlanta, GA, vol. II, pp. 837-843.

Hairer, E. and Wanner, G. 1991. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic
Problems, Springer—Verlag, Berlin.

Integrated Systems Inc. 1994. SystemBuild User’s Guide, Version 4.0, Santa Clara, CA.
Isidori, A. 1989. Nonlinear Control Systems: An Introduction, Springer—Verlag, Berlin.
Korn, G.A. 1989. Interactive Dynamic-System Simulation, McGraw—Hill, New York.
Ljung, L. 1987. System Identification, Prentice-Hall, Englewood Cliffs, N.J.

Mathworks Inc. 1992. SIMULINK — User’s Manual, South Natick, MA.

Mathworks Inc. 1994. SIMULINK — Release Notes Version 1.3, South Natick, MA.

Mitchell and Gauthier Assoc. 1991. ACSL: Advanced Continuous Simulation Language — Reference Ma-
nual, 10th ed., Mitchell & Gauthier Assoc., Concord, MA.

Mugica, F. and Cellier, F.E. 1994. Automated synthesis of a fuzzy controller for cargo ship steering by
means of qualitative simulation. Proc. ESM’94, European Simulation MultiConference, Barcelona, Spain,

pp- H23-528.

Otter, M. 1992. DSblock: A Neutral Description of Dynamic Systems, Version 3.2. Technical Report TR
R81-92, DLR, Institute for Robotics and System Dynamics, Wessling, Germany. Newest version available
via anonymous ftp from “rlgl5.df.op.dlr.de” (129.247.181.65) in directory “pub/dsblock”.

Pantelides, C.C. 1988. The consistent initialization of differential-algebraic systems. SIAM J. Scientific
and Statistical Computing, 9:213-231.

Petzold, L.R. 1982. A description of DASSL: A differential/algebraic system solver. Proc. 10th IMACS
World Congress, Montreal, Canada.

Rodrigues, J. 1994. 1994 Directory of simulation software. SCS — The Society For Computer Simulation,
Vol. 5, ISBN 1-56555-064-1.

Rulka, W. 1990. SIMPACK — a computer program for simulation of large-motion multibody systems. In
Multibody Systems Handbook, ed. W. Schiehlen, Springer—Verlag, Berlin.

Slotine, J.-J. E. and Li, W. 1991. Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs; N.J.

Smith, R.C. and Haug, E.J. 1990. DADS — Dynamic Analysis and Design System. In Multibody Systems
Handbook, ed. W. Schiehlen, Springer—Verlag, Berlin.

Vachoux, A. and Nolan, K. 1993. Analog and mixed-level simulation with implications to VHDL. Proc.
NATO/ASI Fundamenials and Standards in Hardware Description Languages, Kluwer Academic Publishers,
Amsterdam, The Netherlands.

Vachoux, A. 1995. VHDL-A archive site (IEEE DASC 1076.1 Working Group) on the Internet on machine
“nestor.epfl.ch” under directories “pub/vhdl/standards/ieee/1076.1” to get to the read-only archive site,
and “incoming/vhdl” to upload files.

24

