L ecture Notes In
Controland
Information Sciences

Edited by A.V. Balakrishnan and M.Thoma

IRIA
6

3

Analysis and Optimization
of Systems

Proceedings of the Sixth International
Conference on Analysis and Optimization
of Systems

Nice, June 19-22,1984

Part 2

Edited by
A.Bensoussan and J. L. Lions

! .
Qs

Springer-Verlag
Berlin Heidelberg New York Tokyo 1984

IMEACT
I ive Matl ical P ¢ : tic C 1Tl

Magnus Rimvall
Frangois Cellier
Institute for Automatic Control
Swiss Federal Institute of Technology (ETH)
CH-8092 Zuerich, Switzerland
Tel. 01 / 256 28 42

Abstract.

IMPACT, a new CAD-program for Control Systems which 1is
presently under development at our institute, is presented.
The program will give access to algorithms useful in control
systems theory in an interactive manner. It is aimed at in-
experienced students as well as skilled control scientists
for the analysis, synthesis and simulation of control sys-
tems. IMPACT is coded in ADA, portability is one of the main
design goals.

A first section discusses the chosen mode of interaction, and
compares it with other common methods. A second section pres-
ents the data structures available in IMPACT, and discusses
the operations which can be performed on these structures.
The IMPACT command language is thereafter presented, in par-
ticular are the very versatile macro-facilities explained.
Finally, some implementational aspects are discussed.

1. INTRODUCTION

In the last decades, digital computers have thoroughly changed the
computational tools used by control engineers. However, this revolution
is not yet over, its thrust has just shifted from the point of raw com-
puting power to the question of user friendly and adaptive systems.

Let us look at the (nowadays) simple problem of calculating the ei-
genvectors and inverse eigenmatrix of several 8%¥8 matrices. Forty years
ago, you would need a lot of paper and almost unlimited patience to
solve this problem.

Twenty years ago, you probably had a digital computer at your dis-
posal. However, you would most likely have to write a program yourself,
which calculated the eigenvectors and inverted the eigenvector-matrix.
Only if you were extremely lucky, you might have had access to one of
the first libraries containing general-purpose programs for mathemati~
cai operations (e.g. SSP /SSP68/).

579

Ten years ago, you most certainly had access to some library con-
taining mathematical algorithms, e.g. IMSL /IMSL82/, EISPACK /GARBTT/
/SMIT74/ or LINPACK./DUNG79/. Unfortunately, you still had to write a
program which read the matrices, called the algorithm-routine(s) and
printed the result. You were bound to loose a lot of time until the in-
put format corresponded to the input data, all the parameters of the
library calls were correct and in the right order, and so on.

Today, for most people, things are not that much different. New and
better algorithms have emerged, but you still locose lots of time writ-
ing programs accessing these algorithms. Needed is a package adapted to
control theory, which has not only a software interface, but also an
interactive interface for easy access.

1.1 MATLAB

One of the first persons to realize the importance of an interactive
interface to packages containing complex mathematical algorithms was
C. Moler /MOLE80/. In his program MATLAB, a milestone in the history of
interactive programs, an easy~to-use, interactive interface is provided
to the LINPACK and EISPACK matrix manipulation libraries. Using a very
natural input command language, it is possible to perform matrix opera-
tions in MATLAB with the same ease as one makes scalar computations on
a pocket calculator. For example can the above mentioned problem be
solved in a few lines of input:

A =<1, 4, 5, 0, 0, -1, 3, 1
o, 1, 0, 1, 0, 0, 0,0
-3, 0, 0, 0, -1, 0, 0, 2>;

<P,DUM> = EIG(A);

INVP = INV(P)

Although MATLAB is, as we have seen, extremely easy to use, and
moreover very versatile, many problems in control theory are not (and
were never intended to be) solvable using MATLAB. One reason for this
is of course the lack of suitable algorithms, another, more fundamental
cause is the lack of data structures.

As MATLAB is written in a very well-structured manner, it is quite
simple to add new algorithms. MATRIXy is one such extended MATLAB
package for control scientists /WALK82/, another extended version of
MATLAB is presently under development by the group of P. van Dooren
{unpublished). Although these new products are definite upgradings of

580

MATLAB, they only partially provide the control engineer with an ade-
quate tool. The reason for this is the mentioned lack of data struc-
tures adapted to control problems. MATLAB uses the complex matrix (with
the scalar as a special case) as the only data structure. Control engi-
neers often work with more complex structures, like polynomial matri-
ces, transfer-function matrices and linear as well as non-linear system
descriptions. Furthermore, although the input command 1language of
MATLAB is well suited for smaller problems, a better structured command
language is needed for more complex problems. In particular, some form
of macro/procedure facility accepting parameters must be available. Fi-
nally, versatile graphical output and an interface to a data base
should be present.

1.2 IMPACT

Seen through the eyes of the user, IMPACT appears to be just another
extension to MATLAB, the IMPACT command language is similar to that of
MATLAB. However, seen from an implementational view, IMPACT is only a
conceptual superset of MATLAB. As IMPACT is implementéd in ADA, not one
single line of code has been taken from MATLAB. Furthermore, several
new data structures are introduced.

The development of IMPACT is made with the objective of serving a
very inhomogenous group of users. On one hand, IMPACT is aimed at being
usea by students with little experience in control theory and no ex-
perience at all in CAD. Using only the most basic structures of the in-
put command language which are simple enough to be learnt in a few
hours, these students will be able to access complex algorithms in or-
der to solve control problems with a minimum of tutorial. An on-line
HELP facility contains all needed information on the command language
syntax as well as on the numerical algorithms, making self-tutorial
possible. On the other hand, the experienced control secientist is pro-
vided with a full-fledged structured command language with all elements
found in a higher computer language including WHILE and FOR loops, IF-
THEN-ELSE statements, and so forth. Furthermore, a large selection of
IMPACT functions and procedures gives the user access to a wide range
of algorithms. To further enhance the structurability, four different
macro facilities have been introduced. Access to a data-base will be
provided to store away variables, plots and macros for later reuse.

581

2. MODE OF INTERACTION

When designing a new interactive system, one of the first decisions
must be, in which form the man-machine interaction is to take place.
This decision should not be taken lightheartedly, as this mode of
interaction determines the user-friendlyness, and thereby also user ac-
ceptance, of the system; although this interface is not the brain of
any CAD-system, it certainly serves as both eyes and mouth.

The mode of interaction also influences the structure of the kernel
controlling the package. In particular, the data~structures of the ker-
nel are very closely knitted to the user interface. As any late changes
in the central data structures are the worst of all possible nightmares
for any software developer, the design of the interactive interface
should be done carefully, so that no later modifications need to be
done /INFOT79/.

Apart from some more exotic ways of communication, like speech input
and natural language input, four basically different ways of inter-
active input exist:

- Qquestion-and-answer method

- menu-driven operation

- command-language communication
~ graphical input.

Of these four, the first three work with alphanumeric information,
which, at least in principle can work on any alphanumerical terminal.
The grapnical input requires special hardware in form of a graphical
terminal for the grapnic echo and some graphical input device (in form
of e.g. a joystick or a lightpen). Although very interesting in the
field of system documentation and modelling /ELMQ82/, where structures
rather than numerical data are entered, the complexity of a program al-
lowing such an input makes it unattainable for a CACSD system designed
primarily to solve numerical problems., However, a. later interface be-
tween IMPACT and a graphical input system would be an interesting and
meaningful extension.

Of the three alphanumeric input modes, the menu and the question-
and-answer methods let the computer be in charge of the conversation,
whereas the command language method gives the user almost total con-
trol. In the last few years, several menu-driven interactive programs
using a "mouse" or joystick as input device have emerged. These systems

582

are extremely handy and speedy for dexterous users. However, until a
hardware standard has been set, such systems are not very portable. On
the other hand, the speed of portable menu-driven systems can be com-
pared with that obtained by question-and-answer methods.

If the only design goals are minimal learning time and maximum ac-
cessibility by non-specialists, the question-and-answer method is most
certainly the right answer. However, this method gets very tiresome af-
ter a while, as the user always can anticipate the next question, but
cannot speed up the input. As an example, compare the conversation in
INTOPS /AGAT79/ (a somewhat old-fashioned interactive program for con-
trol system operations) with the equivalent commands' in IMPACT. Both
examples produce a BODE diagram of the transfer function

INTOPS question-and-answer conversation:

P> OP CODE = ENTER
P> NAME = NUME

P> COMMENT = NUMERATOR
P> ORDER = Q

P> P(0) = 1

P> NUME NUMERATOR
P> P(0) = 0.10000E+01
P> OP CODE =

P> NAME = DENO

P> COMMENT = DENOMINATOR
P> ORDER = 3

P> P(0) = 9.

P> P(1) = §

P> P(2) = 9

P> P(3) =1

P> DENO DENOMINATOR
P> P(0) = 0.90000E+01
P> P(1) = 0.50000E+01
P> P(C 2) = 0.90000E+01
P> P(3) = 0.10000E+01
P> OP CODE = BOQDE-

P> GH NUMERATOR = NUME
P> GH DENOMINATOR = DENO
P> NUMBER OF FREQUENCY VALUE = 100
P> OMEMAX = 1000,

P> OMEMIN = .1

(user input is underlined).

Command language input of IMPACT:

BODE (1/<9°57°971> //DOMAIN=LOGDOM(.1,1000.,100))

583

or a little more verbose but better readable:

S <®1>;

G = 1/ (S¥%¥3 4 Q¥S*S 4 5¥S 4 9);
FREQ = LOGDOM(.1,1000.,100);

BODE (G //DOMAIN=FREQ)

"wn

With right, the advocates of menu-driven and question-and-answer
interaction claim that their methods are specially advantageous for us-
ers unfamiliar with the system. In our example, the user of INTOPS
needed to knowWw only the existence of the two commands ENTER and BODE,
whereas the user of IMPACT must know how to form a transfer-function,
and how to put a variable as parameter of a function. However, due to
the very natural notation of the IMPACT command language (which will be
described in more detail later), any inexperienced user will be able to
use IMPACT after only a few hours.

On the other hand, anyone familiar with both systems will save a
factor 10 in time as well as in number of input lines when he uses
IMPACT to construct the BODE diagram. For an easy-to-learn system like
IMPACT, this means that the command language pays off heavily already
after a few hours of use.

In order not to discourage the beginner during these first few
hours, an on-line help will provide answers to all questions in a
structured manner, also making self-tutorial possible. The help~-
facility can of course also be accessed by the advanced user when he
needs information, e.g. about a lesser used algorithm and the corre-
sponding function call parameters.

3. DATA STRUCTURES IN IMPACT

Whereas MATLAB supports only the double-precision complex matrix,
IMPACT provides the user with several other data structures. In this
chapter, most of these will be presented, together with some of the op-

erations which can be performed on these different structures.
3.1 Matrices
As in MATLAB, all matrices in IMPACT are stored away using complex

elements of high precision. Any scalar can be stored away as a one by
one matrix. Matrix input is done using a very natural notation:

A = <1,2,3

"’5'6

7,8,9>;

constructs a 3%#3 matrix A. If the column vector B has been entered as
B = <1.5 ; 4.3 ; 1>;

the equation A%x = B can be solved e.g. through

X = INV(A)*B

Many matrix operations, as different eigenvector operations, inver-
sions and transformations, have been included in IMPACT.

3.2 Bolynomial matrices

A pdlynomial matrix is a matrix where each element is a polynomial
with (complex) coefficients.

Polynomial matrices are entered into IMPACT using a notation similar
to that used for normal matrices. For example, the input line

Q=< 2%3%1 ; 474" >

will result in the polynomial column vector

*p 4 1. %ps2

)
2. + 3
4, + 4.%p & 1.%pka2

which is the IMPACT form to describe the polynomial matrix

2
2

< 2. +3.%p + 1.%p

4, + 4. % p + 1.* p© >

An alternative way of entering the polynomial matrix Q might be to
first detine the variable P as

P = <"1>;
Thereafter the polynomial matrix Q can be entered as
Q = <2 + 3%P 4+ PX¥2; 4 4 J¥P 4 PE¥D)

The basic matrix operations addition, subtraction and multiplication
may be used on polynomial matrices (using the symbols +, - and ¥) if
the basic dimensional rules are fulfilled. For example, the input lines

585

P = <713

Z = <1+1%p , 2%p>;

WROW = < 1 y 2+2%P>;

WCOL = WROW';

XADD = Z + WROW , XMULT = Z * WCOL

will result in the output

XADD(p) =
2. + 1.%p 2. + 4.%p

XMULT(p) =
1. + 5.%p + 4 ¥p¥¥2

Until now, all polynomial matrices have been entered in a non-
factorized manner, specified through all non-zero coefficients of the
polynomial elements. To further enhance the flexibility of IMPACT,
polynomials can also be given in factorized form. Example:

QF = FACTOR (Q)

will transform the matrix Q to a factorized form, resulting in

It is of course possible to enter factorized polynomial matrices di-
rectly:

QF = <-1}-~2
-2i-2>

Due to an ill-~conditioned re-factorization, operations on factored
polynomial matrices, where at least part of the factors need to be de-
factorized before the operation (like addition), can be extremely badly
conditioned. In IMPACT, the user is responsible for the testing on the
accuracy of the result. However, IMPACT provides the user with a few
tools: you can simulate a smaller computer word-length in that you
specify the accuracy to be used in each arithmetic operation. This en-
ables you to test the error-propagation of the used algorithm. Further-
more, IMPACT will warn you each time an ill-conditioned operation is
performed. Moreover, as neither of the two "classical" polynomial re-
presentations is optimal with respect to numerical behaviour, IMPACT
offers yet another representation which shall be discussed in
Section 3.5 of this paper.

Furthermore, IMPACT supports several complex polynomial operations.
For instance have algorithms calculating the least common left/right
denominators, the Smith-form and eigenvalues /KAIL80/ been included.

586

3.3 Iransfer-fupnction matrices

Only in special cases is the inverse of a polynomial matrix another

" polynomial matrix. However, the inverse of a polynomial matrix can (as

long as the matrix is non-singular) always be defined as matrix with
rational function elements, a so called transfer-function matrix.

Transfer-function matrices are entered in a manner similar to that
used by polynomial matrix entry. The input sequences

S = <™1>;
G =< 1/8 , 17(S+1)
1/7(8+1) , 1/(3*(S+1)) >;
G = FACTOR(G)
ana
G = ONES(2) ./ < {0, i=-1; -1, 0{-1 >

(where ONES(2) returns a 2%*2 matrix filled with ones and ./ denotes an
element-by-element division) both result in the factored 2%*2 transfer-
function matrix

o(e i . 1.
e

1. 1.
G P 2 10

In control theory, transfer-function matrices are used to describe
systems in the frequency domain. Interesting enough, many mathematical
operations on transfer-functions have a physical meaning. For example,
the addition of two systems corresponds to the parallel connection:

G1

+
—_J d

GTOT = G1 + G2

A cascading of two systems is mathematically described through the mul-
tiplication in reverse order of the two system components. A feedback
can either be described directly:

587

GTOT = G /7 (1 + G*H)

or through the use of the special feedback operator \\ (which does not
correspond to any trivial mathematical operation):

GTOT = G \\ (=H)

3.4 System descriptions

In the time domain, a linear system is normally described by four
different matrices:

b4
y

A¥x 4+ B*u
C®x + D#*u

o

As this is a very common representation, IMPACT provides the user with
a special data-structure, the linear system description. Given three
matrices A, B, C of right dimensions, the function LCSYS will form a
continuous linear system description out of these matrices,

CSYS1 = LCSYS(Aa,B,C)

whereas LDSYS will form a discrete linear system description with a
sampling rate of DT:

DSYS81 = LDSYS(F,G,H,DT)

The D matrix was here assumed to be a null matrix of correct dimen-
sions. However, if the user wants to define a D-matrix, this can be en-
tered through the use of default redefinition:

CSYS2 = LCSYS(A,B,C //D=DD)

will include the matrix DD as the direct-path matrix.

Mathematical operations on system descriptions have been defined
such that the physical meaning is the same as if the same operation

588

were performed on transfer-function matrices. For example, if a system
of 2nd order has been defined through the matrices

A = <1, 1
0, 1>;
B = <0
1>;

c = <1, 0>;
SIMPLE = LCSYS(a,B,C);

the operation
CASC = SIMPLE ® SIMPLE
will result in a system of order 4 with the component matrices

CASC.A = (<1,

CASC.B = <0

0>
<0, 0, 1, 0>

"

CASC.C

Note that the dimension of the system matrix is doubled, just as the
order of the physical systen.

A linear system given in the time domain by three (four) matrices
can always be transformed into a frequency Hrepresentation, and vice
versa, The transformation from the time to thé frequency domain is giv-
en through the formula

S <71
G c #

nu

INV(S*EYE(A) - A) * B
This vaiid IMPACT statement is also available as a separate function
G = TRANS(LCSYS(A,B,C))

The such determined transfer function matrix is not unique, as each
transfer-function component could have reducible factors. The function
REDUCE will shorten any common factors of a transfer-function (using
the machine tolerance, or any other given tolerance, to determine if
two factors are equal or not).

As the transformation from the frequency to the time~domain is not
unique, IMPACT provides the user with a range of transformations re-
sulting in linear system descriptions in different canonical forms,
Jordan form etc.

589

3.5 Domain and trajectory variables

A domaip is a sequence of discrete, increasing values on the real
axis which can be used to form the independent variable of a table.

TIME = LINDOM(0.,50.,0.1)

would thus detine a sequence TIME with 501 elements, the first of which
has the value 0 and the last the value 50, using an increment of 0.1.
With the help of the '&'-operator, domains can be concatenated. For ex-
ample would

PULSE_BASE = LINDOM(0.,1.,0.01) & LINDOM(1.1,10.,0.1) & 20.

be a non-equidistant domain with 202 points,

A frajectory is a table of function values which uses a domain as
independent variable. Such a table results from a variety of operations
performed on domains. E.g. would the operation

TRA = SIN(TIME)

result in a table where each entry contains an independent variable
copied from the domain TIME and the sine-value thereof.

Mathematical operations are defined on trajectories using the same
domain, e.g. would the operation

TRB = TRA + COS(TIME)

once again be a table with one row of values as function of the inde-
pendent variable TIME, whereas

TRC = <TRA, COS(TIME), TRA + COS(TIME)>;

would be a table where each entry is a row-vector with three elements.
Note that TRB = TRC(3).

All graphical functions return a trajectory as result, this trajec-
tory can then be plotted with the command PLOT.

PL1 = BODE(G1)

will compute a bode-diagram and store this diagram és a trajectory with
one complex element (containing amplitude as real and phase as imagi-
nary part) per entry. If you want to compare the BODE-diagrams of two
transfer-functions, combine the trajectories into one trajectory and

590

plot this (the option //BODE will insure that the axes are logarithmi-
cally scaled and correctly labelled):

PL12 = <BODE(G1),BODE(G2)>;
PLOT(PL12//BODE)

On each plot, you will now find two different-colored/shaped curves
from your two systems.

Furthermore, domains and trajectories can be used to gimulate system
behaviour /CELL83/. If SSYS is any system representation (e.g. a
transfer-function matrix or a system description),

U ssYs p————>
TRA TABOUT

TABOUT = SSYS * TRA

will perform a simulation and store away the values of the output sig-
nal at the discrete times of the trajectory TRA, thus making TABOUT an-
other trajectory variable specified over the same domain as TRA.

Finally, domains are useful for yet another purpose. As stated pre-
viously, polynomial operations may be numerically ill-conditioned. It
has been found that, in many cases, a better behaviour results when
polynomials (or rational functions) are represented by a set of sup-
porting values rather than by coefficients or roots.

FREQ = LOGDOM(.1,1000.,100)

generates a domain consisting of 100 values distributed logarithmically
over the interval from 0.1 to 1000.

PP1 = TRAJEC(P1,FREQ)

computes a trajectory (matrix) of the polynomial (matrix) P1 by
evaluating each polynomial (or each transfer-function, resp.) at each
of the supporting values of FREQ. Obviously, this gives rise to a third
representation of polynomials which often exhibits better numerical
properties. (All primitive polynomial operations such as addition, mul-
tiplication, and inversion become trivial.)

Q1 = ROOTS(PP1)

reestablishes the factored representation of PP1. This can be obtained
by a numerically well-behaving Fast Fourier Transform (/GEIGT73/).

531

4. COMMAND LANGUAGE

For IMPACT, a very versatile command language has been developed us-
ing the command language of MATLAB as a base. However, IMPACT allows
for a more structured input, in form of more general statements and the
availability of four kinds of macros.

The requirement that novices as well as very experienced users
should be able to use IMPACT is reflected in the design of the IMPACT
command language. On one hand, the basic commands are extremely easy to
learn, but still powerful enough to make all kinds of operation possi-
ble, although not necessarily in the most optimal way. On the other
hand, more complicated language elements can be used to perform complex
operations. In particular, a hierarchical structuring of a problem is
possible through the use of macros.

Due to their very natural notation, the basic commands can be mas-
tered in a few hours time. The most essential statement is the assign-
ment statement, which uses a notation similar to that of a normal math-
ematical formula. If we, for example, want to determine whether or not
a certain linear system is controllable, we first enter the state and
input matrices:

A =<

B =<

Thereafter we will get our answer by calling a procedure CONTR with the
command

CONTR(A,B)

The procedure CONTR writes the wanted result on the terminal.

For more complex problems, a full-fledged, structured input language
is available, including IF..THEN..ELSE, FOR/WHILE-loops, and so on. Ex-
ample: The heat~diffusion in a long metal bar can be approximately
modellea through a set of N differential equations (t(1). denotes the
derivative of the variable t(1)):

L(1). = <2%¢(1) + t(2)
LIN). = <2%t(N) + t(N=-1)
t(i). = -3%t(i) + t(i-1) + t(i+1) y 1< i <N

The state-matrix of this model can be obtained through the statements

592

FOR i = 1:n DO
FOR jJ = 1:n DO
IF (j = i) THEN IF (i = 1) OR (i = n) THEN a(i,j) = -2
ELSE a(i,j) = -3
ENDIF
ELSIF abs(j-i)=1 THEN a(i,j) = 1
ELSE a(i,j) = 0
ENDIF
ENDFOR
ENDFOR

When a sequence of statements like these are to be performed several
times, the user should use a macro to avoid typing errors and to save
time,

4.1 Magros

IMPACT provides the user with four different types of macros.

4.1.1 Function macros

If the previously described model of a metal bar is to be used sev-
eral times, each time with a different value for N, the user canh save
time by defining a function macro returning the wanted state matrix:

FUNCTION bar_matrix(n)
FOR i = 1:n DO .

ENDFOR
RETURN a
ENDFUNCTION

4.1.2 Procedural macros

Example: We want to write a procedure to add a new MACRO to our pri-
vate MACRO 1library (PRILIB.INT) or replace an old one by a newer up-
date. This can be performed by:

PROCEDURE ADDMAC (FILNAM)
LOAD('PRILIB');
READ(FILNAM);
SAVE('PRILIB',MACRO);

ENDPROCEDURE

This procedure is executed by

593

ADDMAC('NEWMAC.IMP')

Upon call, only one variable is known within the procedure, namely the
variable FILNAM which is of type text-string and contains the name of
the file which the new MACRO is currently stored in. LOAD('PRILIB')
loadas all variables from file PRILIB.INT containing the MACRO library.
READ(FILNAM) reads the new MACRO and converts it to its internal repre-
sentation. If such a MACRO variable was already in the library, this
variable is now overwritten by the new definition. SAVE('PRILIB',MACRO)
saves all currently accessible MACRO's (but not the text-string vari-
able FILNAM) in a new cycle of the file PRILIB.INT. Upon return from
the proceaure, the old context is reestablished, and all previously
visible variables are accessible again.

4.1.3 String macros

Until now, wWe have considered macros which look and work as func-
tions or procedures. In this chapter, we will extend our macro defini-
tions to include a general macro concept.

When we allow ourself a slight simplification, a macro definition
connects a string of characters (possibly divided onto several lines)
with a macro name. Each time this macro is called, the corresponding
string is inserted at the point of call with each formal parameter be-
ing replaced by its actual value. In the more general case, the string
of a macro could be inserted not only as a factor within any type of
expressions (function macros returning one variable) or as a statement
(procedure macro changing the values of one or several variables), but
anywhere in an IMPACT input.

As a trivial example, let us consider a user who, for estetical rea-
sons, dislikes the element-by-element operations '.%' _ Such a user
could avoid this symbol through defining a new string macros :

MACRO ELMULT
*

ENDMACRO
which thereafter can be used in statements as
C = A ELMULT B -- Equivalent to C=A.*B

Generally, the string macro is a very versatile instrument. It can for

example be usea Lo dyunamically define rnew functions, and will certainly

594

be used to shorten other macros through the use of "tricky" string op-
erations. However, inexperienced users are warned not to use the string
macro.

4.1.4 System macros

As we live in an imperfect world, control scientists usually have to
use non-linear models to describe a real system. IMPACT provides the
so-called system macro for this modelling. Consider the following exam-
ple describing a discrete PI-regulator :

SYSTEM discr_regulator(kp,ki,dt)
DSTATE int
INITIAL int0=0;
INPUT err
OUTPUT u
NEXT.int = int + ki¥*err#dt;
u = kp¥*err + int;
ENDSYSTEM

This definition of a discrete system with one difference equation can
be used to create a variable of the same type discr_regulator:

REG1 = discr_regulator(1,1,0.1)

The thus created system variable can then be used in any mathemati-
cal operations to construct parallel and/or concatenated systems, per-
form simulations, and so on. Given the predefined systems SMP (sampler)
and ZOH (Zero-order-hold), a sampled data system using REG1 as
regulator can be created through the single statement:

SMP®
—»1 REG1 Z0H CSYs1

L 4

STOT = (CSYS1¥ZOH*REG1*SMP(.1))\\(-1)

595

5. IMPLEMENTATION CONSIDERATIONS

Although MATLAB, as most other larger scientific software-projects
of the sixties and seventies, is coded in FORTRAN, and although most
available algorithm-libraries are FORTRAN-coded, it has been decided
that IMPACT shall be coded in ADA. There are manifold reason for this
/BIRD83/:

- ADA allows almost any types of data-structures to be directly de-
fined, avoiding the hazzle of redefining all structures into arrays
(the only structure available in FORTRAN). Furthermore, through the
use of discriminants, ADA allows for the dynamic sizing of arrays,
which means that no unnecessary space has to be reserved, as would
be the case in a language like PASCAL.

- ADA, due to recursiveness, allows for a much more elegant coding of
the IMPACT expression parser than FORTRAN would do. In this way,
IMPACT shall be easier maintainable and updateable than MATLAB.

- ADA provides for a unique means of exception handling which shall
prove very useful for our task.

- ADA is per definition portable, there may pot exist any sub- and/or
super~set of ADA with that name. '

- ADA is highly structured, making a modular programming possible, re-
sulting in reliable and easily maintainable code. Furthermore
through the use of visibility rules, all system-dependencies can be
hidden from the user as well as from most of the people involved in
the development of IMPACT.

- ADA-libraries of algorithms are expected to emerge on the market in
the near future. Therefore, IMPACT 1is to contain a well-defined
interface for later incorporation of new algorithms.

At the present state of development, an IMPACT users' manual
/RIMV83/ exists which describes the command language as well as each
available function (algorithm).

To simplify the construction of the expression parser needed 1in
IMPACT, the syntax of the IMPACT command language has been defined us-
ing an extended Backus-Naur form. This syntax has then been tested for

consistency using a general purpose parser /BONG79/. LL(1) parsibility

596

rules have been applied wherever applicable,.

The actual coding of IMPACT has commenced late 1983 using one of the

first, almost complete ADA compilers. It is expected that a first sub-
set ot IMPACT will be available during 1984,

/AGATTY/

6. REFERENCES

Agathoklis, P., et alia; "Educational Aspects of Using
Computer-Aided Design in Automatic Control"; in Proc. of the
IFAC Symposium on Computer-Aided Design of Control Systems,

- . Zurich, Switzerland; Pergamon Press, London; 1979.

/ASTR83/

/BIRD83/

/BONGT9/

/CELL83/

/CUENT9/

/DUNG79/

/ELMQ82/

/GEIG81/

/GARBTT/

/HERG82/

/IMSL82/

Xstrom, K.J.; Computer-Aided Modeling, Analysis and Design of
Control Systens, A Perspective; Report CODEN:
LUTFD2/ (TFRT-7251), Department of Automatic Control, Lund In-
stitute ot Technology, Sweden; 1983.

Birdwell, J.D.; "Future Directions in Computer-Aided Control
System De51gn, Software Development"; IEEE Control Sys-
tems Magazipe, February 1983.

Bongulieimi, A.P. and F.E. Cellier; "On the Usefulness of Us-
ing Deterministic Grammars for Simulation Languages"; Proc.
of the SWISSL Workshop, St. Agata, Italy; to appear in
Simuletter; 1979.

Cellier, F.E. and M. Rimvall; "Computer Aided Control Systems
Design"; Proc, First Europeap Simulation '83,
(W. Ameling, Ed.); Informatik Fachberichte, Springer Verlag;
1983.

Cuenod, M.A.; (Editor);
S&mgl_ﬁxﬁ.tsmﬁ Pergamon Press, 1979.

Dungorra, J.d, Bunch, J.R., Moler, C.B., Stewart, G.W.;
LINPACK Users' Guide; Society for Industrial and Applied
Mathematics; 1979.

Eimgvist, H.; "A Graphical Approach to Documentation and Im-
plementation of Control Systems"; Proc. 3rd IFAC/IFIP Sym-
posium on Software for Computer Control, S0C0C0'82, Madrid,
Spain; 1982.

Geiger, P.; Nullstellenbestimmung bei Paolynomen und
allgemeinen analythischen Funktionen als Anwendung der
schnellen Fouriertransformation. Diss.Math.ETH 6759; 1981.

Garbow, B.S., et alia; Maftrix Eigepsystem Routines, EISPACK
Guide ;s Springer, Lecture Notes in Computer Sci=-
ence, 51; 1977.

Herget, C.J. and A.J. Laub; Special Issue on Computer-Aided

Control System Design Programs; IEEE Control Svystems Maga-
zZine, December 1982,

IMSL Library Reference Manual, Edition 9; IMSL, 1982.

/INFO79/

/KAIL8O/
/MOLESBO/

/RIMVE3/

/SMITTH/

/85P68/

/WALK82/

597

Infotech state of the art report : Map/Computer Commpupica-
tiogn, Vol 1-2, 1979.

Kailath, T.; Linear Systems; Prentice~Hall; 1980,

Moler, C.; MATLAB, Users' Guide; Department of Computer Sci-
ence, University of New Mexico, Albuquerque, USA; 1980.

Rimvall, M.; IMPACT, Interactive Mathematical Program for Au-
tomatic Control Theory, A Preliminary User's Manual; Insti-
tute for Automatic Control, ETH Zurich, Switzerland; 1983.

Smith, B.T. et alia; Matrix Eigepsystem RBoutipes,
Guide; Springer, Lecture Notes in Computer Science, §; 1974.

System/360 Scientific Subroutine Package; Version III Pro-
grammers Manual, IBM, 1968.

Walker, R., et _alia; "MATRIX,, A Data Analysis, System
Identification, Control Design, and Simulation Package"; JEEE
ine, December 1982.

