Hierarchical Controllers and Diagnostic Units
for Semi—Autonomous Teleoperation of a Fluid Handling Laboratory

Hessam S. Sarjoughian Frangois E. Cellier

Bernard P. Zeigler

Department of Electrical and Computer Engineering
University of Arizona

Abstract

This paper discusses the utilization of hierarchical
diagnosers for hierarchical event-based control
systems for robot-controlled experiments aboard the
forthcoming Space Station Freedom. The analysis was
performed using discrete—event simulation. The
hierarchical discrete—event model was implemented
in DEVS/Scheme. The concepts are exemplified at
hand of a general-purpose fluid handling facility
which has been proposed to be included as one
component of the Life Science Module. The proposed
methodology will provide the laboratory robot with
sufficient intelligence that it can perform most of
the needed tasks in a semi-autonomous mode.
Experiments can be remotely guided by the scientific
investigator from the ground. Thereby, the need for
crew interaction is minimized.

Introduction

The forthcoming Space Station Freedom (SSF) will
serve as a platform to conduct long—term scientific
experiments with an average duration of 30 days or
multiples thereof. This is due to the fact that the
SSF will be visited by the Space Shuttle once every
30 days. On that occasion, experiment components
can be exchanged/serviced by the Shuttle crew. Since
it is not feasible to request the scientific
investigator to spend 30 days in a row at one of the
NASA control centers, it is important to grant the
experimenter access to his instruments from his own
laboratory facilities. This mode of operation has been
coined 7elescience Interaction of the SSF crew
should be minimized since crew time is a scarce and
expensive resource. The immense cost of human labor
in Space (currently more than $30,000 per hour) has
made the use of robot technology in Space attractive.

(*) The reseerch described in this peper was supported by
NASA—Ames Cooperative Agreement # NCC 2—-525.

CH2799-5/90/0000/0795$01.00 © 1990 IEEE

795

Unfortunately, today's robotic capabilities are
insufficient for this task. Robots are currently being
used successfully in two different modes of
operation. The autonomous robot is met in factory
automation. These robots are usually sturdy,
accurate, and fast, but they are not at all flexible.
They can be employed for repetitive precision tasks
where the high cost of laboratory set—up for robot
manipulation is compensated for by the large
production throughput that is achievable in this way.
These robots will not be used in Space for some time
since robotic tasks in Space are highly individual and
non—repetitive. The fe/eaperated robot 1is currently
met in hazardous environments. A human operator
controls the movement of the robot using a
mini-master console. in this mode, the robot simply
copies the movements of the mini-master. Such
robots are very flexible, but currently, they are not
sturdy, they are somewhat inaccurate, and they are
rather slow. Also this mode of operation is not
feasible for the application at hand due to the long
communication delay times (the SSF project currently
anticipates round-trip delay times of two seconds or
longer) which excludes any form of man-in—the—loop

control.

What is needed is a te/ecommanded robot, i.e., a robot
that can be provided with commands at the task level,
but that is able to decompose tasks into primitive
operations, and execute these primitive operations
autonomously. This mode of operation is sometimes
called sem/-autonomous, since low-level operations
are executed autonomously, whereas high-level
operations are executed under human command.

It is the aim of this research to anaiyze the necessary
technology that will enable such a semi-autonomous
robot control environment. It is proposed that a
hierarchical control scheme accompanied by
hierarchical diagnostic units provides the most
appropriate control structure for this enterprise.

The Laboratory Setup

The SSF will host a Life Science Module (LSM) which
Can accommodate various types of laboratory
experiments related to Space medicine, gravitational
blology, genetics, and biochemistry. It has been
proposed that the LSM contain a rack-mounted
multi-purpose instrument to be operated by a
Cartesian robot that can move left and right as well
as up and down along the rack [1]. This multi-purpose
instrument can support a large set of different
experiments in related disciplines. In this paper, we
shall analyze one of its component, namely the Fluid
Handling Laboratory (FHL) facility. In the context of
the FHL, we shall analyze (simulate) the behavior of
one particular instrument, the isotachophoresis (ITP)
instrument which decomposes fluids into their
charged components [2]. Since there must not exist
any air/liquid interfaces under microgravity
conditions (except for those that are controlled by
surface tension, i.e, within a capillary), all fluid
containers must always be full. This is achieved by
storing fluids in doubly-contained containers. An
inflatable bag is contained within an aluminum bottle.
The space between the bag and the bottle wall is
pressurized. Thereby, the bag is constantly squeezed
and reduced to minimum volume. An air-tight septum
seals the bag. Liquid is injected into (extracted from)
the bag through the septum by means of a syringe
needle. We shall call this device a Pressurized
Bladder Bottle (PBB).

We shall assume an event~based controller {3] for the
operations filling, emptying, and cleaning necessary
in the setup procedure of the ITP. Furthermore, we
assume that there exists a lower level conventional
controller that is supervised by the high-level
event-based controller.

This contro} scheme is accompanied by an equivalent

hierarchical diagnoser that enables the discovery of
and recovery from anomalous conditions that may
occur during the semi-autonomous execution of a
scientific experiment.

Control System Configuration

Figure 1| shows the overall configuration of our
experimental control system.

The plant (the robot controlled isotachopheresis
apparatus - ITP) is controlled by means of a
conventional controller which is responsible for
smooth and accurate motion of the robot. The
controller uses a model-reference adaptive control
strategy. It consults with a model of the real piant in
order to update the controller parameters. It is
supported by a model-based diagnoser which operates
on another model of the real plant in order to
determine discrepancies between the controller's
perception of how the system components work and
the true performance of the actual plant. Both the
controller and the diagnoser are supported by
higher—level control/diagnostic units. While the
low—-level units are responsible for control/diagnosis
of individual components, the high~level units are
responsible for control/diagnosis of the overall
system. Each of these units also consults with a
(coarser) model of the plant.

Our experimental setup looks somewhat similar to a
subset of the NASREM telerobot architecture [4],
except that the models used by the controllers and
diagnosers were separated and drawn on the outside
rather than as a center "world model” column.

Each of the functional blocks is implemented as an
independent intelligent agent that communicates with
the neighboring intelligent agents through a message
passing mechanism.

Rule—Based Event—-Based
m Diagnoser Controller m
(shalow rnsomnq) (h\gh—kvﬂ)

M“el—Bose‘
m Diagnoser
(deep reasoning)

Convonlma]
Controeller
(low—leve))

Figure 1: Control System Configuration

Modeling Methodology

In our experimental setup, both the real plant and the
control/diagnostic agents are simulated using
discrete~event simulation [S]. For this purpose, the
lowest level (most refined) continuously changing
state variables including their local controllers were
aggregated, and are therefore no longer represented in
our models. In particular, smooth motion control was
not one of our immediate concerns, and therefore, is
not represented in our simulated laboratory setup.

in representing a process through a model, the
underlying objectives of that model play an important
role in the model construction [S,6). Therefore, there
may exist various types of models of a single system,
each devoted to a specific purpose.

in our testbed, we used three different models of the
ITP device:

(1) We used an ogperational mogel which captures
the behavior of the real plant. The operational
model (M-1TP-OPER) is sometimes referred to as
the externa/ model, since it is not part of the
intelligent controller.

We also used a controller model (M—ITP-CONT)
which is consulted by the event-based controller
(the conventional controller does not currently
exist, but has been lumped together with the
piant).

we finally made use of a diagnostic model
(M-1TP-DIAG) which is consulted both by the
high—level and low-level diagnosers. Both
M-ITP-CONT and M-ITP-DIAG are referred to as
interna/ models since they are parts of the
intelligent controller.

)

3

Notice that we must ensure the integrity of our
system by enforcing the consistency among the
various models used in our control scheme. This is
achieved by making use of a master mode! (MB-ITP).
All model modifications are performed on that master
model. The various models used in our control scheme
are then automatically generated from the master
model by means of mode/ pruning. Figure 2 shows the
hierarchical pruning of the three models from the
master model using a three—level abstraction.

In practice, it is not useful to store the master model
in the data base in a compact form. A more amenable
approach is to store the master model as a System

797

M- ITP—-OPER

M-ITP—-CONT M- ITP-DIAG

Figure 2: Hierarchical pruning of models

£ntity Structure (6] which describes a hierarchical
decomposition of the overall system into (its
components together with a library of discrete-event
models that describe the leaf components of the
hierarchical decomposition tree. However, this
methodology will not be described in this paper. It is
the topic of a separate publication [7].

The modeling/simulation environment used in our
research is DEVS/Scheme (8], a modeling/simulation
environment designed specifically for management of
hierarchies of discrete—event models. The overall
modeling/simulation task of which the here described
research is a part has been recently reported [3].

Diagnostic Process

The diagnostic process is defined as the recognition
of diseases or faults and their causes. The overall
diagnostic process can be decomposed into three
separate milestones:

(1) Anomaly detection,
(2) Hypothesis generation, and
(3) Hypothesis testing and discrimination.

A fault diagnoser remains a passive observer of its
system until it detects an anomaly. For this purpose,
the diagnoser assumes that its model of the system is
correct, and looks for discrepancies between the
behavior of its model and the behavior of the real
system. If such a discrepancy has been detected, it
assumes that the system has undergone some change
which is considered a fault or disease. This portion
of the fault diagnoser is sometimes referred to as a
walchdog monitor.

Once an anomaly has been detected, the diagnoser
switches from a passive to an active mode. Its next
task must be to come up with a set of hypotheses as
to what might have gone wrong. It can do this by

shallow reasoning, i.e., using a rule-based approach.
In this scenario, the diagnoser will traverse a
cause—effect matrix in reverse direction. The
anomaly is treated as an effect (symptom), and the
diagnoser checks which causes could possibly be made
responsible for the observed symptom. Alternatively,
it can do this by deep reasoning ie., using a
model-based approach. In this scenario, the
diagnoser will make use of a system identification
procedure to modify the parameters of its model until
the model matches the unexpected observed behavior
of the system. Each set of parameters that produces
a good match with the observed behavior can then be
used to generate one or several hypotheses. Shallow
reasoning has the advantages of being generally
faster and of aiming directly at potential causes of
the observed anomaly, while deep reasoning uses an
indirect approach to determine potential causes. Deep
reasoning has the advantage of being theoretically
able to even recognize unforeseen causes, whereas
shallow reasoning cannot hypothesize beyond the
scope of the previously determined set of potential
problems which are hard-coded into the cause—effect
matrix.

The next step in the diagnostic process is hypothesis
testing. Each proposed hypothesis is usually
associated with a series of symptoms. We shall thus
proceed by taking additional measurements to check
whether other symptoms than the one that was
initially observed are also present in the system. If
an essential associated symptom is missing, the
tested hypothesis can be rejected. In shallow
reasoning, we traverse the same cause—effect matrix
in forward direction to determine other effects of the
postulated cause, and test the system for
presence/absence of these additional effects. In deep
reasoning, we use a (usually precoded) model of the
postulated defective system, and compare the
trajectory behavior of this fault model with the
behavior of the real system.

It may be that this approach reduces the number of
hypotheses to one. If this is not the case, the
diagnoser can resort to a mode of actively probing the
real system by interspersing its own test signals to
discriminate among the remaining hypotheses.

Rule-based (shallow) reasoners find single faults
usually faster than model-based (deep) reasoners.
However, the fault tree (a refined hierarchical
version of the cause-effect matrix) grows

798

exponentially with the number of simultaneous faults
being considered. This is not the case with
mode!-based (deep) reasoners [10]. Also, deep
reasoners are much less vulnerable to missing data
than shallow reasoners. They are therefore more
robust. Consequently, both types of reasoners have
their place, and a combination of the two may often
be the best solution.

Generally, faults can be categorized into two types:
persistent (component) faults, and /mtermittent
(communication) faults. Once a persistent fault has
occurred, it remains in the system until actively
removed. intermittent (sporadic) faults come and go
without external intrusion. This research was
concerned with the diagnosis of persistent faults
exclusively.

Hierarchical Diagnostic Units

It is advantageous to construct a diagnostic agent
with an appropriate level of complexity and power.
That is, a diagnostic unit must be developed such that
it is consistent with its intended type of controller.

We prefer to envision a hierarchy of diagnostic units.
in the reported research, the hierarchy consists of
two levels only, #/gi and /ow, accompanying the
high-level (event-based) and the low-level
(conventional) controllers. Thus, we have considered
both a high-level and a low-level diagnoser. This
means that for every intelligent controller there
exists an /ntelligent diagnoser, and for every
conventional controller there exists a conventional
dragnoser:

The number of levels which are assigned to each
diagnostic unit may vary depending on the partitioning
of failures and the number of diagnostic units. That
is, if the failures are classified into five levels, and
if both a low-level and 2 high—level diagnoser are
considered, one diagnoser may be responsible for two
levels of failures, while the other is responsible for
the remaining three levels.

It may be necessary to consider more than two levels
of failures, just as it may be necessary to have
several levels of controliers. Once a high-level
diagnoser determines a faulty device, it notifies a
selector which in turn decides what kind of diagnoser
should be utilized for further diagnosis. It should be

emphasized that the categorization of failures into
levels is highly application dependent.

The high-level/low-level knowledge representations
which are utilized by their corresponding diagnostic
units determine the class of a diagnostic unit (/4/gh
or Jow). Knowledge bases are used to store various
types of information about the system and its
components. Generally, the type of knowledge enables
us to conduct either sha/low reasoning when the
knowledge is classified as high-level or deep

reasoning when the underlying knowledge is
classified as low—level {11].

Classification Expert System Maker

An appropriate expert system is able to provide the
medium for shallow-reasoning. Thus, an expert
system is considered to be the most suitable
candidate for the development of 2 high—level
(intelligent) diagnostic unit.

The Classification Expert System Maker (CESM) is an
expert system shell which is designed for developing
classification-based expert systems [12]. This
expert system shell has been coded in PC-Scheme {13]
which supports the oabject oriented programming

paradigm (SCOOPS). Since DEVS/Scheme {8} has also
been implemented in PC—Scheme, interfacing between
CESM and DEVS/Scheme is straightforward.

Having the ability to utilize an expert system (ie., a
diagnostic unit) in an environment which also

supports the modeling and simulation of
Infq Yorki
ot e Yy oy Bk
K:;:"' Knowledge
Compiler Base
User Knowledge
Censultation Acquisition
Module Module

Knowledge
Designer

Figure 3: Architecture of CESM

799

discrete—event systems played a significant role in
selecting CESM as our expert system shell.

The structure of CESM is shown in Figure 3.

CESM supports several important features:

e system classification modeis built on the
taxonomy entity structure,

e automatic compilation of rules into a knowledge
base,

e a straightforward interfacing with
underlying environment (PC-Scheme),

e expressions and function descriptions in addition
to synonyms and anti-synonyms, and

o uncertainty handling using qualitative words
(e.g, wusually, and rarely), and evidence
accumulation utilizing the Dempster—Shafer
approach [14].

the

The data types and data values for CESM are as
follows: predicate and c/ass (i.e., entity) are two
primary types of data where a predicate is used to
describe a property of a class, and the class piays the
role of an unknown class in the inference engine.
Permissible values for a predicate are ‘yes, 'maybe
yes, ' no, ' maybe no, and 'unknown. The value of a
class is a measure of the evidence relevant to it.
CESM represents the values of each entity by using a
quadruple as defined below:

(EF, EA, N, X)
where:

0.0 < {EF,EA, N, X} < 1.0
EF+EA+N+X=10.

The evidential status values are as follows:

CEF: Conclusive Evidence For - {1,0,0,0)

EF: Evidence For - (EF, 0, (1-EF), 0)
CEA: Conclusive Evidence Against ~ {0, 1,0, 0]
EA: Evidence Against - {0, EA, (1-EA), 0]
N: Neutral Evidence - {0,0,1,0)

X: Inconsistent - {0,0,0,1)

If three of the four elements of a quadruple are
known, the remaining element can be calculated from
the equation EF + EA + N + X = 1.0. Thus, it is
sufficient to store the first three elements of the
quadruple (EF, EA, N, X) only. Since the predicate and

the class have different data values (e.q., mayde yes
for the predicate, and £ for the class), the inference
engine makes them compatible by equating them as
follows:

yes = (1,0,0)
maybe yes = (05,0, 05)
no = (0,1,0)
maybeno = (0,05, 05)
unknown = (0,0, 1)

Knowledge Representation in CESM

The knowledge representation in CESM is hierarchical.
The entity structure is built from a set of entities
(each entity is a class or a subclass) which represent
real world objects or concepts. Each entity has
properties, attributes, and other characteristics
which are described by a set of predicates as shown
e.g. in Figure 4. There exist semantic relations among
predicates which can be synonyms, anti-synonyms,
expressions, or functions.

There exists an entity called the root entity which
has children (entities), and is not itself a child.
Children entities which do not have children
themselves are called /ear entities An entity
structure can be developed such that the most general
information is assigned to the root entity, and the
most specific information is assigned to the leaf
entities. The development of an entity structure
using this approach can represent faults from the
least specific entity (i.e,, the root entity) to the most
specific entities (i.e., the leaf entities).

The predicates are chosen such that they either
provide evidence in favor of or against a failure. An
entity structure can be constructed to represent the
knowledge which is required by sha//ow reasoning
without specifying the structural and behavioral
information required by its counterpart, deep
reasoning Therefore, it is only necessary to
construct an entity structure (i.e, a 7au/t-tree) for a
problem, which is then automatically transiated into
a set of rules by the knowledge base compiler.

The ITP Experiment

in order to monitor the volume of the liquid inside the
pressurized bladder bottles, each of them has been

800

outfitted with air pressure sensors. We assume that
there are two identical threshold type air pressure
Sensors: a primary sensor, and a backyp sensor. The
primary sensors are used for control purposes, while
the backup sensors are used for diagnostic purposes.
The reason for including two sensors of each kind is
to utilize the backup sensor for confirmation of the
primary sensor in the event of an error. The primary
sensors are represented in M-ITP-OPER, and the
backup sensors are represented in M=ITP-DIAG.

Although the diagnoser unit must represent the
backup air pressure sensors, it may not be necessary
to inciude the same level of complexity in the
M-ITP-DIAG as in the M-ITP-OPER. A less detailed
diagnostic model of the ITP device is sufficient since
the actual operations of the backup sensors need not
be monitored by the event-based controlier.

Figure 4 depicts the faults (classes or entities) and
related symptoms (predicates) that should be
examined for determining the cause(s) of a failure in
setting up the ITP.

Faults

Specification

Persistent Intermittent
Faults Faults
I~ Backup Air Pressure Sensor
g Needle Inside Pressurized Bladder Bottle
< |
c' Syringe Primary Pressurized
2 Sensor Bladder
= Bottle
X :
(]
H | I L
-i' Broken Clogged Bent Broken Raptured
» Needle Needle Inflatable
3 Bag

Figure 4: A fault-tree for the ITP experiment.

The diagnostic model of the ITP device may respond
with any of the values which were defined for the
data type predicate (i.e, 'yes, ‘mayve yes; 'no,
‘maybe no, and ' unknown’). Although, all the sensors
in this study are assumed to have threshold type
characteristics (i.e., sinary logic), we would presume
that their responses are of the predicate data type
defined earlier.

Figure 4 shows how, in our FHL exampie, faults can be
partitioned into general (i.e., high-level), and specific

(i.e, low-level). Faults of the pressurized biadaer
bottie, the syringe, and the primary air pressure
sensor Wwithout further qualification are classified
as high-level causes. Once a high-level diagnoser has
determined the possible high-level cause(s) of a
fault, a more specialized diagnostic unit (ie, 2
low-level diagnoser) may be used to identify the
Jow-level cause(s) of the previously determined
fault. Characterized as low-level causes were:
broken syringe, clogged needle, bent needle,
ruptured inflatable bag, and broken bottle.

Figure S illustrates how a fault-tree may utilize

binary logic in order to identify the cause(s) of 2
failure.

Faults

l Q1 : Are specifications correct?
joum jau®
Persistent Intermittent
Faults Faulls

Q2: Do primary and backup sensors agree?
Q3 Is needle inside pressurized bladder bottle?

2(T) Q2(F) o2(T) |oz(r)
|832F) |03(T) | 03(T) Une t:i(?
Pri Pressurized ecide
Syringe S'ﬂ':;.orr’ Bladder
Battle

Figure S: Part of the fault-tree given in Figure 4;
binary logic is utilized in determining the
high—level failures.

The responses of the backup sensors are not
sufficient for a unique discrimination between ali
high-level cause(s) of a fault. Consequently, we shall
need additional sources of information (e.g. the
response of a vision sensor) in order to discriminate
between the high—level cause(s) of a failure.

From this fault-tree, it cannot be determined
conclusively which of the three components is
responsible for a hardware failure, it only indicates
which is the most likely candidate depending on the
received responses for questions Q2 and Q3.
Moreover, there is an exception: If the responses to
both questions Q2 and Q3 are fa/se (F), we cannot
conclude which of the components is the most likely
culprit. The predicates are expressed as sentences
which are equivalent to the rules compiled by the
knowleage base compiier component of CESM.

Once the faulty component has been determined, it
may be necessary to locate the low-level cause(s)

801

through 2 more thorough analysis. This can be
achieved by the model-based low-level diagnoser
which will analyze the behavior of the faulty
component only, but will do so with a much finer
granularity.

It seems important to keep a ‘rack record of past
failures and their repairs. If a failure that was
recently removed reoccurs again shortly after it was
removed, there is a strong indication that the true
cause of the problem had not been identified, and that
the repair approach was unsuccessful. In that case,
the diagnoser should either take this new information
into account in an extended analysis of the problem,
or recognize its own limits and call for help.

For instance, if a perforated inflatable bag is
replaced with a new one, and shortly thereafter, the
new bag is perforated again, the problem may be that
the true cause which was responsible for the damage
of the inflatable bag had not been removed (e.g., if the
liquid contained in the bladder is able to dissolve the
bladder, or if there is a thorn inside the bottie that
perforates the full bladder, or if the control
algorithm pushes the needle so far into the bottle
that the needle perforates the almost empty bladder).

It is possible that several devices (e.g.,, the syringe
and the pressurized bladder bottle) may be involved
in a single failure. E.g, if the control algorithm
places the syringe in an incorrect position (not
centered on the septum), an injection attempt could
damage both the syringe and the pressurized bladder
bottle at the same time. Retrospectively, it will be
difficult to identify the true cause of the problem
since both the syringe and the pressurized bladder
bottle are meanwhile defective. The design of
diagnostic capabilities that are able to solve such
problems are certainly non-trivial.

The fault-tree can be transformed by the Anow/edge
base compiler into a set of rules, an automated
process offered by CESM. However, since CESM was
implemented as an interactive expert system
environment, we could not use CESM for our task as it
was, but had to extract portions of the CESM code to
form another, non-interactive expert system
environment from it. CESM's interactive consultation
capability was thereby eliminated from the code. Our
code, instead of asking the wser to supply the
necessary information in an interactive session,
obtains the required information directly from
models which represent actual sensory devices. Note

that this is not equivalent to the mooe/-based
approach discussed earlier. These models are merely
used as replacements for the real system since our
diagnoser is not currently connected to a real process
with real sensory devices.

The necessity for a non-interactive expert system can
be envisioned for an automated environment with
none or minimal human intervention, as this is truly
the case in the context of the SSF. That is, once an
error is detected, the event-based controller sends a
message to a high—level diagnoser indicating the
encountered failure. Thereafter, the diagnoser begins
its diagnostic process by identifying the cause(s) of
the failure. At the SSF, it may be impractica) to have
a human operator consult with an expert system for
identifying the possible cause(s) of a failure, instead,
the expert system must be able to directly and
unsupervised interrogate sensors to obtain the
necessary information enabling its decision making
process.

An initial version of the knowledge base (or
equivalently a set of rules) should be constructed in
advance, but it must be possible to constantly upgrade
it incorporating new experiences in order to cope
with a constantly changing world due to system
upgrading and system degradation. However, in the
currently available expert system, which is a
modified version of CESM, all rules must be written in
advance. There is currently no provision in the code
for learning new rules on the fly.

Summary

Our goal has been to demonstrate that a high-level
diagnostic unit, which is designed to function at the
same level of complexity as an event-based
controller, may be beneficial. It may not be necessary
to rely entirely on hardware redundancy if other
means are available and/or justifiable. More accurate
and dependable methods in comparison to the backup
Sensors can be utilized as well. For instance, it may
be desirable to substitute backup air pressure sensors
with a video camera to quantify the amount of the
liquid inside a chamber. The application of
hierarchical diagnostic systems may reduce the
required effort of knowledge acquisition, and simplify
the inferencing mechanisms in comparison to a
diagnostic system which is aimed at alt leveis of
failures within a complex system. Moreover,
hierarchical diagnostic systems can be more easily

802

implemented in a distributed computing architecture
than monolithic diagnosers, thereby reducing the
amount of time needed for the decision making
process which may be essential in the context of a
real-time diagnoser.

References

[1] Schosley L. C. end Collier F. E. {1989). Telescience
Testbed Pilot Program, Final Report, USRA Grant, Tech. Report
TSL-021/68, Dept. of Electrical Engr., University of Arizone,
Tucson, AZ 85721.

[2] Thermann, W. (1984). “Principles of Isotachophoresis and
Dynemics of the Isotachophoresis Seperation of Two
Componenls™, Sepsration Stience and Technology 19, PPp-
455—467.

[3] Meystel, A. ond Lub, J. Y. S. Eds., (1987). /FEF
ater nations] Sympostum on /ntelligent Control, New York, NY:
EEE Press.

(4] Albes, J. S, MecCain, H. G, oand Lumia, R. (1987).
NASA/NBS Standerd Reference Model for Telerobot Control
System Architecture (NASREM), NBS Technical Note 1235,
Robot System Division, Center for Manufacturing Engineering,
National Technica) Infor mation Services, Geithersburg, MD.

[5] Zeigler, B. P. {1984). Mutitaceted Mochiling end Discrete
Lvent Simulation, London and Orlando, FL: Academic Press.

[6] Zeigler, B. P. (1987). “Mierarchical, Modular Discrete
Event Modelling in an Object Orientsd Environment”,
Simudation, 49(S), pp. 219-230.

[7] Wang, Q., Cellier, F. E. and Zeigler, B. P. (1990). “A
Five—Level Hierarchy for the Manipulstion of Simulation
Models™, in preparation.

[8) Zeigler, B. P. (1989). “ DEYS Representation of Dynemical
Systems: Event—Besed Intelligent Control”, Aracesbags of
the IFEE, T7(1), pp. 72—80.

[9] Zeigler, B. P_, Cellisr, F. E., and Rezenblit, J. W.
(1988). “Design of 8 Simulstion Environment for Leboratory
Manegement by Robot Organizations™, . /ade/Nigent and Rvdotic
Systems, 1, pp. 299—309.

110])Searl, E. (1989). “Sensor Failure and Missing Deta: Further
Inducements for Reesoning with Models™, personel
communication.

[11]1Chandrasekaran, B. and Mittel, 3. (1983). “Deep Yersus
Compiled Knowledge Approaches to Disgnostic
Problem—Solving™, /at. . Men—Hechine Studkes, 19, pp.
425—436.

[12]Zeigler, B.P. (1987). CESM: Classification Expert System
Management, Tech. Rep., CERL Lab., Dept. of ECE, Univ. of
Arizons, Tucson, AZ 85721.

[13]Texas lastruments, Inc. (1985). Ti~Scheme: Languoge
Reference Manuel, Texas Instruments, Dellss, TX.

[14]2eigler, B. P. (1988). “Some Properties of Modified
Dempster—Schefer Uncertsinty Management Operators in
Rule—Beded Inference Systems™, /ater. /. Genersl Systems,
14(4), pp. 345—356.

