Quantized State System Simulation

Francois E. Cellier
Inst. Computational Science CAB G82.1
ETH Zirich
Universitatsstr. 6
8092 Zirich
Switzerland
FCellier@Inf ETHZ.CH

ABSTRACT

The paper introduces a new family of numerical ODE
solvers called Quantized State System (QSS) methods.
Given a set of ODEs in its state-space representation,
the QSS methods replace the classic time slicing by a
quantization of the states, leading to an asynchronous
discrete-event simulation model instead of a discrete-
time difference equation model.

QSS methods applied to stable linear time-invariant
systems give always practically stable numerical re-
sults, irrespective of the quantization adopted. Tak-
ing into account that the QSS methods are explicit al-
gorithms, this property has strong theoretical implica-
tions and offers a promising perspective for applications
such as real-time simulation of stiff systems, where im-
plicit solutions are usually unacceptable.

Also discussed are the main properties of the meth-
ods in the context of simulating discontinuous sys-
tems (the asynchronous nature of these algorithms
gives them important advantages for discontinuity han-
dling). Another class of systems that can be simu-
lated by means of these algorithms are marginally sta-
ble (Hamiltonian) systems!.

Keywords: Quantized State System Simulation, QSS
Simulation, Discontinuous System Simulation, Explicit
Stiff System Solver, Real-time Stiff System Simulation,
Marginally Stable System Simulation, Distributed Par-
allel Simulation.

INTRODUCTION

1This work was partially supported by Agencia Nacional de
Promocién Cientifica y Tecnoldgica (ANPCYT) of Argentina un-
der grant PICT 31653

Ernesto Kofman, Gustavo Migoni, Mario Bortolotto

Laboratorio de Sistemas Dindmicos
Universidad Nacional de Rosario
Riobamba 245 bis
2000 Rosario
Argentina

{Kofman,Migoni,Bortolotto }@Cifasis-Conicet. Gov.AR

When solving ordinary differential equations on a dig-
ital computer, it is necessary to perform some type of
discretization, as a digital computer can only perform
a finite number of operations within a finite time span.

Commonly, it is the time axis that is being dis-
cretized. We refer to algorithms that discretize the
time axis as time-slicing algorithms. The discretiza-
tion may either be equidistant (fixed-step algorithms)
or dependent on the numerical properties of the differ-
ential equations to be solved (variable-step algorithms).
The approximation order may be either fixed (fixed-
order algorithms) or time-dependent (variable-order al-
gorithms).

Most algorithms operate on a single clock, i.e., multi-
ple differential equations are discretized using the same
time-slicing algorithm. Such algorithms are referred to
as synchronous algorithms. Simulations may also oper-
ate on multiple clocks (asynchronous algorithms), but
the additional computations necessary to synchronize
the solutions make asynchronous simulation methods
rarely profitable.

The solution to the differential equation is approxi-
mated by fitting an interpolation polynomial through
past state and state derivative values. The interpola-
tion polynomial is then used to extrapolate in time to
the next sampling instant in the case of explicit algo-
rithms. Implicit algorithms avoid the extrapolation by
making use of the (unknown) state derivative at the
next sampling instant in the construction of the inter-
polation algorithm.

The numerical ODE solver converts the original dif-
ferential equations to equivalent difference equations.
The algorithm designer needs to worry about issues
of numerical stability (errors do not accumulate over
time) and accuracy (the numerical solution of the dif-
ference equations approximates well the analytical so-



lution of the differential equations).

Not every algorithm is equally well suited for sim-
ulating all systems. Stiff systems are systems with
Jacobians, whose eigenvalues are spread widely along
the negative real axis of the complex plane. They re-
quire special classes of implicit algorithms for their so-
lution. Marginally stable systems are systems with Ja-
cobians, whose dominant eigenvalues are spread widely
up and down along the imaginary axis of the complex
plane. They also require special classes of numerical
algorithms for their solution.

Many books have been written that deal with these
issues explicitly and extensively, including one by the
authors of this paper [1].

QUANTIZED STATE SYSTEM SOLVERS

Time slicing is not the only possible approach to nu-
merically solving a set of ODEs on a digital computer,
although it is by far the most commonly used approach.
In this paper, we shall present another discretization
method. Instead of discretizing time, the Quantized
State System (QSS) algorithms discretize the state val-
ues, while keeping time continuous.

Hence whereas a time-slicing method attempts to an-
swer the question:

Given that the state value at time ¢ is equal
to x, what is the state value at time tpy; =
tr + At?

a QSS method provides an answer to the following mod-
ified question:

Given that the state has a value of zj, at time
t, what is the earliest time instant, at which
the state assumes a value of xp4+1 = 2 £ Ax?

The QSS approach to numerical ODE solution de-
scribes thus not a single algorithm, but rather an entire
class of algorithms that is, at least conceptually, as rich
and varied as that of the time-slicing algorithms.

Of course, since the QSS approach is of a fairly recent
vintage, the currently available QSS codes are not yet
as sophisticated as the classical numerical ODE solvers.

Currently available are explicit, asynchronous,
variable-step, fixed-order algorithms of orders one
through three (QSS1 [5], QSS2 [3], and QSS3 [4]), an

(also explicit!) stiff system solver of order one (BQSS
[6]), and a geometric solver for dealing with marginally
stable systems also of order one (CQSS). BQSS2 and
CQSS2 algorithms are currently under development.

QSS algorithms have some striking properties that
make them interesting for the solution of a variety of
different problems, including the simulation of ODE
systems with heavy discontinuities, for real-time sim-
ulation of stiff systems, and for parallel simulation on
multiple processors, e.g. in embedded system design.

THE QSS1 ALGORITHM

Given an ODE system in state-space form:

x = f(x,u,t) (1)

where x € R" is the state vector, u € R™ is the input
vector, and t denotes time.

We approximate the ODE system in the following
fashion:

x = f(floor(x), floor(u),t) (2)

where the floor() function replaces the argument by
the next lower quantized value of the argument. If
Az; = 1.0, then floor(z;) denotes the conventional
round-off operation, i.e., x; gets rounded off to the next
integer value below.

Evidently, as long as none of the states or inputs
crosses through the next threshold, all state derivatives
remain constant, and the states are linear functions of
time. If £ > 0, x increases linearly toward zjy1, and if
& < 0, x decreases linearly toward x;. In both cases,
the time at which the upper or lower threshold is being
reached can be computed explicitly. If £ = 0, z remains
constant, and never reaches either threshold.

The time, at which a state variable reaches its next
threshold is different for separate states. Hence QSS
algorithms are naturally asynchronous. Each integra-
tor proceeds at its own pace. State variables with large
gradients will pass through their thresholds more fre-
quently than states with small gradients.

If a state or input variable passes through its next
threshold, that information must be passed on to those
integrators that process state equations that depend
on the variable in question, i.e., information is passed



selectively to those integrators only that depend on this
information.

QSS algorithms do not convert ODE systems to
equivalent difference equation systems, but instead,
convert the continuous-time model to an equivalent
discrete-event model that can be simulated using
any suitable discrete-event simulation engine, such as

DEVS [7].

Unfortunately, the algorithm as described up to now
doesn’t always work. It frequently leads to illegitimate
discrete-event models, i.e., to models that switch in-
finitely often within a finite time period.

Let us discuss the following simple first-order model:

& = —floor(zx) — 0.5 (3)

with initial condition a(¢t = 0) = 0.0. Initially,
floor(x) = 0, and therefore & = —0.5 < 0. Thus, the
state switches immediately to floor(xz) = —1. However

now, & = +0.5 > 0, and the state switches immediately
back to floor(xz) = 0.

In order to avoid the problem of illegitimacy of the
resulting discrete-event model, we need to introduce
hysteresis into the discretization. Thus, the floor()
function must now be implemented as shown in Fig. 1,
where ¢(t) = floor(z(t)).

q(t)

B

N

Figure 1: Hysteretic discretization

The hysteresis prevents the generation of illegitimate
models. The smaller the hysteresis width is chosen, the
higher may be the resulting switching frequency, but

the switching frequency can never become infinite. It
is usually best to choose the same value for the quanti-
zation height and for the hysteresis width, i.e., Az = €.

THE QSS2 and QSS3 ALGORITHMS

Let us now try to simulate the simple model:

@ =1.0 (4)

The model is so simple that the numerical ODE solver
should hopefully be able to solve it within a single step.
Yet, QSS1 is not capable of solving this problem effi-
ciently. Each time, the state z passes through the next
threshold, a discrete event is being issued, although the
state derivative doesn’t depend on it.

This is the problem with a first-order accurate QSS
algorithm. The number of events grows inverse propor-
tional to the discretization, Az. When we make Ax ten
times smaller, we generate ten times more events.

We can improve the situation using the following
idea. Until now, we let the discretized states:

qi(t) = floor(x:i(t)) (5)

be constant. Consequently, also the state derivatives
were constant in between events. We now allow the
discretized states to be linear functions. Unfortunately,
as the state derivatives:

T = fz (qv t) (6)

are nonlinear functions of the discretized state vector
q, the derivatives are not necessarily linear themselves.
However, we can linearize the nonlinear functions at
the time of the event around the current state, thereby
forcing the state derivatives to be linear.

As #; is a linear function, it can be integrated analyt-
ically. the state variable x; is thus a parabolic function.

An event will be scheduled whenever the parabolic
x;(t) deviates from the linear ¢;(¢) by more than Ax;.

This method, called QSS2, solves the trivial problem
of Eq.(4) in a single integration step. The method is
second-order accurate, and the number of events grows
inverse to the square root of the discretization. If we
choose Az 100 times smaller, we only generate 10 times
as many events as before.



In the same fashion, we also implemented a third-
order accurate QSS3 method. The number of events of
QSS3 grows inverse proportional to the cubic root of
the discretization.

SIMULATING ACROSS DISCONTINUITIES

A problem that occurs frequently in the simulation of
technical systems is that the state equations contain
discontinuities.

As time slicing algorithms are based on interpola-
tion polynomials that don’t ever exhibit discontinuities,
such algorithms cannot integrate across discontinuities.
Instead, the discontinuity is being formulated as a state
event [1], and an iteration algorithm (root solver) is in-
voked, whenever the solution crosses through a state
event detector function to locate the time instant of
the discontinuity accurately.

Thus, the location of discontinuities can slow down
the simulation significantly due to the necessary itera-
tion, and in the case of real-time simulation, an accu-
rate location of state events may not be feasible at all,
as this would cause massive over-runs.

To avoid the need of iterating on state events, some
integration algorithms use a dense output feature in-
stead. These algorithms are able to calculate the so-
lution not only at the sampling instants with full ac-
curacy, but also at arbitrary time instants in between
sampling instants.

An integration algorithm that offers dense output al-
lows the user to replace the iteration on state events
by interpolation. Yet, there is computational overhead
associated with providing dense output, and even the
interpolation itself may be too costly.

QSS algorithms don’t have this problem. Determin-
ing when a solution crosses through a given threshold is
what these algorithms “do for a living.” There is zero
overhead associated with locating state events.

Hence QSS algorithms are particularly good at sim-
ulating systems with heavy discontinuities, such as
switched power converter circuits, efficiently and ac-
curately.

STIFF SYSTEM SOLUTION

Let us now look at the simulation of stiff systems.

Stiff systems require special integration algorithms,

so-called stiff system solvers, because other algorithms
lose their numerical stability for large time steps. Un-
less we use a stiff system solver, the largest time step
that can be used is related to the location of the fastest
eigenvalue of the Jacobian of the system, instead of be-
ing related to the fastest gradient in the solution vector.

Unfortunately, it can be shown that all stiff system
solvers are invariably implicit algorithms [1], although
not all implicit algorithms are stiff system solvers.

Implicit algorithms, however, require a Newton iter-
ation for each integration step, since the solver com-
putes the future state from the future state derivative,
whereas the model computes the future state deriva-
tive from the future state. This makes these algorithms
unattractive for real-time simulation.

How do the QSS algorithms fare? It has been shown
that QSS algorithms, when applied to an analytically
stable model, cannot ever become numerically unsta-
ble. However, when we apply a QSS algorithm to a
stiff system, we frequently obtain high-frequency oscil-
lations in some of the state variables, i.e., the algorithm
“adjusts” its step size to a very small value, equivalent
to step sizes that a classical explicit solver would need
to use in order to preserve numerical stability. Hence
neither of the three algorithms introduced up to now
can be used to simulate stiff systems.

Let us now propose an “implicit” QSS algorithm. In-
stead of using the current discretized state in the com-
putation of the state derivative, we shall use the next
(anticipated) discrete state for this purpose.

We now have an implicit algorithm, because the
solver computes the future state from the derivative,
and the model computes the derivative from the future
state.

However, the algorithm doesn’t require any iteration,
because there are only two possible future states. The
next state is either the current state plus one discretiza-
tion level, or it is the current state minus one discretiza-
tion level. No other options exist.

Hence we compute the derivatives under both as-
sumptions. If the derivative is positive under both as-
sumptions, we know that the state is increasing. If it is
negative under both assumptions, we know that it is de-
creasing, and if we get two different answers, we know
that the derivative will be changing directions some-
time during the next step. Hence we set the derivative
to zero, and wait for the next event to happen elsewhere
in the system.



This algorithm has been implemented. It has been
coined BQSS (backward QSS). It is a stiffly stable al-
gorithm. It adjusts its step sizes with the sizes of the
actual gradients in the system, and not with the loca-
tions of the eigenvalues of the Jacobian. BQSS doesn’t
lead to high-frequency oscillations when simulating stiff
systems.

It is conceptually an implicit algorithm, but as there
are only two choices for the next state, BQSS doesn’t
require an iteration, and in fact, the computational
overhead in comparison with QSS is rather small.
When we apply BQSS to a non-stiff system, it simu-
lates maybe 10% slower than QSS.

For real-time simulation, we usually prefer to use
low-order algorithms, because we are dealing with un-
known input functions that need to be sampled fre-
quently. For this reason, no one ever uses a high-order
algorithm for real-time simulation. Most people use ei-
ther forward Euler (FE), FE with a correction term to
make the algorithm second order accurate, or possible
an Adams-Bashforth 3rd order (AB3) algorithm.

Unfortunately, neither of these algorithms is suitable
for simulating stiff systems. Hence if a stiff system is
to be simulated in real time, we have a problem. Back-
ward Euler (BE), on the other hand, is too inefficient.
The iteration overhead can hardly ever be tolerated. A
single step of BE is roughly three times as expensive as
a single step of FE.

BQSS is the right tool for this type of problem. The
algorithm is practically explicit, as it doesn’t require
an iteration. We can calculate the maximum computa-
tional load of a single step of BQSS, and thereby avoid
ever obtaining over-runs.

Gustavo Migoni is dealing with stiff QSS solvers in
his Ph.D. research. He is currently working on extend-
ing the BQSS algorithm to second and third orders.
Unfortunately the extension is not so easy as in the
case of the explicit algorithms. When a derivative ex-
hibits opposite signs under the two assumptions, it no
longer suffices to set it to zero. A BQSS2 algorithm has
already been designed, but the corresponding code has
not yet been fully implemented and debugged.

SIMULATING MARGINALLY STA-
BLE SYSTEMS

Another problem that engineers and scientists are fre-
quently dealing with is the simulation of Hamiltonian
systems, i.e., systems without any damping. This is a

subclass of the class of marginally stable systems, i.e.,
systems that have the dominant eigenvalues of their
Jacobians spread up and down in the vicinity of the
imaginary axis of the complex plane.

Most explicit algorithms have the tendency of con-
sidering these systems unstable, i.e., they add energy to
a system that should merely preserve its energy. Stiff
system solvers, on the other hand, have the tendency
of considering these systems damped, i.e., they remove
energy from the system, rather than preserving it.

Algorithms that are particularly well suited for sim-
ulating such systems are the F-stable algorithms, i.e.,
algorithms, whose numerical stability domain coincides
precisely with the left half complex plane [1]. The sim-
plest F-stable algorithm is the trapezoidal rule.

Is there such a thing as an “F-stable” QSS algorithm?
Unfortunately, the concept of a numerical stability do-
main doesn’t carry over easily to the class of QSS al-
gorithms. Hence we need to go another route.

Let us simulate the simple Hamiltonian problem:

£'C1 = X2 (7)

i‘g = -2

We should obtain a sine wave. When we use QSS1, the
amplitude of the sine wave is slowly increasing. When
we use BQSS, it is slowly decreasing. This is what we
would expect to happen.

Hence we tried calculating the derivatives once using
QSS and once using BQSS, and we used one half of
each. This is also very inexpensive. We called the
algorithm CQSS (centered QSS).

We obtained a stable sine wave oscillation. But why
did this work?

Luckily for us, Hairer and Wanner have developed
a beautiful theory for algorithms that are designed to
solve precisely this kind of problems [2]. Such algo-
rithms, called geometric algorithms, preserve geomet-
ric properties such as symmetry, energy, symplecticity,
etc..

A symmetric algorithm is one that exhibits the fol-
lowing property. If we integrate across one step forward
in time, then reverse time and integrate across the same
step backward in time, we need to end up at exactly
the same spot from where we started.

It can be easily shown that CQSS is indeed a sym-



metric algorithm, whereas neither QSS nor BQSS are
symmetric algorithms.

The second property is more tricky, because it applies
to a system of at least two state equations, rather than
to an individual state equation.

In a synchronous algorithm, we can check the energy
at the beginning and at the end of the step. Yet in
an asynchronous algorithm, this doesn’t work as easily.
The two integrators operate on separate clocks.

Mario Bortolotto started recently working on geo-
metric QSS solvers in his Ph.D. research. The problem
of proving the conservation property has meanwhile
been solved, but the results haven’t been published yet.
Hence we cannot offer a reference to the corresponding
publication yet, and the proof is too mathematical to
include it right here. Mario plans on extending CQSS
also to second and third orders, but this work is still in
its infancy.

DISRIBUTED SIMULATION ON PAR-
ALLEL ARCHITECTURES

Real-time simulation often involves distributing the
simulation across multiple processors. It is advanta-
geous to run such simulations asynchronously.

When using QSS algorithms, running asyn-
chronously comes naturally. Such algorithms operate
asynchronously even when executed on a single proces-
sor. Hence it is much easier, distributing a QSS simu-
lation over multiple processors than a classical simula-
tion.

When distributing a simulation across multiple pro-
cessors, the communication overhead must be mini-
mized. It is thus important to communicate as seldom
as possible, and when a communication is needed, min-
imize the amount of information that has to be trans-
mitted.

QSS algorithms do well on both fronts.

QSS algorithms only communicate when a state vari-
able crosses through its next threshold, i.e., at event
times, and they communicate asynchronously, i.e., they
communicate only to those other neighboring integra-
tors that need the information. Hence the communica-
tion frequency is kept as low as possible.

Also, when a state variable communicates its event,
all it needs to tell the neighboring integrators is whether
it increases its level by one, or whether it decreases it

by one. Hence 1 bit is sufficient. There is never any
need to communicate complete state information.

CONCLUSIONS

In this paper, a new class of numerical ODE solvers has
been presented. These algorithms represent a drastic
departure from the classical numerical ODE solvers, in
that they are based on state quantization instead of
time slicing.

The article looks at these algorithms with a bird’s
eye’s view, i.e., it aims at explaining the basic concepts
and ideas behind these methods, rather than going into
much mathematical detail.

Yet, rigorous mathematical descriptions of these al-
gorithms have been recently published and are avail-
able. Both the numerical stability and accuracy condi-
tions have been analyzed thoroughly.

It has been established that an analytically stable
system cannot become numerically unstable when sim-
ulating it using a QSS algorithm. What may happen
is that the algorithm produces high-frequency oscilla-
tions, which is equivalent to simulating using a very
small step size.

In addition, a global error bound has been estab-
lished, i.e., simulation accuracy can be guaranteed not
only locally, but even globally. Unfortunately, the error
bound is often conservative, i.e., the simulation results
may in reality be quite a bit more accurate than what
the error bound indicates.

A simulation tool, PowerDEVS, has been made avail-
able [1] that implements the QSS algorithms using a
DEVS simulation engine [7].

References

[1] F.E. Cellier and E. Kofman. Continuous System
Simulation. Springer, New York, 2006.

[2] Ernst Hairer, Christian Lubich, and Gerhard Wan-
ner. Geometric Numerical Integration Structure-
Preserving Algorithms for Ordinary Differential
Equations. Springer, 2002.

[3] E. Kofman. A Second Order Approximation for
DEVS Simulation of Continuous Systems. Simula-
tion, 78(2):76-89, 2002.



[4]

E. Kofman. A Third Order Discrete Event Simu-
lation Method for Continuous System Simulation.
Latin American Applied Research, 36(2):101-108,
2006.

E. Kofman and S. Junco. Quantized State Systems.
A DEVS Approach for Continuous System Simula-
tion. Transactions of SCS, 18(3):123-132, 2001.

G. Migoni, E. Kofman, and F. Cellier. Inte-
graciéon por Cuantificacién de Sistemas Stiff. Re-
vista Iberoamericana de Automdtica e Informdtica

Industrial, 4(3):97-106, 2007.

B. Zeigler, T.G. Kim, and H. Praehofer. Theory of
Modeling and Simulation. Second edition. Academic
Press, New York, 2000.



