Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

A FIVE LEVEL HIERARCHY FOR THE MANAGEMENT OF SIMULATION MODELS !

Frangois E. Cellier
Qingsu Wang
Bernard P. Zeigler

Department of Electrical and Computer Engineering
The University of Arizona
Tucson, Arizona 85721

ABSTRACT

This advanced tutorial describes the goal-driven automated
generation of models from a set of design specifications. A five
level hierarchy is introduced which supports the automated gen-
eration of both models and simulation experiments from an ab-
stract description of an overall design, and from an abstract
description of the goals of the simulation study. The aim is to
be able to generate models and experiments in a top—down fash-
ion from a description of static components and the couplings
between these components by automating the stepwise refine-
ment process. Detailed model descriptions are extracted from
template files residing in model libraries. The paper empha-
sizes on the problems encountered in the automatic generation
of continuous-system models since the synthesis of these models
is more involved than the synthesis of discrete-event models.

The paper starts with an assessment of the need for the pro-
posed automated model synthesis methodology. In the sequel,
the advocated five level hierarchy will be presented in a bottom-
up fashion starting with classical approaches to continuous-
system simulation (the first and bottom layer of our hierarchy),
and advancing to higher and higher levels of abstraction. The
paper ends with the presentation of a complete example of the
proposed methodology, now presented in a top-down fashion.
1. INTRODUCTION: THE NEED FOR
AUTOMATED MODEL SYNTHESIS

Applications for automated model synthesis technology can
be found in unmanned deep Space missions where robots must
be able to make intelligent model-based decisions. This capabil-
ity is important since it reduces the necessity for frequent com-
munications with Earth which inevitably slow down the decision
making process due to extensive communication time delays.

Applications can also be found in manufacturing. The de-
sign of either new parts or new tools from similar existing parts
or tools is a complex process which is accompanied by much
responsibility and few rewards. Automated design and simula-
tion aids can make this process less painful, and can reduce the
time needed to educate new design engineers.

Finally, applications can be found in real-time decision sup-
port. Military strategists could use this technology to describe
proposed scenarios in abstract high-level terms. Detailed mod-
els for simulating the proposed scenarios could be automatically
generated, and the strategist could watch the most likely effects
of a proposed strategy to unfold before his/her eyes.

1.1 Space

When humanity will colonize other planets of our solar sys-
tem such as planet Mars or the moons of Jupiter and Saturn,
this colonization will have to occur in three phases. In a first
phase, unmanned Space missions will deploy high—autonomy
systems which must prepare the target planet for human ar-
rival. These missions will be carried out by smart robots with

 This research is supported in part by NASA-Ames Co-operative
Agreement No. NCC 2-525, “A Simulation Environment for Laboratory
M t by Robot Organisations”, and in part by the NASA /University
of Arisona Space Engineering Research Center for the Utilization of Local
Planctary Resources (SERC/CULPR).

55

a high degree of decision making capability. The second phase
will consist of manned Space missions conducted by a few highly
specialized astronauts who must be supported in their endeav-
ors by an abundance of smart automatic devices. During this
second phase, the need for high-autonomy systems will not de-
crease. On the contrary, it will grow. Only in the third phase
will it be possible to send larger numbers of less specialized hu-
mans to the target planet, and only then will life on this planet
start to resemble life here on Earth.

As a first (and very rudimentary) example of this multi-
phased approach to colonization, the University of Arizona is
currently developing a prototype of an automated system that
will be able to produce oxidizer for rocket fuel on planet Mars
from CO, extracted from the Martian atmosphere [Ramohalli
et al 1989]. This high-autonomy system will be deployed by an
unmanned mission to Mars which will not return to Earth. The
deployed oxygen production plant will then produce oxygen in
a basically unsupervised operational mode during a period of
two years. A manned follow—up mission to Mars will then use
the oxygen produced by this plant for its return flight to Barth.
With this approach, manned missions to Mars can be made
more economical since it will no longer be necessary to lift the
{heavy) oxygen for the return flight out of the gravity well of
planet Earth.

Intelligent decision making requires insight into the conse-
quences of the decision made. Frequently, the decision making
process consists of choosing among a series of alternative sce-
narios. The decision maker must be able to assess the pro’s and
con’s of each alternative by predicting their future effects on
the overall plan. For this purpose, he often wishes to simulate
alternative designs prior to their implementation.

A robot roaming around on planet Mars is confronted with
exactly this problem. To choose between a set of alternative
scenarios, it should base its decision on a proper assessment of
the effects of each one. Since the situation of the robot at the
time of decision making depends heavily on previous decisions
it has made, it is unfeasible to carry along individual simula-
tion programs for all possible alternatives. Such an approach
would quickly lead to myriads of simulation programs which
are largely the same, but each one of which is slightly different
from every other. Instead, the decision making process should
operate on a “world model” [Albus et al.1987] from which a
specific simulation model for any given specific purpose can be
automatically synthesized at any time [Zeigler et al.1989a).

1.2 Manufacturing

Aircraft manufacturers maintain relational databases con-
taining large numbers of construction plans for aircraft parts.
Whenever a new part is needed, a process design engineer
searches such a database for one or several similar designs, and
modifies them until the new design is completed. The new de-
sign is then added to the database. This is an extremely stress-
ful job which carries a lot of responsibility (if the design doesn’t
work, who is to blame?) and few rewards. Consequently, the
average process design engineer “lasts” in this job for only 18
to 24 months, while his or her education consumes the first nine
to 12 months of this period. Manufacturers obviously have a
problem here.

An automated model generation system (AMGS) can help
overcome such problems. With the new technology, a process

F.E. Cellier, Q. Wang, and B.P. Zeigler

design engineer would start by formulating (and formalizing) a
set of goals and a set of constraints describing the new design.
The AMGS would then automatically generate one or several
alternative designs together with simulation models for these de-
signs, alternatives which satisfy all the goals and violate none of
the constraints. If the number of resulting designs is small, the
process design engineer could then simulate all of the proposed
designs and pick the one which seems to be most attractive.
If the AMGS generates too many designs, the engineer could
formulate additional goals and/or constraints to limit the num-
ber of acceptable designs, and if the AMGS does not find any
solution, the engineer knows that he has overconstrained the
problem. This new technology will make the job of the process
design engineer more interesting and more joyful, it will reduce
the time needed for his/her education, and it will enhance the
quality of the end product since the design engineer can explore
many more alternative designs than s/he would ever have time
for in the current manual technology.

1.8 Military Strategic Planning

Strategic planning requires real-time decision making in a
partly unknown environment. In current technology, this prob-
lem is tackled manually by assembling the general’s staff in a
room. The general proposes possible strategies (scenarios), and
his staff will “simulate” the effects of the proposed strategies in
a brainstorming exercise by throwing potential suggested out-
comes back at the general. Finally, the general makes his de-
cision taking into consideration all the proposed (and partly
contradictory) outcomes that he received from his staff.

We propose that our new technology can provide a more
sound basis for decision making. While it is impossible to gen-
erate ahead of time simulation models for every potential situ-
ation, it is possible to develop ahead of time a “world model”
from which our AMGS can then synthesize on the fly simulation
models for any proposed scenario. In this way, the effects of a
proposed strategy could be simulated in real time and could
support the general in making the right decision.

2. LEVEL ONE: CLASSICAL MODELS FOR
CONTINUOUS-SYSTEM SIMULATION

Models used for similar purposes often contain similar com-
ponents. For example, a model of a DC-motor can be used to
describe the mechanism that drives a windshield wiper in a car,
the sump pump behind a house, or the food processor in a
kitchen. The model is always the same, just the parameters as-
sume different values. It therefore makes sense to include a DC-
motor template in the “world model”, a generic DC-motor from
which a specific DC-motor for any given purpose can be gener-
ated when needed. In this way, the DC-motor model needs to
be debugged only once, and if the template model is ever mod-
ified, all its future instantiations automatically reference the
updated template model. It is also possible to equip the model
editor with a mechanism which allows it to trace all references
to the edited model within the model library, and which auto-
matically deletes the compiled versions of all those models from
the library, thereby forcing the user to migrate model modifi-
cations through all simulation programs that make use of those
models.

Object—oriented programming systems provide powerful en-
vironments to support such a modular approach. In a previous
tutorial [Zeigler et al 1989b], we described how modular mod-
eling can be developed for discrete-event simulation. In this
tutorial, we deal with continuous-system models. Here, the sit-
uation is a little more complex.

Traditionally, “modular” continuous-system models were
expressed in most Continuous-System Simulation Languages
(CSSL’s) using a macro processor [Augustin et al 1967]. Macros
are text templates. During compilation of the simulation pro-
gram, the macro call is replaced by the macro definition body.
Let us explain the macro replacement process by means of a
simple DC-motor macro programmed in the macro language
of ACSL [Mitchell and Gauthier 1986]. The following macro
can represent an either armature—controlled or field—controlled
DC-motor.

56

MACRO DCMOT(theta, omega, ua,uf, taul, JL,...
Ra, La, Rf, Lf, k, Jm, Bm, flag,1f0,ia0,T0,th0)
MACRO redefine ia, iadot, if, ifdot, ui, psi
MACRO redefine taum, Twist, Tdot
MACRO standval if0 = 0.0, ia0 = 0.0, 70 = 0.0
MACRO standval th0 = 0.0
MACRO if (flag = IND)labind

if Zuf/Rf

ia = (ua — ui)/Ra
MACRO goto goon
MACRO labind..continue

ifdot = (uf — Rf *if)/Lf
if = INTEG(ifdot,if0)
iadot = (ua—ui— Rax ia)/La

ia = INTEG(iadot, ia0)
MACRO goon..continue
if

psi =kx*t

taum =psixia

ui = psi % omega

Tdot =taum —taul — Bm+ omega

Twist = INTEG(Tdot,T0)

omega = Twist/(Jm+ JL)

theta = INTEG(omega,th0)
MACRO END

This macro exhibits a number of interesting features. Let
us look at the armature equation:

di,
u..:u.-+R,i,.+L,%)
Usually, eq(1) will be implemented in the form of a differential
equation in state-space form, i.e.:

ﬁ,‘__u‘,—u‘—R‘,i,l @)
dt L,

This is done since we always wish to transform continuous mod-
els into a state-space form such that all differential equations
can be numerically integrated rather than differentiated. How-
ever, the electrical time constants of the DC-motor are often so
much smaller than the mechanical time constant that the effect
of the armature inductance L, on the overall system behavior
can be neglected. In this case, we cannot operate on eq(2) since,
if we set L, = 0.0, this results in a division by zero. Instead, we
must return to eq(1), delete the term in L, from the equation,
and rewrite it as:

Us — U

Ra (®)

iy =

Notice that this example already confronts us with two dif-
ferent versions of DC-motor models. Instead of creating two
separate macros for these two cases, it was decided to code
them as two variants within the same macro. The constant
parameter flag can assume either the value JND or NOIND in
the macro call. Depending on the setting of this compile-time
parameter, the macro replacer will generate code either in the
form of eq(2) or in the form of eq(3). Notice however that the
“macro if” statement is not truly an “advanced feature” of the
ACSL macro handler. It is just a crude way to implement only
the simplest of the capabilities that a true model management
system can offer.

The above macro can be invoked by a statement such as:

DCMOT(theta,omega = ua, uf,taul, JL, ...
Ra, La, Rf, Lf, kmot, Jm, Bm,”IND")

The last few parameters were omitted on the call. Parame-
ters, which are assigned default values (“macro standval”) in
the macro definition, can be omitted in the macro call. The
flag parameter was specified as "IND”, and therefore, both the
armature inductance and the field inductance are included in
the model equations generated in the process of macro text re-
placement.

Let us now look at the equations that the macro handler
generates during the macro expansion. The two inductances

A Five Level Hierarchy for the Management of Simulation Models

were included.

209996 = (uf — Rf » Z09997)/Lf
209997 = INTEG(Z09996, 0.0)

209998 = (ua — 209995 — Ra » Z09999)/La
Z09999 = INTEG(Z09998,0.0)

Z09994 = kmot * Z09997

709993 = Z09994 » Z09999

Z09995 = Z09994 * omega

209991 = Z09993 — taul — Bm * omega
209992 = INTEG(Z09991,0.0)

omega = 209992/({Jm + JL)

theta = INTEG(omega,0.0)

All local variables of the macro (which were declared inside the
macro definition using the “macro redefine” statement) were
renamed into generic names. This is necessary for the reason
given below.

The (differential and algebraic) equations that make up a
continuous-system model are basically parallel code. Contrary
to the discrete-event case where the equal sign in an equation
denotes an assignment, in continuous-system simulation, the
equal sign in an equation denotes an equality. It means that
the quantities on the left hand side of the equal sign are at all
times equal in size to the quantities on the right hand side of
the equal sign. Thus, continuous—system model equations are
of a declarative nature.

Most CSSL languages offer an equation sorter which is ac-
tivated after the macro replacement has been completed, and
which will sort the model equations into an executable sequence.
Of course, it cannot do so if the same variable appears more than
once on the left hand side of the equal sign. Thus, in order to
allow a macro to be invoked more than once in a program, it is
necessary to replace all locally defined variables by new generic
names in each new macro replacement.

In the above example, notice that e.g. the variable 209995
is used before it has been defined. The equation sorter will have
to arrange the sequence of statements such that all variables ex-
cept for those defined through integral equations are evaluated
before they are used. Integral equations are different since all
continuous—system simulation languages use explicit numerical
integration schemes. For example, using forward Euler, we can
write:

z(t + At) = z(t) + At - £(t) (4)

Since this equation computes a new value for « for a time instant
At time units into the future, we do not need to evaluate this
equation simultaneously with the evaluation of the equation for
().

()And yet, macros are not truly modular. The term “modu-
larity” is often used in a narrow sense as a means to structuring
program code into sections. However, we prefer to define the
term “modularity” in a much wider sense as the capability of a
program segment to represent a real object correctly irrespec-
tive of the environment in which it is used. Employing this def-
inition, the term modular modeling becomes synonymous with
object-oriented modeling.

Notice that DC~motors can be used in two different ways.
They can be driven electrically (either through the armature or
through the field) in which case they will transform a portion
of the electrical energy entered into the system into mechanical
energy, as a consequence of which the mechanical axle starts
rotating. However, we can also rotate the mechanical axle by
force, thereby entering mechanical energy into the system, and
as a result, a portion of that energy will be converted-into elec-
trical energy, generating a voltage across the two terminals of
the armature coil. In this case, the DC-motor is used as a
DC-generator.

Clearly, the physical object is the same irrespective of
whether it is used as a motor or as a generator. In an object—-
oriented modeling environment, we should therefore be able to
represent both types of operation through one and the same
software object.

Let us write down an ACSL macro describing the DC-
motor in its generator mode.

57

MACRO DCGEN (theta,omega, ua,tauvin,uf, RL,LL, ...
Ra,La,Rf,Lfk,Jm, Bm,if0,1a0,T0,th0)
MACRUO redefine ia, iadot, if, ifdot, ui, psi
MACRO redefine taul, Twist, Tdot
MACRO standval if0 = 0.0, ia0 = 0.0, 70 = 0.0
MACRO standval th0 = 0.0

ifdot = (uf — Rfxif)/Lf

if = INTEG(ifdot,if0)

iadot = (ui—(Ra+ RL)*1a)/(La+ LL)
ia = INTEG(iadot, 1a0)

ua = RL xia+ LL « iadot

psi =kxif

taul = psisia

ui = psi*omega

Tdot = tauin — taul — Bm x omega
Twist = INTEG(Tdot,T0)

omega = Twist/Jm

theta = INTEG(omega, tho)

MACRO END

When the machinery is operated in its motor mode, the
main input to the system is the armature voltage us. It causes a
current i, to flow through the armature coil. The armature cur-
rent then causes a mechanical torque 7, to be built up which is
the cause of the mechanical rotation. However, once the motor
rotates, i.e., once its angular velocity w builds up, this angular
velocity is responsible for an induced voltage u; to be gener-
ated back on the electrical side which is subtracted from the
armature voltage u, and thereby reduces the armature current
i, until an equilibrium is reached. 7z and Ji, represent the me-
chanical load of the motor, i.e., they are variables belonging to
an external data object. They are not part of the DC-motor
data object. These two variables are additional inputs to the
DC-motor model.

When the machinery is operated in its generator mode, the
main input to the system is the driving torque 7. It causes
the motor to rotate. Once an angular velocity w is built up,
it induces a voltage u; on the electrical side which causes a
current i, to flow through the armature coil. The armature
current i, causes a mechanical torque 71 to be built up back
on the mechanical side which opposes the driving torque 7in.
The armature current i, is also responsible for building up an
armature voltage u, across the two armature terminals. The
armature voltage u, is subtracted from the induced voltage u;
thereby weakening the armature current i,. This process contin-
ues until an equilibrium is reached. The load is now electrical,
symbolized in our model by a resistive load Rz, and an inductive
load Ly which, in themselves, are not part of the DC—generator,
and are therefore additional inputs to the DC—generator model.

For simplicity, we left the variant without inductances out.
Notice that the equations are basically the same in the motor
mode and in the generator mode. Minor differences exist as
a consequence of the different loads. However, what is truly
different in the two models is the assignment of inputs and out-
puts. In the motor mode, u, is an input to the macro, whereas
in the generator mode, u, is an output.

We realize that CSSL type macros aren’t truly modular
with respect to the objects they represent. The same physical
device calls for quite different macros depending on the envi-
ronments in which they are supposed to operate. The simplest
“macro” representing an electrical resistor, for instance, must
be stored in the macro library in two different versions, one
modeling the equation:

ug = R-ig (5a)
and the other modeling the equation:
ip= %‘ (5b)

If the resistor is placed over a current source, the current ip
through the resistor is known, and we need to use the macro
which reflects the model according to eq(5a), whereas if we place
the resistor over a voltage source, the voltage up across the re-
sistor is known, and we need to use the macro which reflects
the model according to eq(5b). Obviously, an equation sorter

F.E. Cellier, Q. Wang, and B.P. Zeigler

is insufficient. In an object—oriented continuous—system mod-
eling environment, we require an equation solver which accepts
general equalities of the type:

< expression >=< expression >

(6a)
or:

< expression >= 0.0 (6d)

and which can solve these equalities for arbitrary variables.

8. LEVEL TWO: OBJECT-ORIENTED MODELING
AND THE DYMOLA MODELING LANGUAGE

Notice that macro handlers, which are commonly consid-
ered an intrinsic part of a CSSL language, have in fact noth-
ing to do with the simulation language itself. The macro text
replacement must be performed at source level, and must be
completed before any other activity of the compiler can begin.
The macro handler is often implemented as the first path of the
compilation, and is completely separate from everything that
follows. It would make perfect sense to develop a macro han-
dler independent of the simulation language for which it is being
used. The same macro handler could easily be used as a front
end to several different simulation language compilers.

This approach was taken with DYMOLA [Elmqvist 1978].
DYMOLA is a modeling language and not a simulation lan-
guage. DYMOLA is considerably more general than the con-
ventional macro handler, but it serves the same purpose. DY-
MOLA is a program generator which can generate code for a va-
riety of different simulation languages. If DYMOLA is used as a
preprocessor, the simulation language no longer needs a macro
handler of its own; in fact, it no longer requires an equation
sorter since DYMOLA will sort the resulting set of equations
into an executable sequence after solving each of them for the
appropriate variable. The syntax of statements in DYMOLA is
that of eq(6a).

DYMOLA is able to solve arbitrarily non-linear equations
for any variable as long as that variable appears linearly in
the otherwise non-linear equation. DYMOLA cannot currently
handle algebraic loops, not even linear algebraic loops (which is
a pity). DYMOLA cannot currently handle most types of struc-
tural singularities as they occur when subsystems are coupled
together in such a way that the overall system exhibits fewer
degrees of freedom than the sum of the subsystems. Finally,
DYMOLA cannot currently eliminate redundant equations as
they appear frequently when subsystems are coupled together
which have fuzzy borderlines between them, i.e., when one and
the same equation can be viewed as belonging to one or the
other of the subsystems depending on their utilization. Other
than that, DYMOLA has all the properties needed for truly hi-
erarchical modular modeling, i.e., for object—oriented modeling.
More details about the current capabilities and limitations of
DYMOLA can be found in [Cellier 1990b].

Let us discuss how the DC-motor example can be coded in
DYMOLA.

model type DCMOT
terminal theta, omega, ua, uf, taul, JL
local ia, if, ui, psi, taum, Twist
parameter Ra, Rf, kmot, Jm
parameter La =00, Lf =0.0, Bm =0.0

default ua = 25.0, uf = 25.0
Lf-kderéif) =uf—Rf«if
Larder(ia) = ua —ui — Rasia
psi = kmot *if
taum = psi*ia
ut = psi * omega
der(Twist) = taum — taul — Bm + omega
Twist = (Jm + JL) % omega
der(theta) = omega

end

This code is quite self-explanatory. However, let us discuss

58

some of the special properties of DYMOLA model descriptions.
(1) DYMOLA variables belong to either the type terminal or
the type local. They are of type terminal if they are sup-
posed to be connected to something outside the model. They
are local if they are totally connected inside the model.
Terminals can be either inputs or outputs. What they are,
often depends on the environment to which they are con-
nected. The user can explicitly specify what he wants them
to be by declaring them as “input” or “output” rather than
simply as “terminal”.

Terminals can have default values. In this case, they don’t
need to be externally connected.

DYMOLA constants can be declared to be of type parame-
ter. For parameters, values can be assigned from outside the
model. Parameters can have default values in which case it
is not necessary to assign a value to them from outside the
model.

Derivatives are either expressed using the der(.) operator
or a prime ('). It is also allowed to use a der2(.) operator or
a double prime (") to denote a second derivative, and even
higher derivatives are admissible. Contrary to most CSSL’s,
DYMOLA permits the use of these operators anywhere in
the equation, both to the left and to the right of the equal
sign.

Consequently, it is not possible to set initial conditions for
the integrators inside a model which is clearly a disadvan-
tage of DYMOLA.

(7) DYMOLA equations use the syntax of eq(6a). During the
process of model ezpansion, equations are solved for the ap-
propriate variable.

Terms which are multiplied by a zero parameter are au-
tomatically eliminated during model expansion. Conse-
quently, if La = 0.0, the model equation La * der(ia)
ua — ui — Ra * ia is first replaced by the modified model
equation 0.0 = ue — ui — Ra * ia which then results in one
of three simulation equations, namely (i) ua = ui + Ra ia,
(ii) wi = ua — Ra *ia, or (iii) ia = (va — ui)/Ra depending
on the environment in which the model is used. However, if
La # 0.0, the model equation is always transformed into the
simulation equation der(ia) = (ua —ui — Raxia)/La. This
is a very elegant way to solve the “variant macro” problem
of ACSL.

(9) The above rule indicates that parameters with value 0.0
are treated in a completely different manner than all other
parameters. This decision has a side effect. Parameters
that are not set equal to zero are preserved in the generated
simulation code, and can be interactively altered through
the simulation program directly without a need to return to
DYMOLA. Parameters with value 0.0 are optimized away
by the DYMOLA compiler, and are not represented in the
simulation code. However, the advantages of this decision
are overwhelming, since this does away with an entire class
of structural singularities.

—
)
—

(6

=

(8

~

The above model can then be invoked in the following way:
submodel (DCMOT) dem1(Ra = 2.0, Rf = 5.5, kmot = 1.0, Jm = 15.0)

It can be connected to the outside world using a dot—notation:

deml.ua = kalph » err

demlauf = 12.0

deml.JL = crl1.JL
deml.taul = crlliaul

cril.omega = deml.omega

where crll is the name of another model of the same or a dif-
ferent type.

DYMOLA models are much more modular than ACSL
macros since equations are automatically solved during model

A Five Level Hierarchy for the Management of Simulation Models

expansion for the variable which is appropriate in the context
of the model call environment. The utilization of named pa-
rameters instead of positional parameters upon invocation of a
DYMOLA model helps with long parameter lists. Default val-
ues can and should be assigned to many parameters, and with
the named parameter convention, the user can selectively spec-
ify values for those parameters only for which the default values
are not appropriate. The connection mechanism as presented
so far is very general, although a little clumsy. Each connection
corresponds to connecting two points of a circuit with a wire.

It can be noticed that wires are frequently grouped into
cables or buses. For example, consider an RS232 connector.
The RS232 male connector has 25 pins, while the corresponding
RS232 female connector has 25 holes. It seems natural that a
modeling language should provide for an equivalent mechanism.
DYMOLA does this by providing so—called CUTs.

Let us look at the above example once more. It can be
noticed that the two models dem? and crll have three variables
in common, namely omega, taul, and JL. We can therefore
go ahead and declare those three variables in a cut rather than
as simple terminals. The modified model type DCMOT now
looks as follows:

model type DCMOT

terminal theta, ua, uf
cut mech(omega, taul, JIL)
local ia, if, ui, psi, taum, Twist
parameter Ra, Rf, kmot, Jm
parameter La =00, Lf =0.0, Bm=0.0
default ue = 25.0, uf = 25.0

Lfsder(if) = uf — Rf xif

Laxder{ia) = ua — ui — Raxia

psi = kmot xif

taum = psi*ia

ui = psi* omega

der(Twist) = taum — taul — Bm + omega
Twist = (Jm+ JL) * omega

der(theta) = omega
end

In the main program, we can invoke a DC-motor demi of
type DCMOT, and another model called crll which is assumed
to contain a declaration for the same cut type meck, and we can
connect the cut mech of dem! at the cut mech of crll. This is
accomplished as follows:

submodel (DCMOT) deml(Ra = ...
submodel (CABREL) crl1(Bl = ...)

connect demlimech at crll:mech

The connect statement automatically generates the three model
equations:

deml.omega = cril.omega
deml.taul = cerlltaul
demi.JL = erllJL

Cuts can be hierarchically structured. We could e.g. modify
the model type DCMOT once more as follows:

model type DCMOT
terminal thete
cut mech(omega, taul, JL)
cut elect(ua, uf)
cut both[mech, elect]
local ia, if, ui, psi, taum, Twist
parameter Ra, Rf, kmot, Jm
parameter La = 0.0, Lf = 0.0, Bm = 0.0
default ua = 25.0, uf = 25.0
Lfsder(if) =uf — Rf xif

Laxder(ia) = ua—ui — Raxia

psi = kmot * if

taum = psix*ia

ui = psi * omega

der(Twist) = taum — tauLl — Bm + omega

Twist = (Jm+ JL) xomega
der(theta) = omega
end

59

in which case we can either connect the cut mech and the cut
elect separately, or we can connect both together. During ex-
pansion of the connect statement, DYMOLA checks that the
connected cuts are structurally compatible with each other.

However, even this won’t suffice in many cases. We may
notice that, by connecting a wire between two points in an elec-
trical circuit, we actually connect two variables, namely the po-
tential at the two points, and also the current that flows through
the new wire. However, the two connections work differently.
While the potentials of all cuts that are connected at a point
must be equal, the currents must add up to zero. Variables
of type potential are called across variables, while variables of
type current are called through variables. DYMOLA provides a
connection mechanism also for this second type of connection.
The generalized form of a DYMOLA cut looks as follows:

cut < cutname > (< through_variables > / < across-variables >)

If three models m1, m2, and m3 have each a cut of type 4
declared as:

cut A(v/i)

we can use the connect statement:

connect ml: 4 at m2: Aatm3: 4

which will generate the following model equations:

mly = m2.v
m2.v = m3.v

ml.i+ m2.:+m3.i=00

Notice that currents at cuts are normalized to point into the
subsystem. If a current is directed the opposite way, it must
take a minus sign on the cut definition.

This concept is more generally useful that just for electrical
circuits. In a mechanical system, all positions, velocities, and
accelerations are across variables, while all forces and torques
are through variables. In a hydraulic system, water levels are
across variables, while water flow is a through variable. In
a thermic system, temperature and pressure are across vari-
ables, while heat flow is a through variable, etc. These similari-
ties between different types of physical systems are particularly
emphe}xsized in the bond graph modeling methodology [Cellier
1990aj.

One cut can be declared as the main cut. The main cut
is the default cut in a connection, i.e. it suffices to specify the
model name to connect the main cut of a submodel.

Sometimes it is useful to allow connections to take place in-
side a model instead of across model boundaries. For this pur-
pose, DYMOLA provides a node declaration. Nodes are named,
and cuts can be connected to nodes. Nodes are hierarchically
structured the same way cuts are.

model M
cut A(v1,v2), B(v3,v4), C(v5,v8)
main cut D[4, B,C]
end
node N
connect M at (N, N, N)
This connect statement is equivalent to:

connect M: Aat N, M:BatN, M:CatN

which is identical to saying:

connect M: Aat M:Bat M:C

F.E. Cellier, Q. Wang, and B.P. Zeigler

which will result in the following set of equations:

M.l = M3
M3 = Mos
M2 = M.v4
Mové= M6

Sometimes, it is also useful to connect a variable through
from a source to a destination. For this purpose, DYMOLA
allows you to declare a directed path from an input cut to an
output cut.

Let us assume we have a model describing a pump which is
declared as follows:

model pump
cut inwater(wl), outwater(w2)
path water < inwater — outwater >

end

Let us assume we have two more models describing a pipe and
a tank with compatibly declared cuts and paths, then we can
connect the water flow from the pump through the pipe to the
tank with the statement:

connect (water) pump to pipe to tank

One path can always be declared as the main path. If the main
path is to be connected, the path name can be omitted in the
connect statement.

Besides the at and to operators, DYMOLA provides some
additional connection mechanisms which are sometimes useful.
The reversed operator allows us to connect a path in the oppo-
site direction. The par operator allows for a parallel connection
of two paths, and the loop operator allows us to connect paths
in a loop.

8.1 Hierarchical Model Construction

Notice that, while there does not exist a strict rule which
forbids mixing physical equations with connection statements
in one model, it is good practice to avoid such a mix. At the
bottom of the model hierarchy are models which are described
solely through physical equations and which do not contain any
connect statements. These models are called atomic models.
Models which invoke other models and describe the connec-
tions between these submodels are called coupling models. Cou-
pling models can, of course, refer also to other coupling models,
not only to atomic models, i.e., coupling models can be hierar-
chically structured. [Cellier 1990a] contains an example (solar
heated house) of a hierarchically structured modular model with
five hierarchy levels.

Notice however that the concept of structuring models in
a hierarchical fashion is different from the five level hierarchy
of model management which is the topic of this paper. Hierar-
chically structured, object-oriented models (with an arbitrary
number of hierarchy levels) occupy just the second level of our
hierarchical model management methodology, whereas the ex-
panded, i.e. flat, simulation models occupy the first hierarchy
level of the methodology.

Notice further that object-oriented modeling does not imply
object-oriented simulation as well. DYMOLA clearly supports
the concept of models representing physical objects in a mod-
ular, i.e. environment independent, fashion. Thus, DYMOLA
supports object-oriented modeling. Yet, the generated simu-
lation code is a flat simulation program expressed in any of a
number of off-the-shelf simulation languages which clearly do
not support object—oriented simulation. It is a commonly made
mistake to believe that object—oriented program execution is
necessarily desirable. It is the object—oriented user interface
which is desirable since it simplifies programming. In the con-
text of continuous—system simulation, an object-oriented ap-
proach to simulation would force us to exchange information
between the simulation data objects using a mechanism of mes-
sage passing. This is far too inefficient since continuous objects

60

exchange information on a continuous basis. In the context of
discrete—event simulation, an object—oriented approach to simu-
lation is not mandatory, but at least, it makes some sense since
such data objects exchange information only at event times.
Thus, hierarchy flattening of discrete—event models is feasible
and not harmful, but it is not absolutely necessary. However,
hierarchy flattening of continuous-system models is a must from
the point of view of run—time execution efficiency.

In the last two sections, we have discussed concepts in-
volved in object—oriented continuous—system modeling. Object
oriented discrete-event modeling is similar but somewhat less
involved. In a discrete-event model, all connection variables are
clearly specified as either input or output variables. It never
happens that the direction of a path needs to be turned around
due to the environment in which the model is used. Conse-
quently, object—oriented discrete—event modeling environments
do not require an equation solver. This simplifies their imple-
mentation to some extent. .

4. LEVEL THREE:
THE SYSTEM ENTITY STRUCTURE

One important property of object—oriented modeling has
not been discussed yet. Object—oriented models hide details
of the internal model structure from the outside. Only those
properties of a model that transpire to its surface are notice-
able from the outside. For instance, once a model has been
encapsulated, only its input and output ports are still visible.
From the outside, it is no longer evident whether the encap-
sulated model belongs to the class of discrete—event models or
whether it belongs to the class of continuous-system models.
Consequently, from now on, we no longer need to distinguish
between discrete-event models vs continuous-system models.
Everything that will follow (i.e., the hierarchy levels three to
five) is valid for both model classes indistinguishably, since these
hierarchy levels have no access to the internal model structure.

In other words, the model dynamics have been encapsulated
at hierarchy level two, and therefore, from hierarchy level three
on upwards, we will only deal with objects and their relations
to each other.

The System Entity Structure (SES)is a mechanism to de-
scribe hierarchically structured sets of objects and their interre-
lations. The SES is a labeled tree with attached variables types,
i.e., a graphical object that describes the decompositions of sys-
tems into parts. It is a knowledge representation scheme which
formalizes the modeling of systems in terms of decomposition,
taxonomic, and coupling relationships. The scheme supports
structured knowledge acquisition for, and flexible restructuring
of, families of large scale system designs. :

Figure 1 shows a sketchy decomposition of the solar heated
house of [Cellier 1990a] into parts. In order to keep Figure 1
small and understandable, only a few of the actual decomposi-
tions are shown.

Solar-Heating
|
[| | i |
collector heat house storage water
l exchanger tank loops
solar heat water loss l | I water
radiation capacity spiral heat water back loop
acKu
! paci spirals heatef
heat 1-dim-cells
exchangers l I | water
spiral
heat 1-dim-cell
exchanger

Figure 1. Decomposition of a solar heating into parts

Figure 1 is an informal SES of the solar heating system. It
shows the decomposition of physical objects into parts. How-

A Five Level Hierarchy for the Management of Simulation Models

ever, for practical utilization, the informal SES is insufficient.
Somewhere, it must be shown how the physical objects are de-
composed into parts. For this reason, we have developed formal
SES’s or simply SES’s. In a formal SES, physical objects are
called entities. The children of physical objects are always ab-
stract objects called aspects and specilizations. The children of
these abstract objects are always physical objects again. l.e.,
physical objects and abstract objects always toggle in a formal
SES. The root object in a formal SES is always an entity. Also
the leaf objects of the SES are always entities. They repre-
sent the atornic models. All entities which are not leaf objects
represent coupled models.

It is not necessary to represent abstract objects differently
from physical objects in the SES. It is easy to tell them apart
simply by counting the number of levels in the SES. Objects
at odd levels from the top or from the bottom of the SES rep-
resent always entities while objects at even levels of the SES
are always either aspects or specializations. Physical decom-
positions are shown as aspects. We shall discuss the purpose
of specializations at a later time. For the moment, it suffices
to mention that it is exactly the distinction between aspects
and specializations which forces us to formalize these abstract
objects rather than implying the decompositions by attaching
them to the parent entity directly.

The formal SES satisfies the following set of axioms:

(1) Uniformity: Any two nodes (objects) which have the same
labels (names) have identical attached variable types and
isomorphic subtrees.

Strict Hierarchy: No label appears more than once down
any path of the tree from the root entity to any of the leaf
entities.

(2

—
R

Alternating Mode: Each node has a mode which is ei-
ther entity, aspect, or specialization; if the mode of a node
is entity, then the modes of its successors are either aspect
or specialization; if the mode of a node is aspect or special-
ization, then the modes of its children are entity. The mode
of the root is entity.

Valid Siblings: No two siblings have the same label.

Attached Variables: No two variable types attached to
the same item have the same name.

Inheritance: Every entity in a specialization inherits all
the variables, aspects, and specializations from the parent of
the specialization.

The SES is completely characterized by its axioms |{Zeigler
1984, 1990]. However, the interpretation of the axioms cannot
be specified, and thus is open to the user.

When constructing an SES, it may sometimes seem diffi-
cult to decide how to represent concepts of the real world in the
SES. A meaningful decomposition of a system into parts is not
always easy to accomplish, and yet, an inadequate decision can
have serious consequences in terms of the number of wires that
connect the various submodels to each other. One of the goals
of a meaningful system decomposition is to limit the number
of required connections between its subsystems. As of now, we
don’t have a tool to support the user in this process, i.e., we
don’t have a tool which can consider various alternative decom-
positions, and propose one which will result in few subsystem
connections. Such a tool would require a detailed knowledge
of the internal structure of all subsystems. It could infer this
knowledge by tracing through the nested couplings as is done
in hierarchy flattening.

4.1 Automated Model Generation and
the DEVS-Scheme Modeling Environment

DEVS-Scheme [Zeigler 1990] is an application layer above
the LISP-based PC-Scheme language [Texas Instruments 1986].
It supports the DEVS modeling formalism {Zeigler 1984]. DEVS
stands for Discrete EVent Specification, i.e., DEVS was devel-
oped primarily for discrete—event models. Yet, as we explained
above, the higher levels of the DEVS modeling hierarchy are
the same for both discrete-event models and continuous-system
models. DEVS-Scheme contains a set of PC-Scheme (i..
LISP) procedures implementing the DEVS modeling formalism.

61

They were written using the SCOOPS object—oriented LISP ex-
tensions which form an intrinsic part of the PC-Scheme envi-
ronment. They were coded such that all PC-Scheme (LISP and
SCOOPS) programming tools are transparently usable within
DEVS-~Scheme as well. In this light, DEVS-Scheme is not a
specialization of PC-Scheme, but a superset of PC-Scheme.

System Entity Structures can be coded in DEVS-Scheme in
the form of a text file which contains a one-to-one translation
of the graphical SES representation. An example of such a text
file will be presented later in this paper. Currently, the trans-
lation must still be done manually, but automatic translations
from the graphical representation to the textual representation
are being developed. Once the SES has been coded, DEVS-
Scheme offers an automated transform procedure which itera-
tively generates more and more complex coupled models by in-
voking submodels and by setting up the coupling relations that
were specified between them. In this way, transform translates
the SES into either one single DEVS model or a set of DEVS
models. The transform procedure can be requested to either
flatten the hierarchy or keep the hierarchy. For continuous sys-
tems, transform can also automatically generate the necessary
DYMOLA coupling models. Only the atomic (i.e. leaf) models
must be user coded. The coupled models can be automatically
generated from the SES.

It is possible to store coupled models in the model library as
if they were atomic models. If transform finds a coupled model
in the model library, it will stop searching for its children, and
simply use the coupled model as if there were no more children
and as if this were an atomic model.

Let us now return for a moment to the example of the
aircraft manufacturer. If we maintain all our designs at the
first hierarchy level (as this is done in the current technology),
we need to store millions of different designs in the database.
Each design is flat and therefore fairly complex. If a design is
found to have a flaw, and if that flaw has been traced back to a
particular subcomponent which may be intrinsically used also
in hundreds of other designs, we should edit all these hundreds
of flat design descriptions to remove the bug from the database.
Of course, this is never done (too much work), and therefore, the
database is always inconsistent. It can therefore easily happen
that another process design engineer at a later time bases a
new design on another earlier design which contains the same
flaw that had been discovered once before, but which was never
totally removed from the database.

If we maintain our designs at the second hierarchy level, we
still need to store millions of different designs in the database.
However, these designs will not be flat. They will reference de-
sign templates that are stored in a hierarchically structured
template library. The main design files will thus be much
shorter and more readable since they reference these templates
rather than contain them in an already expanded form. If a
flaw is traced back to a bug in a design template, the template
itself is updated, rather than the design that makes use of it.
When an atomic template is edited, all coupled templates in
the template library which reference the atomic template either
directly or indirectly could be automatically deleted from the
template library. In this way, all future designs will automat-
ically reference the updated template rather than the original
one.
If the designs are maintained at the third hierarchy level, we
still need to store millions of individual designs in the database,
but this time, they are stored in the form of different System
Entity Structures. This does not seem to buy us much in com-
parison with the previous (i.e., level two) alternative, but al-
ready the next section of the paper will explain why an SES is
indeed considerably more powerful than either a DEVS model
or a DYMOLA model.

5. LEVEL FOUR: THE GENERALIZED
SYSTEM ENTITY STRUCTURE

We had explained earlier that the SES contains two types
of abstract objects: aspects and specializations. Specializations
enable us to store several variants of similar SES’s in a single
generalized SES. In fact, from now on, we shall call the “gener-

F.E. Cellier, Q. Wang, and B.P. Zeigler

alized SES” simply “the SES”. An SES without any specializa-
tions is a special case of “the SES”. It is sometimes referred to
as a pure SES.

Figure 2 shows an example of an SES which decomposes a
car into a few components. Notice that the component engine
is specialized into either V6 or Diesel.

Car

I
csridec

en%'ine trunk

wheels windshield

engine-spec Wiper
wipe'r-dec
vé Diesel

wiper

wiper-motor
| blade

wmaotor-spec

DC-motor stepper

motor

Figure 2. SES with specializations of a car

Pure SES’s can be obtained from general SES’s by a process
called pruning. Pruning an SES means to cut away all special-
izations but one. The car SES of Figure 2 can be pruned to
retain either the V6 engine or the Diesel engine.

DEVS-Scheme [Zeigler 1090] contains a software tool called
ESP-Scheme [Kim 1988% which can prune any SES. The output
of the pruning process is a pure SES.

Returning once more to the aircraft manufacturing exam-
ple, we notice that, at the fourth hierarchy level, we no longer
need to store millions of different designs. Maybe, we can re-
duce all these designs to a few thousand basic designs with
many specializations. This makes the SES of a system more
powerful than either a corresponding DEVS model or a corre-
sponding DYMOLA model. One single “model” expressed as
an SES with specializations can represent many different vari-
ants of actual models of a process. This concept replaces the
“macro if” statement of ACSL’s macro handler, but it is consid-
erably more powerful. One single SES can be used to generate
hundreds, maybe thousands, of different models for different
purposes.

From now on, we shall call an ensemble of one or several
SES’s with specializations which can be used to generate specific
models for an entire application area a world model. Thus, a
world model is an ensemble of System Entity Structures with
specializations which can generate arbitrary models for an entire
application area.

Returning to our example of the strategic planning tool, it
now becomes evident how this problem is tackled. We generate
a set of models that describe all feasible variants of a battle — not
in the form of myriads of individual simulation programs, but
in the form of a few SES’s with specializations. Specific models
for any actual situation can then be automatically generated on
the fly. Any one of these specific models can be simulated, and
will lead to a decent forecast of what the consequences of the
simulated scenario would be (at the level of detail contained in
the set of invoked atomic models).

6. LEVEL FIVE: GOAL-DRIVEN PRUNING

One problem that remains to be solved is the following.
How do we prune an SES? Which branches do we cut, and
which one do we retain? How do we choose between the V6
engine and the Diesel engine?

The answer is fairly simple. We attach rules to the spe-
cialization objects in the same way that we attach coupling
relations to the aspect objects. For the above example, the
following rule could be coded:

if purchase price = high and maintenancecost = low
then select Diesel
else select V6

end if

62

Purchase_price and maintenance_cost are two attached vari-
ables of the parent node. They are enumerated variables which
can assume the values “low”, “medium”, or “high”.

The pruner always searches specializations for such rules.
If it finds one or several rules that can be fired, it will do so.
If this process results in a unique selection, the pruner accepts
it and proceeds to the next node. If no rule has been specified,
or if no rule can be fired, or if the fired rules do not lead to
a unique selection, the pruner enters into an interactive mode
and asks the user for a selection.

FRASES [Hu et al 1989) is an experimental software which
implements some of these ideas. Unfortunately, this software
has not yet been fully integrated with the DEVS-Scheme mod-
eling environment. However, such integration is planned.

7. AN EXAMPLE:
THE CABLE REEL PROBLEM

A new light weight fiber optics deep sea communication
cable is to be laid through the British Channel between Calais
in France and Dover in the United Kingdom. The cable comes
on a huge reel which is placed on a ship. The ship moves slowly
from one coast to the other by constantly leaving cable behind.
A large motor unrolls the cable from the reel. A speedometer
detects the speed of the cable as it comes off the reel. A simple
proportional and integral (PI) controller is used to keep the
cable speed v at its preset value Vier. Vier is the speed of the
ship. A functional diagram of the overall system is shown in
Figure 3. .

Vineas

Figure 3. Functional diagram of the cable reel system

Control engineers are used to represent systems in the form
of block diagrams. Figure 4 shows a block diagram of the overall
control system.

Fin CabSys

Cable

Vet | Compa-| €T mech | Cable

rator

Vincas l Speedo—l
{_meter |

meter

Figure 4. Block diagram of the cable reel system

Block diagrams are a good way to depict graphically a hor-
izontal cut through a System Entity Structure. The SES is cut
through an aspect node. The outer frame symbolizes the par-
ent node, in this case the root entity, whereas the inner boxes
symbolize the children of the aspect node. Wires connecting
inner boxes (in our example: err, u,, mech, v, Vmeas, and F),
are internal connections of the aspect node, whereas wires that
extend to the outer frame (in our example: Viet, Fin, and v are

A Five Level Hierarchy for the Management of Simulation Models

external connections of the aspect node, i.e., these are attached
variables of the parent node. Notice that v appears both in the
list of internal connections and in the list of external connec-
tions. However, this is only a question of convenience. We can
easily transform the internal v connection into a second external
v connection. .

Notice that any one of the inner boxes could easily become
an outer frame if it were further decomposed into smaller parts.
In this sense, block diagrams are hierarchical. HIBLITZ is a
graphical front end to DYMOLA which follows exactly this ap-
proach [Elmgqvist 1982]. HIBLITZ allows us to zoom in on any
of the internal boxes. Breakpoints are introduced to denote the
magnification where the inner box suddenly becomes an outer
frame, and where the internal structure of that box becomes
visible, i.e., where we jump from one aspect node of the SES
to another. In HIBLITZ, connections between boxes represent
DYMOLA cuts, i.e., they are cables rather than wires. One
single connection can contain many individual wires which can
be either of the across type or of the through type, or both.

HIBLITZ could be used in our DEVS-Scheme modeling
environment to graphically represent the connection relations
that are attached to aspect nodes. However, HIBLITZ runs
currently only on Silicon Graphics machines, and is therefore
incompatible with our modeling environment. One of our stu-
dents is currently working on a reimplementation of a subset
of these capabilities to be integrated with the DEVS-Scheme
modeling environment.

Figure 5 depicts the generalized SES of the cable reel prob-

lem.
Cab: ISys
CabSys-dec
1
[| I f [1
cable motor compa- cable controller speedo-
reel | rator meter
motor-spec controller-spec
dL
I [|
DC hydro P PI PID
motor motor controller controller controller

Figure 5. SES with specializations of the cable reel system

The root entity CabSys is decomposed into six parts. For
this purpose, the aspect node CabSys-dec was introduced. Two
of the component parts, namely the motor and the controller are
specialized into variants. The motor can be either a DCmotor or
a hydromotor. The selection is made in the specialization node
motor-spec. Similarly, the controller can be either a Pcontroller,
a Plcontroller, or a PIDcontroller. This selection is made in the
specialization node controller-spec. Notice that the double lines
in the SES qualify the abstract nodes motor-spec and controller-
spec as specializations rather than as aspects.

The text file version of the SES is presented below.

- Entity Structure for CabSys

(make-entstr 'CabSys)
(set-c-system-type e:CabSys 'system)

(ai e:CabSys asp 'Cabsys-dec)
(sci e:CabSys 'CabSys-dec)

(ai e:CabSys ent 'comparator)
(ai e:CabSys ent 'controller)
(ai e:CabSys ent 'motor)

(ai e:CabSys ent 'cablereel)

(ai e:CabSys ent 'speedometer)
(ai e:CabSys ent 'cable)

(add-variable e:CabSys "input '(Fext Vdes)'())
(add-variable e:CabSys 'output '(radius velocity omega) '())

(acp e:CabSys 'comparator 'controller 'errport 'signal)

(acp e:CabSys 'controller 'motor 'command 'uport)

(acp e:CabSys 'motor 'cablereel 'mech "mech)

(acp e:CabSys 'cablereel ' speedometer 'vport 'vport)

(acp e:CabSys 'speedometer ‘comparator 'measport 'measport)
(acp e:CabSys 'comparator 'cable 'errport 'errport)

acp e:CabSys 'cable 'cablereel ' fport ' fport)

acpz e:CabSys 'CabSys 'comparator ‘inl ’setport '(Vdes) '(Vset))
acpz e:CabSys 'CabSys 'cable 'in2 ' finport '(Fext) '(Fin))

acpz e:CabSys 'CabSys 'cablereel 'rport 'outl '(radius) '(R))
acpz e:CabSys 'CabSys 'cablereel 'vport ‘out2 '(v) '(velocity))
acpz e:CabSys 'CabSys 'cablereel "'mech 'out3 '(omega) '(omega))

(

(

(

(

(

(

(sci e:CabSys 'controller)

(at e:CabSys spec 'controller-spec)
(sci e:CabSys 'controller-spec)

(ai e:CabSys ent ' Pcontroller)

(ai e:CabSys ent ' PIcontroller)
(ai e:CabSys ent ' PIDcontroller)
(
(
(
(
(

sci e:CabSys 'motor)

ai e:CabSys spec 'motor-spec)
sci e:CabSys 'motor-spec)

ai e:CabSys ent ' DCmotor)
ai e:CabSys ent 'hydromotor)

The cable reel “world model” consists of:

(1) The SES with specializations shown in Figure 5.

(2) The block diagram shown in Figure 4 which explains how
the decomposition of the system into parts is accomplished
in the single aspect node CabSys-dec.

(8) Two rule bases, one for each specialization node, which for-
malize the knowledge when which of the specializations is
to be used. i

(4) A model library containing the nine atomic models (coded
in DYMOLA) describing the nine leaf nodes of the SES.
From this (rudimentary) world model, any one of four dif-

ferent pure SES’s can be obtained by means of pruning. Figure

6 shows one such pure SES.

C ab|Sys
CabSys-dec
| l
cable DC comparator cable PI speedo-
reel motor controller meter

Figure 6. Pure SES of the cable reel system

The pure SES can now be transformed. This process
will generate the previously missing DYMOLA coupling model
shown below.

model CabSys

submodel comparator
submodel PIcontroller(kint = 0.2, kprop = 6.0)

submodel DCmotor(Ra = 0.25, Rf = 1.0, kmot = 1.5,-- >
Jm =5.0,Bm = 0.2)
submodel cablereel(Rempty = 0.6, W = 1.5, D = 0.0127, - >
rho=1350.0,BL = 6.5,J0 = 150.0)— >
(ic R=12)

submodel speedometer
submodel cable

input Vdes, Fext
output radius, velocity, omega

connect comparator:errport at PIcontroller:signal
connect Plcontroller:command at DCmotor:uport
connect DCmotor:mech at cablereel:mech
connect cablereel:vport at speedometer:vport

t speed. ter: sport at comparator:measport
connect comparator:errport at cable:errport
connect cable: fport at cablereel: fport

cable.Fin = Fext
comparator.Vset = Vdes
radius = cablereel.R
velocity = cablereel.v
omega = cablereel.omega

end

F.E. Cellier, Q. Wang, and B.P. Zeigler

The transform procedure will then automatically invoke the
DYMOLA preprocessor which flattens the hierarchy and gen-
erates, in our example, a (flat) DESIRE simulation program
[Korn 1989] representing the selected variant of the cable reel
system. However, the simulation program could also have been
generated for a number of alternative simulation languages.

STATE R Twist theta x err

DER dR dTwist dtheta dz derr

_ — OUTPUT radius velity Cs$oma

— — INPUT Vdes Fext

_ - PARAMETERS and CONSTANTS :
kship = 10.0 | Rempty = 0.6 | W =15 | D =0.0127
rho = 1360.0 | BL = 6.5 | JO = 150.0 | pi = 3.14159
Ra=025|Rf =1.0 | kmot =15 | Jm=5.0
Bm=0.2|k=30]kint =02 | kprop = 6.0

— ~ INITIAL VALUES OF STATES:
R=1.2|Twiat=0|thzta=0|z=0]err:0

TMAX = 3500 | DT = 0.05 | NN = 2000

Vdes = 15.0 | Fext = 100.0

scale=1]{XCCC =1

label TRY | drunr

if XCCC < 0 then XCCC = —XCCC | scale =2+ scale | go to TRY
else proceed

: comparator

Pr8err = Vdes — st8Vms

— — Submodel : cable

cale$F = lim(kship + Pr$err — Fext) + Fext

— — Submodel : cablereel

DCr8JL = 0.51pa'thrhot(R/\4—Rempvty/\4) +Jo
— — Submodel : DCmotor

Dr8oma = Twist/(Jm + DCr8$JL)

— — Submodel : CabSys

Cs$oma = Dr8oma

_ — Submodel : cablereel

d/dt R=-D+D/(2«pix W) * Cs$oma
Dr$tal = BL * Cs$oma — cale$F + R
— — Submodel : Plcontroller

u = kprop * Pr8err + kint x err

— — Submodel : DCmotor

uf = 25.0

DCr$if =uf/Rf

psi = kmot » DCr$if

ui = psi * DrSoma

ia = (u — ui)/Ra

taum = psix ia

d/dt Twist = taum — Dr$taLl — Bm « DrSoma
d/dt theta = Dr$oma

— — Submodel : cablereel

velity = R x CsSoma

— — Submodel : speedometer

d/dt z = velity—k *+z

— — Submodel : Plcontroller

d/dt err = Prlerr

— — Submodel : CabSys

ouT

term Rempty — R

radius = radius * 10

dispt radius, velity, Cs$oma

/--
;PIC 'CabSys. PRC’

The detailed equations contained in the nine atomic models
are of no direct concern to this paper. More details can be
found in [Cellier 1990b]. Notice that the equations stemming
from the various submodels were both solved and sorted. Also,
a number of variables were automatically renamed to conform
with the DESIRE syntax.

The experiment description (i.e., the specification of the
simulation run length, the termination conditions, the desired
outputs, etc) was synthesized from a second SES in the same
way as the model was. The SES, and to a large extent also
DYMOLA, support a clean separation of the experiment de-
scription from the model description as mandated in [Zeigler

1976). In the synthesized DESIRE program, the statements
describing the model and those describing the experiment are
wildly interspersed. However, this doesn’t matter. It is at the
user interface where a clean separation between model descrip-
tion and experiment description is important, not at execution
time.

8. SUMMARY

In this paper, we have demonstrated the usefulness of au-
tomatic model synthesis tools. We have shown how a particu-
lar implementation of such a tool, the DEVS-Scheme modeling
environment, can be used to tackle a number of important re-
alistic application problems. The explicit example chosen to
illustrate the automatic generation of continuous-system mod-
els, i.e. the cable reel problem, had obviously to be a very simple
one in order to fit onto the limited space provided in this pa-
per. However considerably more complex examples have been
developed and tested, and several (thick!) research reports de-
scribing these examples are available from the authors upon
request.

REFERENCES

Albus, J.S., H.G. McCain, and R. Lumia (1987), NASA/NBS Stan-
dard Reference Model for Telerobot Control System Architecture
(NASREM), NBS Technical Note 1235, Robot Systems Division,
Center for Manufacturing Engineering, National Technical Infor-
mation Service, Gaithersburg, MD.

Augustin D.C., et al (1967), «The $Ci Continuous System Simulation
Language (CSSL),” Simulation 9, pp. 281-303.

Cellier, F.E. (1990a), “Hierarchical Non-Linear Bond Graphs: A
Unified Methodology for Modeling Complex Physical Systems,”
keynote address, Proceedings European Simulation MultiConfer-
ence, B. Schmidt, ed.), Niirnberg, FRG, June 10-13, 1990, pp-.

1-13.
Cellier, F.E. (1990b), Conti -System Modeling and Simulation -
Volume I: Modeling, Springer Verlag, New York.

Elmqvist, H. (1978), A_Structured Model Language for Large Con-
tinuous Systems, Ph.D. Dissertation, Report CODEN: LUTFD2/
(TFRT-1015), Dept. of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden.

Elmgqvist, H. (1982), “A Graphical Approach to Documentation
and Implementation of Control Systems,” in: Proceedings 3rd
IFAC/IFIP Symposium on Software for Computer Control, SO-
COC0’82, Madrid, Spain, Pergamon Press.

Hu, J., J.W. Rozenblit, and Y.M. Huang (1989), “FRASES — A
Knowledge Representation Scheme for Engineering Design,” Pro-
ceedings SCS MultiConference on Advances in A.I and Simulation,
Tampa, FL, pp. 141-146.

Kim, T.G. (19?35, A Knowledge-Based Environment for Hierarchical
Modelling and Simulation, Ph.D Dissertation., Dept. of Electri-
cal and Computer Engineering, University of Arizona, Tucson, AZ

85721.

Korn, G.A. (1989), Interactive Dy ic-System Simulati
Hill, New York.

Mitchell, E.E.L., and J.S. Gauthier (1986), ACSL: Advanced Con-
tinuous Simulation Language — User Guide / Reference Manual,
Mitchell & Gauthier Assoc., 73 Junction Square, Concord, MA
01742.

Ramohalli, K., E. Lawton, and R. Ash (1989), “Recent Concepts in
Missions to Mars: Extraterrestrial Processes”, Journal of Propul-
sion and Power 5, 2, pp. 181-187.

Texas Instruments (1986), PC-Scheme Users Manual, Science Appli-
cations Press.

Zeigler, B.P. (1976), Theory of Modelling and Simulation, John Wiley
& Sons, New York.

Zeigler, B.P. (1984), Multifacetted Modelling and Discrete Event Sim-
ulation, Academic Press, London, UK.

Zeigler, B.P. (1990), Object-Oriented Simulation with Hierarchical,
Modular Models: Intelligent Agents and Endomorphic Systems,
Academic Press, Boston.

Zeigler, B.P., F.E. Cellier, and J.W. Rozenblit (1989a), “Design of
a Sirnulation Environment for Laboratory Management by Robot
Ogrgmizations," Journal of Intelligent and Robotic Systems 1, pp.
299-309.

Zeigler, B.P., J. Hu, and J .W. Rozenblit (1989b), “Hierarchical, Mod-
alar Modelling in DEVS-Scheme,” in: Proceedings 1989 Winter
Simulation Conference, WSC’89, Washington, D.C., pp. 84-89.

, McGraw

