Chapter 1

Toward a Unified Foundation for
Simulation-Based Acquisition

H.S. Sarjoughian and F.E. Cellier

Simulation-Based Acquisition (SBA) has become an important
framework for the development of engineering systems of high
complexity. It offers a rapid prototyping capability for the design
and/or evaluation of engineering systems, the components of which are
by themselves complex systems that may be manufactured by different
vendors. Using SBA, the designers of such Systems of Systems can
verify that the interplay between the component systems functions
correctly and reliably. The paper stipulates that SBA is enabled by the
synergism of three technologies, namely Modeling & Simulation
(M&S), Artificial Intelligence (Al), and Software Engineering (SE).

1.1 Introduction

The average complexity of engineered systems has grown over the years at a
phenomenal rate. Let us consider advances in the car industry. Modern cars are
full of electronics that control everything, from the behavior of the brakes to the
operation of the windshield wiper that turns automatically on and off depending
on the current weather conditions. Even the servicing of the car is partly
automated. When the car is brought to the garage, its on-board computers
communicate via the Internet with the master computer of the car manufacturer
to check whether the car operates as intended.

Engineered systems must be produced on an increasingly tight schedule.
Let us consider advances in the building industry. A modern mobile home is
delivered to the customer within weeks from the day it was ordered. Yet the
house cannot truly be prefabricated. No two houses are ordered exactly the
same way. There are lots of options, including the color of the carpets, the specs
of the bathrooms, and the location of the electrical outlets. Depending on the
state the house is to be delivered to and also the altitude where the house is to be
used, building codes change, requiring a modification in the insulation, the
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inclination of the roof, and the length of the stacks. Furthermore, in line with
modern just-in-time delivery, manufacturers no longer carry any spare parts.
They no longer have warehouses to store them. Thus, even the parts are ordered
exactly when they are needed, and it is expected that they will be delivered
within days if not hours. :

Such demands could not be met by the manufacturing industry if it were not
for Simulation-Based Acquisition (SBA). There simply is no margin for trial
and error in this process. When a manufacturer orders a part, he must know in
advance that the part will function as desired, and that it will arrive at the time
when he needs it. To this end, all facets of the manufacturing process are being
simulated. ahead of time, using models of parts that are provided by the part
manufacturer, that can be downloaded across the Internet from the website of
the part manufacturer, and that can be readily plugged into the overall models
simulating the manufacturing process.

The scenario described in the previous paragraph is taken from a futuristic
world. In the current reality, part manufacturers rarely offer models of their
products, and if they do, these models are rarely in a form that they could be
integrated easily and rapidly into the simulation model of a manufacturing
process. Exact simulation results must more often than not be replaced by rough
estimates that are based on engineering experience; overly optimistic
assessments often lead to unforeseen delays and cost overruns; and many a
company has already folded due to such errors.

It 1s the purpose of this chapter to outline some of the requirements for a
successful application of SBA. It is the conviction of the authors that only a
seamless synergy between three technologies: Modeling & Simulation (M&S),
Artificial Intelligence (AI), and Software Engineering (SE) can create an
environment in which SBA can be successfully employed.

Advances in areas such as Artificial Intelligence (AI), Modeling &
Simulation (M&S), and Software Engineering (SE), have been instrumental in
creating the technological era we live in. Significant recent developments in the
theories and practices of Al (e.g., [15]), M&S (e.g., [6,14,32]), and SE
([13,22,26]) have already supported the development of numerous engineered
systems such -as distributed training simulators and multi-agent systems.
Unprecedented technological advances necessitated by economic and geo-
political globalization attest to the fact that systems will continue to grow in
their complexities and interdependencies on one another. Let us consider.
training simulators in such diverse fields as medicine and warfare, where
simulators demand realistic models for the engineered systems themselves, their
environment, as well as interactions with the human users of these systems
[3,27]. Sophistication of such systems, in part, can be attributed to two
fundamentally distinct yet interdependent demands. First, systems are expected
to interoperate, in a heterogeneous setting, in order to achieve shared objectives.
Second, systems are required to exhibit sophisticated degrees of autonomy (or
more realistically modest degrees of semi-autonomy). The capability of systems
to behave collectively and autonomously in distributed heterogeneous settings
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promises to be one of the most difficult challenges posed to the scientific and
engineering communities at large.

It is the purpose of this book to offer a kaleidoscopic view of the set of tools
that will be needed to bring SBA to maturity. The vantages of the collection of
articles included in this volume are manifold. Indeed this is to be expected given
the breadth and depth of AI, M&S, SE, and in particular their interactions.
Examinations of the articles reveal the essential roles that AT, M&S, and SE play
not only individually, but also more importantly, synergistically. We note that
perspectives portrayed by each article may be borne out of the reader’s own
interpretations or due to the authors’ proclaimed perceptions and beliefs. These
perspectives may, as matter of course and in their own unique ways, reveal some
historical views, suggest the current state of knowledge, and/or foretell some
elements of a near-term, and in some cases longer-term, futuristic information
age landscape. These articles offer novel approaches —knowledge representation,
reasoning, and/or simulation to name a few- suitable for addressing the needs of
“Systems of Systems” based on the foundations and applications of Al, M&S,
and SE. '

We describe, in an abstract setting, the tapestry of the contributed articles
from two specific, complementary viewpoints. The first presents a view of the
landscape that has evolved from AI, M&S, and Software Engineering!. This
treatment is centered on the discrete event worldview for reasons described in
Section 1.2.1. The second suggests an approach toward systematic use of
concepts, theories, and practices —rooted in a variety of disciplines and most
notably Al, M&S, and SE— in building advanced systems as mentioned earlier.
The approach has been called Concurrent Engineering (e.g., [8]), and more
recently, Simulation-Based Acquisition [25].

1.2 AL M&S, and SE: A Unified Perspective

From a conceptual point of view, the realization of distributed systems hinges on
appropriate  knowledge representation schemes, reasoning mechanisms,
computational techniques, and evaluation strategies. A particularly elusive
enigma for realization of engineered systems is their ability to evolve/adapt in
dynamic environments. Challenges in modeling (e.g., model abstraction and
validation), efficient computational techniques - (e.g., parallel/distributed
simulation), and realization of such systems (e.g., software design
methodologies) are generally well known within AI, M&S, and SE. There are
numerous overlaps in the research inquiries that are being pursued in each of
these fields independently. In spite of these overlaps, the inquiries are not
generally redundant, as they are based on the individual viewpoints and

lOur discussion is not founded on a rigorous treatment of a shared
worldview on Al, M&S, and SE, as this is an open research inquiry.
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idiosyncrasies characteristic of the three research areas. Yet, it is our conviction
that these developments alone are insufficient to tackle the complex demands of
SBA, and that only a consequent collaboration between researchers in these
three areas, exploiting their synergism to the fullest extent, can bring SBA
technologies to maturity. Stated differently, a unified approach is necessary to
deal with the multitude of challenging issues such as model (software)
composability, distributed execution, and elevating existing technologies to
future higher grounds. Even under the best of circumstances, tackling the SBA
problem will be a formidable undertaking!

Inteliectual

Model and Data
Repositories

Common tools

M&S
Infrastructure

Support for Collaboration Simulation Algorithms

Common Software Modules gz

Communications

Figure 1.1: M&S infrastructure in support of SBA

Figure 1 illustrates various facets of modeling and simulaiion. it is easy to
observe the need for capabilities offered by Al and SE in addition to those of
M&S. Consider training systems where artificial intelligence techniques must
be employed to represent a “virtual” patient being operated on in a synthetic
operating room. During surgery, unforeseen events may happen, such as when
the trainee accidentally perforates a blood vessel. The Al controlling the patient
model needs to react to this situation, and drive the simulation such that it
responds realistically to the incident by changing the patient’s blood pressure
and heart rate. Clearly, advanced Software Engineering practices are required to
develop such extraordinary virtual training environments.
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To bring together Al, M&S, and SE, it is imperative to adopt a general
architectural framework and methodology. A candidate high-level architecture
has been suggested in [31,24]. This architecture consists of seven layers (1)
Network (the lowest layer), (2) middleware, (3) simulation, (4) modeling, (5)
search, (6) decision, and (7) collaboration (the highest layer). Lower layers
provide services for the upper layers, and higher layers can use and possibly
subsume the roles of the lower layers. This architecture can be used for both
simulation and system development. Adoption of a common architectural
framework enables designers to study competing/alternative designs by
employing a mixture of “simulated” and “performing” systems and therefore
support migration from simulation design to operational design.

Based on the viability of such a layered architecture, the claim is put forth
that AL, M&S, and SE are three distinct pillars upon which Systems of Systems
can be built2. Indeed, our view stems from the fact that it is increasingly crucial
for research in these areas and others (e.g., psychology and natural language) to
unify in such a way that the whole is significantly more than the sum of its parts.
In particular, a modular, layered, and hierarchical architectural framework is
adopted as the scaffolding to unify the elements of these pillars. Clearly, each
field must be valued and recognized in its own right, yet it is equally crucial to
recognize that it is only through the strength of collective advances of the trio
that there is any hope of developing systems that may withstand the demands
described earlier.

The articles contained in this book offer a sample of initial, suggestive
building blocks towards erecting the pillars of a unified framework and its
associated technologies to support creation of Systems of Systems. The
contributed articles are organized primarily from the point of view of their
generality vs. specificity. Chapters 2 through 5 discuss concepts and theories
primarily from the point of view of modeling and simulation. Chapters 6-8
present modeling and simulation frameworks and methodologies founded on a
variety of system-theoretic, software engineering, and artificial intelligence
principles. The remaining chapters present modeling and simulation approaches
and techniques, such as discrete-event cellular automata, intelligent systems
(e.g., agent modeling and planning, and neuron-based learning), and systems-
based software analysis.

1.2.1 Discrete-Event Worldview and Distributed Computation

Distributed interoperability and autonomy are key attributes of Systems of
Systems. The bottleneck in performance of a simulation of such a complex
environment is the ability of the systems to communicate effectively and
efficiently with each other across multiple hardware and software platforms.

2 This view is reminiscent of the interplay of art, music, and mathematics
described so eloquently by Hofstadter [17].
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The demand for efficient interoperability can only be met by minimizing the
need for communication between different systems. This can only be
accomplished if different systems communicate with each other by means of
discrete events. To-this end, the authors postulate that the Discrefe-Event
System Specification (DEVS) [30,32] is the only meaningful approach to
designing Systems of Systems.

Evidently, this does not preclude individual systems to embrace different
M&S methodologies for internal communication. For example, one such tightly
coupled system might represent a physical plant that, by itself, is composed of
many different parts. It may be appropriate to represent that plant using a
differential equation model, whereby each part is encoded as a separate software
object. At compile time, the hierarchy of software objects representing the plant
will be flattened, leading to a monolithic simulation code representing the entire
plant. This system, which is loosely coupled with the other systems of the
environment, will communicate with those other systems using a discrete-event
protocol.

1.2.2 A Brief Account of Artificial Intelligence & Software
Engineering

It is important to inquire about the role of Al in the proposed framework,
and particularly its relationship with the discrete-event worldview. For example,
are the knowledge representation schemes sought by the AI community
fundamentally distinct from those of the M&S or SE communities? Does SE
pose any constraints on Al and M&S, and vice-versa? Such questions, perhaps
philosophical, are plentiful with expectedly a variety of different opinions and
answers. ,

A major branch of Al research has focused on the knowledge representation
problem in general, and the qualification and frame problems in particular. In
addition to the wide interest and research activities focused on concepts and
theories of intelligence and knowledge representation, the Al community has
also had a keen appetite to address distributed computation and intelligence
modeling. Yet, topics such as scalability, performance, and heterogeneity have
not received as much attention. These and other closely related topics —
openness, resource sha_ring; fault-tolerance, and architectural frameworks — have
been under investigation primarily from the software engineering community.
Indeed, software engineering has introduced a plethora of techniques and
paradigms in support of software development (e.g., [1,4,9,19,21,26]) benefiting
the Al and M&S communities.

Not surprisingly, the discoveries/inventions made in one area are generally
founded on advances achieved in others. For example, advances in automated
reasoning, genetic algorithms, fuzzy logic, and neural networks are incorporated
into a variety of advanced modeling and simulation environments. Similarly,
software engineering principles, practices, and environments have become
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indispensable in the development of M&S environments. On the other hand,
software engineering tools employ a repertoire of modeling paradigms (Unified
Modeling Language [28]) and Al-based techniques to support analysis, design,
and realization of distributed heterogeneous systems.

1.2.3 Interoperability, Composability, and Distributed
Computing '

Many different modeling and simulation theories, methodologies, and practices
exist for a variety of purposes and domains (cf. [7] for a sample of approaches
and application areas). A simple way to differentiate among various approaches
is to consider whether a system’s structure is characterized as continuous or
discrete. From a system-theoretic view, systems can be modeled using
continuous-time, discrete-time, or discrete-event formalisms. Each approach
offers features that are most suitable for addressing a set of demands. Discrete-
event approaches are essential for a variety of systems that are event-oriented
“(e.g., enterprise resource planning, e-commerce, and semi-autonomous systems).
Continuous approaches are most appropriate for the description of many
physical plants, such as distillation columns or vehicles, the behavior of which
changes continuously over time.

Use of these different modeling approaches, often in isolation, has served
the needs of the M&S community well, as long as researchers were content to
model and simulate homogeneous systems separately and in isolation. Only
recently, the demand has risen for simulating heterogeneous complex Systems
of Systems, often using a distributed computing environment. Surely, the
previously developed modeling paradigms will continue to serve their domain-~
specific purposes. However, concentration on specific modeling methodologies
has had a tendency to influence the modelers’ mind, preventing them from
considering facets of their systems that did not lend themselves to being
described conveniently using the envisaged modeling approach. Consequently,
these approaches often limited the scope of an M&S effort, and thereby created
obstacles to dealing with Systems of Systems. It is important to note that, while
each of these modeling approaches can be augmented/extended to enable
heterogeneous, scaleable, composable simulation, the resulting tools will likely
be ad hoc and unable to provide the broad encompassing foundation required for
SBA.

With the emergence of large-scale simulations demanding a speed-up of
several orders of magnitude, distributed computational techniques have become
a necessity. Moreover, in recent years it has been realized that there are other
. motivations demanding distributed simulations. Specifically, due to
anytime/anyplace access to (simulation-based) information, enterprise system
modeling, knowledge (model) proprietary issues, and increasing need for
combined logical and real-time simulations, the discrete-event M&S paradigm
has become an attractive candidate for SBA [25].
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Based on current and envisaged future simulation needs, the discrete-event
framework promises to be the primary choice for unifying continuous and
discrete modeling and simulation needs. Among the many approaches to
discrete-event modeling and simulation, only the DEVS framework has been
shown to embed all classes of dynamic systems. The DEVS framework lends
itself naturally to computational  efficiency, distributed computing, and
component-based software realization such as DEVSJAVA, DEVS/HLA, and
DEVS/CORBA) [2, 32].

The ability to support efficient distributed computation based on system-
theoretic mathematical underpinnings is particularly promising in achieving
model validation, simulation verification, and accreditation (VV&A). Due to the
increasing complexity and time-critical nature of systems to be simulated,
support for VV&A has become indispensable to modeling and simulation and
more generally to SBA.

1.2.4 Continuous and Discrete-Event Modeling and Simulation

Since the 1970s, many approaches to combined continuous and discrete
modeling and simulation frameworks have been proposed and developed (e.g.,
[5,11,12,14,16,17,23,29,30,33]). DEV&DESS [23] provides a uniform
framework to model continuous and discrete-event models. With the discrete-
event system specification, the dynamics of a system can be represented in terms
of atomic and/or hierarchical coupled models. Input, output, and state sets as
well as functions operating on these sets constitute atomic models. Functions are
used to account for how the models are to respond to inputs, change states, and
generate outputs. Hierarchical coupled models are used to synthesize complex
models from simpler ones. These models communicate with one another
through their input/output couplings. Both atomic and -coupled models must
have their input, output, and state trajectories being piecewise constant. To
support larger classes of trajectories, two extensions of the DEVS formalism
(Quantized DEVS and GDEVS) have recently been introduced.

These approaches further extend hybrid modeling and simulation of
continuous and discrete-event systems. With the Quantized DEVS approach
[33], continuous models, mapped into discrete-event descriptions at any chosen
level of granularity, can be composed with ordinary discrete-event models. The
Generalized Discrete Event Specification [16] has been developed to support the
characterization of hybrid dynamical systems having piecewise linear
input/output segments. With this approach, input, output, and state trajectories
can be represented as piecewise polynomial segments.

Yet, in spite of the sheer generality of the DEVS approach to modeling, also
the DEVS modeler is not immune to watching the world through a tinted pair of
glasses, and interpreting what he or she observes using a limited, namely DEVS-
indoctrinated, world view. The fact that a DEVS model can embed a subsystem
that is described by differential equations does not adequately account for the
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needs of a modeler asked to provide such a differential equation model. The
derivation of a set of differential equations describing a large electronic circuit
or a complex multi-body system is a formidable task in its own right, a task that
is not addressed by the DEVS formalism.

To this end, an object-oriented continuous system modeling methodology
based on system theory was developed [11] and recently standardized [20].
Modelica [20] embraces many of the same principles that govern the design of
DEVS. It also distinguishes between atomic and coupled models. Just like
DEVS models, Modelica models are homomorphic, i.e., the interface of a
coupled model is indistinguishable from that of an atomic model.

The most important difference between the two modeling methodologies is
in the handling of inputs and outputs. Whereas DEVS models clearly
distinguish between the two types of terminal variables, Modelica models do
not. Terminal (interface) variables of a Modelica model are declared as terminal
variables, not as either inputs or outputs. For example, an electrical resistor
model may have two terminal variables: voltage and current. However, whether
the current is input (U = R-I} or output (I = U/R) depends on the environment in
which the model is embedded, and therefore, the modeler should not be forced
to make this choice ahead of time. The same model should be usable in both
situations. DEVS models are based on the principle of cause and effect. An
input event causes an output event to happen either immediately or later.
Modelica models are based on the essentially acausal nature of physics (there is
no physical experiment that can distinguish between a drunk driver driving his
car into a tree and a tree driving itself into the car of the drunk driver). All
variables are simultaneously dependent on each other.

Few M&S methodologies make a clear distinction between the underlying
principles of modeling and simulation. Both DEVS and Modelica make this
distinction. The purpose of the modeling methodology is to support the modeler
in organizing his or her knowledge about the system to be described. The
purpose of the simulation methodology is to apply input behavior to a given
model for the purpose of generating output behavior.

Modelica is a pure modeling methodology. There is nothing in the
Modelica specification that indicates how the model, once specified, is to be
used in a simulation, or even, how the model ought to be translated into
(interpreted by) a simulation code. Consequently, there is nothing in the
Modelica specification that would prevent a Modelica model from being
translated into a DEVS atomic model to be used as one monolithic node within a
discrete-event simulation.

1.3 Simulation Based Acquisition

Simulation Based Acquisition (SBA) [25] is a relatively new and evolving
initiative that has gained considerable attention within various United States
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federal agencies and business communities since its announcement in 1995 [10].
SBA was defined and adopted in 1997 by the Acquisition Council of the DoD
EXCIMS as “an acquisition process in which U.S. Department of Defense and
industry are enabled by robust, collaborative use of simulation technology that is
integrated across acquisition phases and programs”. Other initiatives similar to
SBA have been promoting processes capable of minimizing cost, just-in-time
delivery, supporting system evolution through reuse, and adhering to the
principles of system engineering (e.g., [8]).

The expectations for SBA are to substantially improve the acquisition
process through making early informed decisions, reducing risk, optimizing
system performance vs. ownership cost, timely delivery, improving
modularity/reuse, and supporting unprecedented information sharing among its
stakeholders. It is important to note that the need for anytime/anyplace access to
information is, arguably, the most significant driving force behind SBA. Based
on this premise, SBA may be viewed as a means to seek a new breed of what-ro,
why-to, know-to, and how-to knowledge supporting the creation of Systems of
Systems. Indeed, based on the need for anytime/anyplace information, a
suitable SBA framework must explicitly enable’ creation, use, and
transformation of heterogeneous layered knowledge.

Therefore, the success of SBA, similar to that.of its earlier contemporaries,
will hinge upon its ability to promote scalability, heterogeneity, openness,
resource sharing, and fault-tolerance. Whereas such traits in their abstract forms
are meanwhile universally accepted [4,13], there does not exist any accepted
architectural framework to enable their realizations for SBA. Hence, based on
the proposed unified approach and the suggested seven-layer architecture (cf.
Section 1.2), a partial candidate architecture can be outlined as specified in
Figure 1.2.

Obviously, it is beyond the scope of this article to undertake a complete
exposition of SBA specification and architecture, and to provide a blue print for
its realization. Nonetheless, the authors. find it instructive to exemplify the
proposed unified approach to SBA within the periphery of three layers ‘of the
seven-layer architecture (see Section 1.2). In the following paragraphs, a
collective set of elements is identified and discussed for each of the three layers
and their relationships among each other.

To describe Figure 2, let us begin with the modeling layer. In the previous
section, the needs/requirements for continuous and discrete-everit modeling
were discussed. The application of SBA across ‘the information techmnology
spectrum demands modeling from the enterprise level (e.g.,  engineering
resource planning) down to the elementary level (e.g., energy transportation).
The simulation layer responsibility is to bring about seamlessly the overall
behavior of a suite of models that may be characterized in different forms
(continuous, discrete-event, and discrete-time). The simulation layer is to
support execution of candidate composition of continuous and discrete models
in suitable alternative modes using a variety of simulation protocols (e.g.,
message passing vs. publish and subscribe). Behavioral manifestations of
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models can be achieved via specialized simulation techniques executing in
possibly both centralized and distributed modes. Adopting distinct layering of
modeling and simulation promotes separation of knowledge incorporation from
the demands of software engineering. Such separation plays a central role in
achieving SBA, since it provides choice and flexibility in the selection of the
elements of the modeling and simulation layers.

Simulation

Figure 1.2: A Synergistic view of Al, M&S, and SE

The layer designated as Artificial Intelligence accounts for separation of
modeling concerns. Rather than directly incorporating “intelligence” into the
models represented at the modeling layer, intelligence features are to be
represented distinctly. Intelligence behavior, such as monitoring, is modeled in
a modular fashion in such a way as to be composed with the models from the
modeling layer. It should be noted that the advocated separation of concerns,
while seemingly rather simple, is difficult to accomplish in practice. The only
known promising approach to facilitate the realization of separation of concerns
is through the principles of software engineering. '

The role of software engineering is emphasized through the ring that
surrounds the three layers. The ring suggests the essential role that software
engineering plays in the specification of the SBA architectural framework and
its realization. As suggested earlier, scalability, heterogeneity, openness,
resource sharing, and fault-tolerance traits are to be achieved by adhering
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closely to sound software engineering principles. Indeed, without exercising
software engineering principles systematically and vigorously, the realization of
SBA is likely to remain an unfulfilled dream.

It is our hope that the proposed unified approach and the seven-layer
architecture lives up to its expectation and advances a united, broader, planned
use of simulation assets (e.g., models, technologies, and methodologies) in
accordance with the SBA vision.

1.4_ Conclusions

Scientific and engineering communities alike are facing unprecedented
challenges to bring about systems capable of supporting globalization of
economies, cultures, etc. Simulation Based Acquisition promises to be the
primary framework for realization of a wide range of futuristic engineered
systems. Indeed, SBA is expected to be the catalyst in realization of distributed,
complex, highly information rich systems by fostering integration of similar and
disparate science and engineering technologies. However, existence of totally
simulation-based engineered systems will require a new breed of engineering
and scientific paradigms governed under an extensible, resilient scientific and
engineering framework. Technologies developed in a synergistic fashion based
on a unified framework will bring about a “world without borders”. The authors
argued that without a unified approach founded on artificial intelligence,
modeling & simulation, and software engineering, SBA’s highly regarded
promises are unlikely to be realized. In this setting, the suitability of systems
theory was discussed as the unifying approach to represent dynamical systems.
Furthermore, the paper illustrates how Discrete Event System Specification and
Modelica can support model interoperability and composability while
supporting distributed modeling (different model entities can be created and
maintained easily by different modelers) and distributed simulation (distributed
computing across multiple heterogeneous platforms). Both modeling approaches
also lend themselves naturally to the incorporation of a controlling artificial
intelligence layer.
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