
ELECTRONIC CIRCUIT MODELING AND
SIMULATION IN MODELICA

François E. Cellier1, Christoph Clauß2, Alfonso Urquía3

1ETH Zurich, Department of Computer Science,
ETH-Zentrum, CH-8029 Zurich, Switzerland

2Fraunhofer Institute of Integrated Circuits, Zeunerstr. 38,
D-01069 Dresden, Germany

3National University of Distance Education, Dept. of Computer Science and
Automatic Control, Juan del Rosal 16, 28040 Madrid, Spain

FCellier@Inf.ETHZ.CH (François Cellier)

Abstract

In recent years, three separate efforts took place at three different institutions to provide an
electronic circuit modeling and simulation capability within the framework of Modelica, an
object-oriented general-purpose environment for the modeling of physical systems. In order
to be generally usable, no domain-specific knowledge is hard-coded into the Modelica
software. Modelica only understands mathematics, not physics. Consequently, all domain-
specific knowledge must be formulated as part of the model. Recent advances in symbolic
algorithms and software technology have made it feasible to implement a full-fledged
electronic circuit simulator in Modelica without making unacceptable sacrifices on the run-
time efficiency of the resulting simulation code. What is being gained in the process is an
improved transparency of the models that are being implemented, a significantly improved
ease of maintainability and extensibility of the code, and a dramatically improved flexibility
in combining electronic models with mechanical and thermal models. These are demands that
industry now makes on a circuit simulator, demands that cannot easily be met using the
traditional approach to electronic circuit simulation.

Keywords: Electronic circuit simulation, Object-oriented modeling, Modelica, Multi-energy
modeling, Bond graph.

Presenting Author’s biography
François E. Cellier received his BS degree in electrical engineering in
1972, his MS degree in automatic control in 1973, and his PhD degree in
technical sciences in 1979, all from the Swiss Federal Institute of
Technology (ETH) Zurich. Dr. Cellier worked at the University of
Arizona as professor of Electrical and Computer Engineering from 1984
until 2005. He recently returned to his home country of Switzerland. Dr.
Cellier’s main scientific interests concern modeling and simulation
methodologies, and the design of advanced software systems for
simulation, computer aided modeling, and computer-aided design. Dr.
Cellier has authored or co-authored more than 200 technical publications,
and he has edited several books. He published a textbook on Continuous
System Modeling in 1991 and a second textbook on Continuous System
Simulation in 2006, both with Springer-Verlag, New York.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
Traditionally, analog electronic circuits were modeled
and simulated using special-purpose electronic circuit
simulators. Although a number of such simulation
tools have been made available over the years, the one
tool that has been most successful in conquering the
market is Spice.
Spice operates on a so-called “net-list” that numbers
the nodes of an electronic circuit and places the circuit
elements in between these nodes. The net-list is
interpreted by the circuit simulator. Due to some
special characteristics of electronic circuits, it is
possible to come up with a highly efficient
implementation of a circuit simulator without need for
compiling the circuit first.
A number of different software manufacturers
compete for the market by offering different
implementations of Spice. These implementations
vary somewhat in details of their transistor models,
and circuit models written for any one of these
simulators may not run correctly on another due to
differences in the set of device parameters offered by
the different implementations.
There exist secondary markets for schematic capture
programs, tools that are able to generate a Spice net-
list from a graphical circuit description; for output
visualization programs, tools that are able to interpret
the output generated by Spice and represent them
graphically in different formats; and for device
parameter sets, tools that offer device parameter sets
for a large number of different commercially available
transistors.
Circuit simulators have always remained separate and
distinct from the general-purpose dynamical systems
modeling and simulation (M&S) tools.
The so-called Continuous System Simulation
Languages (CSSLs) [1] that are based on state-space
descriptions of dynamical systems have primarily
been driven by the needs of control engineers. It is no
accident that the state-space formalism for the
mathematical description of dynamical systems was
first proposed by a control engineer, R.E. Kalman [2].
It was further no accident that the Society for
Modeling and Simulation International was originally
founded by a group of aerospace engineers.
The electronic circuit simulators of the past remained
outside of the mainstream CSSL development,
because electronic circuit models do not lend
themselves to manual transformation into a state-space
form.
Only the advent of modern object-oriented physical
systems modeling languages (OOMLs) [3] made it
feasible to bridge the gap between circuit simulators
on the one hand and general-purpose M&S software
on the other.

2 CSSLs vs. OOMLs
The groundwork leading to today’s OOMLs was laid
by H. Elmqvist in his Ph.D. dissertation [4].
Dymola was designed as a declarative rather than
procedural language based on equations rather than
assignment statements. The computational causality
of each equation, i.e., the variable for which each
equation needs to be solved, is being determined in an
automated fashion by the model compiler. Symbolic
formula manipulation algorithms are invoked by the
compiler to convert implicit (declarative) model
specifications to an explicit (procedural) state-space
form. The resulting simulation code can then be
simulated by an off-the-shelf CSSL-type simulator.
The semantic distance between the original implicit
model specification and the resulting explicit
simulation code may be quite large.
From a historical perspective, OOMLs can be viewed
as an evolutionary extension of the former CSSLs.
OOML compilers are simply a bit more advanced than
CSSL compilers, with the equation handler replacing
the former Macro handler.
Yet from a utilization point of view, the OOMLs
represent a true revolution as they enable the modelers
to treat all physical system models in exactly the same
fashion. There is no longer any need to distinguish
between a modeling environment for control systems
and one for electronic circuits, for example.
Although the compilation of an OOML model of an
electronic circuit may be a bit slower than the
corresponding compilation using a conventional Spice
implementation, the resulting simulation codes can be
made equally efficient in execution speed.

Modelica [3] has meanwhile replaced Dymola [4] as
the most widely used OOML. Whereas the Dymola
language had been developed by Elmqvist and
marketed by Dynasim as a proprietary code, Modelica
has been designed by a standard committee and is
non-proprietary. Anyone may develop a modeling
compiler and an underlying simulation engine based
on the Modelica language specification, and indeed,
there already exist several implementations of
Modelica.
Modern Dymola [5] is one among several M&S
environments that are based on the Modelica language
specification. Dymola features a graphical user
interface (GUI), a Modelica compiler, a CSSL-type
simulation engine, a graphical postprocessor for
visualization and animation of simulation results, and
various additional tools for model manipulation, such
as a linearization engine. This M&S environment is a
commercial code marketed by Dynasim.
OpenModelica [6] is a free (open-source)
implementation of a Modelica compiler. The code
comes with a CSSL-type simulation engine. The code
also offers a (simple) result visualization program, but
many OpenModelica users prefer Matlab [7] for
visualization of their simulation results.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

MathModelica Lite [8] can be used as a GUI for
OpenModelica.
Both Dymola and OpenModelica have their pros and
cons. Industrial users may give a preference to
Dymola, because the code is further developed, easier
to use, offers more features, is more professionally
maintained, and generates more run-time efficient
simulation code. Academic users may prefer
OpenModelica, because the code is free and because it
is open-source, which allows them to develop
additional tools and implement additional algorithms
more easily than using Dymola.
This paper is based on Dymola, because its emphasis
is on Modelica library design and not on the
development of new algorithms.

3 Three Modelica libraries for analog
electronic circuits
Three different and separate Modelica libraries for the
description of analog electronic circuits have
meanwhile been developed. These shall briefly be
described.

3.1 The Modelica standard library

Modelica denotes not only a language definition, but
also a library of models coded in the Modelica
language. This Modelica library, which is in the
public domain and which is supposed to run under any
complete Modelica implementation, is called the
Modelica standard library.
The Modelica standard library contains a sub-library
featuring models of electronic circuit components,
which itself contains two sub-libraries, one for digital
(logic) circuit elements, the other for analog circuit
components.
The electrical analog library [9] contains models of
the basic passive electrical components (resistors,
capacitors, and inductors), simple models of
transistors and diodes, as well as models of voltage
and current sources.
The transistor models of the standard library are
considerably simpler than those provided in
implementations of Spice. Consequently, these models
aren’t suitable for integrated analog circuit design.
Also, Spice implementations offer different analysis
types, in particular, DC-analysis, AC-analysis, and
transient analysis. Dymola is designed for transient
analysis only.
On the other hand, the simplicity of the transistor
models contained in the standard library also has its
beauties. These models can be simulated very
effectively, which allows the efficient simulation of
large transistor circuits. Also, the simplicity of these
models may be appealing to instructors, who wish to
teach students the basics of analog circuit design.
Finally, the standard library also offers thermal analog
circuit component models, which allows circuit
designers to model and simulate heat storage and
dissipation in electronic circuits, which cannot be

done in Spice, and also, since electrical circuit models
can be simulated together with mechanical system
models, Dymola makes it possible to model and
simulate mechatronic systems elegantly and
efficiently.
A simple analog inverter circuit may serve to illustrate
the modeling and simulation of electronic circuits
using the Modelica standard library. The circuit
diagram is shown in Fig. 1.

Fig. 1 Circuit diagram of analog inverter circuit

The circuit diagram looks essentially the same as a
corresponding circuit diagram drawn using any
schematic capture program designed to be used as a
preprocessor to Spice. The circuit contains a single
bipolar junction transistor (BJT).
The BJT model offered in the Modelica standard
library is a simple equation model as shown in Fig. 2.

Fig. 2 BJT model of Modelica standard library

Contrary to Spice, which “hard” encodes its device
models either in Fortran or C (depending on the
version), Modelica “soft” encodes the entire domain
knowledge of its models in the Modelica language
itself. The Modelica compiler only encapsulates
mathematical knowledge. Consequently, Modelica
models are considerably easier to understand,
maintain, and upgrade than Spice models.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

In Dymola, each object (model) is represented by four
different entities. It consists of an iconic (graphical)
representation that is used to allow the model to be
graphically invoked at a hierarchically higher level; a
diagram (graphical) representation that is used to
represent the internal structure of the model by an
interconnected set of sub-models; an equation
(textual) representation that allows the model to be
described using (implicitly formulated) equations; and
a documentation (hypertext) representation that
enables the modeler to describe what the model is
supposed to be doing.
In the above example, the inverter circuit is described
using the diagram layer, whereas the BJT model is
described using the equation layer.
The inverter circuit model is now converted to state-
space form by the Modelica compiler. This process is
shown in Fig. 3.

Fig. 3 Translation of analog inverter circuit model

The original (implicit) DAE model contains 74
equations in 74 unknowns. The translated (explicit)
ODE model contains 2 state variables and 23 algebraic
variables. The remaining equations were trivial
(connection) equations that were eliminated by the
compiler.
The model can now be simulated. This process is
shown in Fig. 4.
The Dymola simulator uses by default the DASSL
numerical ODE solver. The entire simulation required
0.04 sec for its execution.
The simulation results are shown in Fig 5.

Fig. 4 Simulation of analog inverter circuit model

Fig. 5 Results of analog inverter circuit simulation

During the initial period, the circuit undergoes a
transient, because the model didn’t start out in a
trimmed state. In Spice, the user would normally
precede the transient analysis by computing a DC OP
point, which would eliminate the initial transient from
the simulation results.

3.2 SPICELib

Beside from the Modelica standard library, a number
of Modelica users have written libraries of their own.
Some of these libraries are commercial libraries,
whereas others are free libraries.
SPICELib [10] is one such free library. It implements
a subset of component models of PSpice [11]. PSpice
is one of the most widely used dialects of Spice.
Consequently, many modelers are familiar with the
device parameters featured in PSpice, and there have
been identified PSpice parameter sets for most
commercially available electronic devices.
SPICELib follows the traditional Spice philosophy of
offering separate models for the different analysis
types, i.e., one SPICELib component model contains
multiple models, one for DC analysis, another for AC
analysis, and a third for transient analysis.
As a consequence of this decision, the SPICELib
connectors are incompatible with the connectors of the
standard electrical library, and therefore, SPICELib
and standard component models can unfortunately not
be mixed.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

Just as in the case of the standard library, the
SPICELib component models have been implemented
using the equation layer. However, these models are
now considerably more complex, and therefore, they
are less easy to understand and maintain. On the
upside, these are full-fledged Spice models that can be
used for integrated circuit design. Also, the similarity
between PSpice and SPICELib and the availability of
separate models for the different analysis types makes
it particularly convenient for experienced PSpice users
to switch to Modelica if they so choose.
However at the current time, our demonstration circuit
cannot yet be simulated in SPICELib, because as of
now, SPICELib offers MOSFET models only. The
BJT and JFET models have not yet been released.

3.3 BondLib

BondLib [12] is another free Modelica library that is
built on bond graph technology. Bond graphs [13]
offer domain-independent graphical modeling. Bond
graphs represent the most basic graphical modeling
paradigm that is still fully object-oriented. By
mapping higher-level models first down to a bond
graph layer, the need for modeling using the equation
layer can be dramatically reduced, which enhances the
understandability of the models and simplifies their
maintenance.
BondLib contains an electrical analog sub-library that
is quite similar in appearance to the corresponding
sub-library of the Modelica standard library.
However, each of the component models is further
graphically decomposed down to a bond graph layer.
Contrary to the standard library, BondLib contains
also true Spice models. Its Spice models are however
based on HSpice [14], another dialect of Spice with
device parameter sets that differ somewhat from those
used in PSpice. HSpice and BondLib offer different
levels of complexity of their device models. Higher
level models are more complex, offer more device
parameters, and consequently are slower in their
execution.
Just like the standard library, BondLib contains
transient analysis models only. For this reason, the
electrical BondLib connectors are compatible with the
electrical connectors of the standard library, and the
models of the two libraries can be freely mixed.
Fig. 6 shows our simple demonstration circuit, now
modeled using BondLib component models. The
model looks quite similar to that of Fig. 1. However
in BondLib, the BJT models contain an additional
(green) port denoting the substrate, and all device
models contain an additional (red) thermal port.
Fig. 7 shows the internal representation of the BJT
model. The BJT model is composed of an internal
BJT model plus the collector, emitter, and (non-linear)
base connection resistances, the base-substrate
junction diode (in the case of a laterally diffused BJT),
and a non-linear stray capacitance placed between the
external base and the internal collector nodes.

Fig. 6 Analog inverter model coded in BondLib

Fig. 7 Internal representation of BondLib BJT model

Fig. 8 shows the internal representation of the internal
BJT model.

Fig. 8 Internal representation of internal BJT model

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Fig. 8 shows the typical replacement circuit of the BJT
consisting of two junction diodes and two non-linear
current sources.
Fig. 9 shows the internal representation of the base-
collector junction diode.

Fig. 9 BondLib model of base-collector junction diode

It consists of the typical non-linear Gummel-Poon
junction capacitance, the true diode characteristic, and
a (numerically motivated) stray conductance.
At the next lower (still graphical) level are the bond
graph device models. Below that level are small
equation models implementing the bond graph
primitives.
Fig. 10 shows the translation of the BondLib analog
inverter circuit.

Fig. 10 Translation of BondLib analog inverter circuit

The model contains initially 2624 equations in 2624
unknowns. However, most of those equations are
trivial connection equations that are being eliminated

in the process of compilation. The simulation model
contains 3 state variables and 162 algebraic variables.
It is about as simple as can be expected of such a
complex model.
Each of the three junction diodes contains one
junction capacitance leading to one state. The external
stray capacitance is a dependent capacitance that does
not lead to an additional state variable. It gets
eliminated in the compilation process by symbolic
index reduction.
The standard BJT model contains only two state
variables, because it doesn’t include a model of the
substrate.
The compilation of the BondLib model is evidently
slower than that of the standard model, but Dymola is
very efficient in its compilation. Both compilations
consume only splits of a second.
Fig. 11 shows the simulation of the BondLib analog
inverter circuit.

Fig. 11 Simulation of BondLib analog inverter circuit

Also the simulation is slower than that of the
equivalent circuit using the standard library, which is
to be expected since the model is considerably more
complex. However, the slow-down of the simulation
is less than a factor of 2, which is quite acceptable.
Fig. 12 shows the simulation results obtained for this
model.

Fig. 12 Results of BondLib analog inverter simulation

The simulation results are quite different from those
obtained using the standard library for two reasons.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Firstly, the BondLib BJT model contains (in
accordance with Spice philosophy) the base, collector,
and emitter connection resistances, whereas the BJT
model of the standard library does not. Those would
have to be added externally. Their influence should
not be neglected. Especially the base resistor is quite
large (around 1000 Ohm).
Secondly, BondLib offers some support for DC
analysis, which the standard library does not.
Traditionally in Spice, a DC OP point is computed by
Newton iteration. BondLib doesn’t do that, but
instead computes a DC OP point by ramping up the
sources.
If all active devices are initially switched off and if all
sources are initially at zero, the only physically
plausible solution is for all voltages and currents to be
zero. Thus, we can start with this solution, ramp up
all sources to their initial values, and keep them there
for a while, before the transient analysis starts.
BondLib offers ramping sources that allow the user to
specify a ramping and a settling time for each one of
them.

4 AC analysis in BondLib
We shall now analyze a different circuit, namely a
high-gain operational amplifier circuit. The overall
model is shown in Fig. 13. The inverter itself is
shown in Fig. 14.

Fig. 13 Overall operational amplifier inverter circuit

Fig. 14 High-gain operational amplifier circuit

The internal representation of the operational
amplifier is shown in Fig. 15. It consists of a dozen
BJTs.

Fig. 15 Model of high-gain operational amplifier

The circuit can be translated and simulated. Fig. 16
shows the translation process, whereas Fig. 17 shows
the simulation.

Fig. 16 Translation of operational amplifier circuit

Fig. 17 Simulation of operational amplifier circuit

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

Here we started out with 25561 equations. The
compilation required a few seconds. After the
compilation, we ended up with 37 state variables (12
transistors with 3 states each plus one external
capacitor) and 1583 algebraic variables. The
simulation required 4.52 sec of execution time.
Fig. 18 shows the simulation results.

Fig. 18 Results of operational amplifier simulation

We now wish to perform an AC analysis. To this end,
we require an input/output model that needs to be
linearized around a suitable steady state point.
The final state of the transient simulation is a good
steady state point. It is being stored by Dymola
automatically in the file dsfinal.txt.
The input/output model to be linearized is the model
of Fig. 14. Hence we need to quickly return to the
modeling window, select the model of the operational
amplifier circuit, and return to the simulation window.
We now need to read in the final values of the
transient analysis as initial states. This is done in the
simulation pull-down menu using the command
Continue/ImportInitial… that asks you to select the
file to be read, which is the file dsfinal.txt. Next
we need to linearize the circuit around its initial state.
This is also done in the simulation pull-down menu
using the command Linearize. This command stores
the linearized model in the file dslin.mat.
The actual AC analysis is not performed in Dymola
itself, but rather using the control systems toolbox of
Matlab. To this end, we execute the file OpAmp.m
shown in Fig. 19.

Fig. 19 Matlab code to perform AC analysis

The results of the analysis are shown in Fig. 20.

Fig. 20 Results of AC analysis of OpAmp circuit

The operational amplifier has a bandwidth of roughly
1 MHz. Up to that frequency both the amplitude and
phase characteristics are beautifully flat.
The approach described here is not specific to
BondLib. The same approach could have been
applied just as easily when using the standard library
for modeling the high-gain operational amplifier
circuit. However, the approach is specific to the
Dymola M&S environment. There is nothing in the
specification of the Modelica language that supports
linearization. Hence other implementations of
Modelica either won’t support this feature at all, or at
least, they won’t support this feature in the same
fashion.
The proposed approach is more object-oriented than
that advocated in SPICELib, because the same model
can be used to perform all three analysis types. This
simplifies the maintenance of the code. However, the
approach implemented in SPICELib is more user-
friendly, because it enables modelers to perform AC
analysis with a single command just like in Spice.

5 Advantages of using OOMLs for
modeling electronic circuits
Using OOMLs for modeling and simulation of
electronic circuits offers a number of striking
advantages over the use of Spice. These shall be
enumerated now.

5.1 Mechatronics

Ever more frequently, industry now demands the co-
simulation of electronic and mechanical subsystems.
Car manufacturers want to be able to simulate the
electronic control circuitry of their engines together
with the engines themselves, for example. The field
has become so prominent that it even received a name
of its own: mechatronics.
In Spice, mechatronic systems cannot be simulated
because Spice doesn’t allow modeling systems other
than analog electronic circuits. Using an OOML, such
as Modelica, M&S of mechatronic systems is natural
and highly intuitive.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

5.2 Thermal analysis

With the ever increasing density and speed of
integrated electronic circuits, heat dissipation becomes
a major issue.
Whereas Spice allows simulating an electronic circuit
at different temperature values, it doesn’t provide for a
feature to compute the heat produced by a circuit and
from there determine its operational temperature.
Using an OOML and especially using one that is
based on bond graph technology, performing thermal
analysis of electronic circuits is a breeze.

5.3 Software upgrades

One of the authors of this paper used to work for years
as a consultant to BurrBrown, a Tucson-based
company specialized in those years in the design of
high-gain analog amplifiers, like the one shown in this
paper. To this end, he maintained their version of
HSpice, called BBSpice.
Once he was asked to add a Zener diode model to the
code. It took him roughly two full weeks of work to
implement the model in the code. On another
occasion, he was asked to provide an automated
ramping feature, because the built-in DC analysis
frequently did not converge on their analog circuits.
Implementing this feature in the code required almost
a full month of work.
Using a language like Modelica, similar requests can
be fully handled in a few hours each due to the fact
that Modelica stores its domain-specific knowledge in
the model, rather than in the compiler.

5.4 Teaching

Whereas Spice can be used to test circuits that have
been designed, Spice cannot be used easily to teach
how transistor models work.
The reason is that the transistor models in Spice are
black-box models that can only be looked at from the
outside.
It is true that many Spice manuals show the equivalent
replacement circuits on which the transistor models
are based, but the student has no access to the internal
signals of these replacement circuits.
Making use of an OOML, especially when embracing
the approach that BondLib took, the student can
actually view the replacement circuits and can dig into
them to any level that he or she so chooses, even down
to the bond graph models at them bottom of the
graphical model hierarchy.
This makes it possible to use BondLib effectively and
efficiently for teaching the basics of semiconductor
technology.

6 Summary
Modelica has become an excellent vehicle for
communicating knowledge about dynamical systems
among scientists and engineers. Models can be freely
interchanged and may be conveniently combined for
simulation of mixed energy systems.

Ever more researchers are making use of the language
for many of their M&S needs. An international
Modelica conference [15] is being held in frequent
intervals, where researchers can present their newest
models and exchange information amongst each other.
At the last of these events, close to 200 people were in
attendance.
The Modelica standard library [16] has grown
impressively over the years. It contains sub-libraries
for electrical, mechanical, and thermal systems, as
well as a block diagram library for the description of
control systems, a state graph library for the
description of discrete systems, a media library for
modeling systems with convective flows, as well as a
mathematical library for frequently used mathematical
functions, and a physical library for universal
constants, commonly used measurement units, and
conversions between them. The standard library
represents easily the largest vault of freely available
public domain information concerning dynamical
systems. It is envisaged to become the most important
one-place-shop-all tool for physical systems modelers
around the globe.
Also available from the Modelica website are growing
numbers of free libraries, including SPICELib and
BondLib that are maintained outside the standard
library. These libraries are expected to undergo
frequent modifications and enhancements. For
example, BondLib shall soon be enhanced by a sub-
library for translational and rotational 1D mechanical
systems, whereas SPICELib shall soon add models for
BJTs. Once a free library has matured and stabilized,
it may be considered by the Modelica standard
committee for inclusion as a sub-library within the
standard library.
Finally, there exist a number of commercial libraries
that their producers consider too valuable to be given
away for free.
This paper has shown that the OOML approach to
physical system modeling has been able to break
down the former barriers among hitherto separate and
disjoint tools for describing particular classes of
physical systems, such as electronic circuits.
Modelica models of analog electronic circuits can be
and have been developed that are as robust and as
efficient as the specialized Spice codes of the past, and
yet, much more needs to be done.
Until now, we have concentrated our efforts on analog
circuits primarily. Although the standard library
already contains a digital electronic library as well,
that library is still rudimentary. It cannot compete
with commercial tools, like LogicWorks [17] for
example, that consider the fan-in and fan-out of digital
logic components, allow the simulation of propagation
delays across gates, and contain models for TTL and
ECL chips currently on the market.
There is also a definite need for the simulation of
mixed analog and digital circuits, such as switched
power converter circuits, that neither Spice nor
LogicWorks can currently handle.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

7 References
[1] D.C. Augustin, M.S. Fineberg, B.B. Johnson,

R.N. Linebarger, F.J. Sansom, and J.C. Strauss.
The SCi Continuous System Simulation Language
(CSSL). Simulation, 9:281-303, 1967.

[2] R.E. Kalman. Mathematical description of
dynamical systems. SIAM J Control, 1:152-192,
1963.

[3] H. Elmqvist, S.E. Mattsson, and M. Otter.
Modelica – a language for physical system
modeling, visualization and interaction. Proc.
IEEE Intl. Symp. Computer Aided Control System
Design, Kohala Coast, HI, 630-639, 1999.

[4] H. Elmqvist. A structured model language for
large continuous systems. Ph.D. dissertation,
Dept. of Automatic Control, Lund Institute of
Technology, Sweden, 1978.

[5] D. Brück, H. Elmqvist, H. Olsson, and S.E.
Mattsson. Dymola for multi-engineering modeling
and simulation. Proc. 2nd Intl. Modelica Conf.,
Oberpfaffenhofen, Germany, 55.1-55.8, 2002.

[6] A. Pop, P. Fritzson, A. Remar, E. Jagudin, and D.
Akhvlediani. OpenModelica development en-
vironment with Eclipse integration for browsing,
modeling, and debugging. Proc. 5th Intl. Modelica
Conf., Vienna, Austria, 2:459-465, 2006.

[7] Mathworks. Using Matlab version 7. The
Mathworks Inc., Natick, MA, 2005.

[8] http://www.mathcore.com/products/mathmodelica
/lite/.

[9] C. Clauß, T. Leitner, A. Schneider, and P.
Schwarz. Modelling of electronic circuits with
Modelica. Proc. Modelica Workshop, Lund,
Sweden, 3-11, 2000.

[10] A. Urquía, C. Martín, and S. Dormido. Design of
SPICELib: a Modelica library for modeling and
analysis of electric circuits. Mathematical and
Computer Modelling of Dynamical Systems,
11(1):43-60, 2005.

[11] J.G. Tront. PSpice for basic circuit analysis.
McGraw-Hill, 2005.

[12] F.E. Cellier and À. Nebot. The Modelica bond
graph library. Proc. 4th Intl. Modelica Conf.,
Hamburg-Harburg, Germany, 1:57-65, 2005.

[13] F.E. Cellier. Continuous system modeling.
Springer-Verlag, 1991.

[14] Synopsys. HSpice simulation and analysis user
guide. Synopsys Inc., Mountain View, CA, 2003.

[15] http://www.modelica.org/events/modelica2008/m
odelica2008announcement/view.

[16] http://www.modelica.org/libraries.

[17] http://www.capilano.com/LogicWorks/.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

