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SIMULATION OF BIPOLAR HIGH-VOLTAGE DEVICES 
IN THE NEIGHBORHOOD OF BREAKDOWN 

Qiming WU and Franqois E. CELLIER 

Department of Electrical and Computer Engineering, Uniuersity of Arizona, Tucson, AZ 85721, U.S.A. 

This paper investigates numerical techniques for the solution of the system of nonlinear elliptic PDE’s that 
simulates bipolar semiconductor devices under high reverse bias voltage. Bipolar devices are usually modeled as 
a set of three elliptic PDE’s representing the field equation and the electron and hole current continuity 
equations. However, these equations can be solved effectively in the case of low-voltage devices only, e.g. by use 
of the the BAMBI program. As shown in this paper, it is possible to simplify the model in case of high-voltage 
devices. A powerful software toolkit, ELLPACK, has been used to solve the resulting two-dimensional Poisson 
equation. ELLPACK enabled us to easily compare several numerical solution techniques for their efficiency to 
solve this problem. To analyze the effectiveness of the toolkit as a whole, a comparison was made between 
ELLPACK and a special-purpose program written by us. 

1. Introduction 

In order to develop new semiconductor devices and study different kinds of semiconductor 
devices, two-dimensional or three-dimensional device simulation is needed. Device simulation 
has become an important tool for Computer-Aided Design of LSI circuits, specially new MOS 
devices, and in the investigation of electrical characteristics of devices, e.g. the study of bipolar 
transistors with complex structure. 

The task of device simulation is to solve basic semiconductor equations, the Poisson equation 
and electron and hole current continuity equations, directly for a specified domain with certain 
boundary conditions and doping concentration. Both Poisson equation and current continuity 
equations are nonlinear elliptic partial differential equations which have to be solved simulta- 
neously. 

Our specific purpose of doing static two-dimensional device simulation is to study electrical 
characteristics and breakdown behavior of bipolar transistors under high reverse bias voltage. In 
this special situation, the physical model can be simplified. For a high reverse biased junction, 
the currents are negligible, and the Poisson equation is the only equation to be solved. The 
resulting electric potential and carrier density distributions are sufficiently accurate [8]. Once the 
electric potential has been determined by the simulation program, the breakdown voltage can be 
evaluated from there. 

Even with this simplification, the computation of the numerical solution for the resulting 
two-dimensional Poisson equation under high bias voltage is very time consuming. This is due to 
the fact that the resulting field exhibits very large and unequally distributed gradients which calls 
for a large number of grid points (at least several hundreds). To keep the computational cost in 
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acceptable bounds, it is important that a good initial guess for the solution considering the 
electrical neutrality condition is found. 

ELLPACK [9] is a powerful software system for solving elliptic partial differential equations. 
ELLPACK is a toolkit in that a fair number of different discretization and solution techniques 
have been integrated into the program. These techniques are parameterized. Thus, to switch from 
one technique to another, the user simply replaces one phrase in his program by another. In this 
paper, the different solution techniques available in ELLPACK are discussed with respect to their 
efficiency to solving the posed problem. 

In Section 2 of this paper, the physical problem is described. The basic semiconductor 
equations with corresponding boundary conditions, and the simplification of this physical 
problem are introduced. 

In Section 3 of the paper, the ELLPACK software is briefly described. Equations and boundary 
conditions that are acceptable to ELLPACK, discretization methods, numerical solution techniques 
of the underlying linear algebraic equations, and some basic ELLPACK statements are presented. 

In Section 4, it is shown how ELLPACK can be used to solve the two-dimensional nonlinear 
Poisson equation that models our class of devices. Newton iteration was used to linearize the 
nonlinear equation. Both finite differences and finite elements were used to discretize the 
equation. Both direct and iterative techniques were applied to the solution of the underlying 
linear equations. 

Section 5 lists a comparison of results obtained from these different numerical methods. The 
execution time, storage requirements, and differences in the results are shown. 

Finally, Section 6 presents further investigations and conclusions. 

2. Physical model and basic equations 

On a domain with known doping concentration and boundary conditions, the basic semicon- 
ductor equations: the Poisson equation and electron and hole current continuity equations are 
solved. For static two-dimensional device simulation, the basic semiconductor equations can be 
modeled as follows (normalized form) [lo]: 

Poisson equation: 

a2&dkd2 + a2q/ay2 = - (p - n + iv,); (1) 

Current continuity equations: 

div(J,) = R, 

div( Jr) = -R; 

Current density equations: 

(4 

(3) 

4 = -I-V grad ($) + Qgrad(n), 

Jp = -I-QP grad(G) - Qwd(p) 

(4 

(5) 
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Fig. 1. Typical domain geometry of a bipolar transistor. 

where 4, n, and p are unknown variables. 

n = & exp(+L 

P = $ exd-$4 

(6) 

(7) 

#(x, Y) = static electric potential, unknown variable 

n(x, Y) = electron concentration, unknown variable 

P(% Y) = hole concentration, unknown variable 
Nd(x, Y) = doping concentration, known physical function 

4(x, Y) = electron current density 

J,(x, Y) = hole current density 

PL, = electron mobility, experimentally determined function, related to the 
electric field (E = - grad( I/J)) 

PP 
= hole mobility, experimentally determined function 

4 = electron diffusion constant (F./D, = q/kT) 

DP 
= hole diffusion constant ( pLp/d, = q/kT) 

4% = electron quasi-Fermi potential 

@P 
= hole quasi-Fermi potential 

R = recombination rate, related to n, p, J,, and Jp. 

A typical domain of a bipolar transistor is shown in Fig. 1. Corresponding boundary conditions 
are listed as follows: 

(I) AB, CD, EF: 

$=rclo, n=n,, p=po 

(2) BC, DE: 

alC//ay=Q,> AIn= -R,,> JPIn=Rsp 

(3) FG, GH, HA: 

d$/ay=O, J,I,,=O, J&=0 
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where: 

Q, = surface charge density, experimentally determined constant 

R,, = surface recombination rate of electrons, experimentally determined constant 

% = surface recombination rate of holes, experimentally determined constant 

J, In = orthogonal component of the vector J, 

Jp I n = orthogonal component of the vector Jp 

In order to compute the unknown variables Ic/, n, and p, (l), (2) and (3) must be solved. This 
set of equations is a set of nonlinear coupled elliptic partial differential equations. The numerical 
solution of this kind of equations includes the following steps: 

1. Transform the continuous problem to a discrete one. Finite difference method and finite 
element method are two methods usually employed. 

2. Linearize the nonlinear PDE. Newton iteration is commonly used for that purpose. 
3. Determine the scheme of solving the coupled PDE’s. Three techniques have been described in 

literature: In one, the three discrete equations are decoupled and solved iteratively [6]. The 
second technique solves the equations simultaneously [2]. Recently, a Block-Newton-SOR 
method has been employed [5]. 

4. Choose the numerical solution technique for the underlying linear algebraic equations. Both 
direct and iterative (SOR) techniques are frequently used. Some of these techniques (e.g. band 
structure techniques) can be further improved by numbering the equations in an intelligent 
way (e.g. to minimize the width of the band). This problem is referred to in the literature as 
the indexing problem. 

For this set of two-dimensional PDE equations, we require hundreds if not thousands of 
discrete nodes as the resulting gradients are very large and unequally distributed. The numerical 
solution of this problem is therefore time consuming. Furthermore does the convergence of the 
Newton iteration depend heavily on the working condition of the device, e.g. the bias voltage on 
the transistor. When the reverse bias voltage of the junction is increased to hundreds of volts, 
eqs. (1) (2) and (3) become almost impossible to solve numerically. The computing effort grows 
from a couple of minutes to many hours of CPU time on a VAX 11/750. 

Our purpose of device simulation is the investigation of breakdown behavior when the 
transistor collector is on high reverse bias voltage. Under those conditions, the model can 
fortunately be simplified. The currents can be assumed to be negligible. 

Under reverse bias condition, when the current is not significant, Cp, can be approximated by 
its n-contact bias value and +r, can be approximated by its p-contact bias value, i.e. +, = V, and 
+p = 0, where V, is the value of reverse bias voltage on the p-n junction. 

After making the above simplification, &, and +r, have become constants. n and p can now be 
solved from (6) and (7) and can be plugged into (1). The Poisson equation is thus the only 
remaining PDE, and can be written as follows: 

a*#/ax* + a*+/ay* = -(a exp(-4) - +, exp($) + Nd). (8) 

From this PDE, we compute the electric potential ,$, and then indirectly by use of (6) and (7) 
the electron and hole concentrations. Finally, the focus of the problem is on how to solve the 
Poisson equation efficiently. 
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3. ELLPACK 

ELLPACK is a software system for solving elliptic boundary value problems. The software 
includes both a very high-level problem statement language and an extensive and extensible 
library of problem-solving modules. Even the problem statement language itself can be extended 
by use of a compiler-compiler and a data template processor. 

The ELLPACK system solves single linear elliptic equations of the form (9) and (10) on general 
domains in two dimensions and rectangular domains in three dimensions with boundary 
conditions of form (11): 

where a, c, f, and g are functions of x and y. The ellipticity condition ac > 0 must be satisfied 
in domain R. 

au,, + 2bu,, + cu,,. + du, + eu,,, + fu = g 00) 

where a, b, c, d, f, and g are functions of x and y. The ellipticity condition b2 - ac < 0 must 
hold in domain R. 

The corresponding boundary condition along boundary AR specified for elliptic problems 
takes the following form: 

P(X, Y>U, + 4(x7 Y>U =rh ~4. 01) 

For three-dimensional problems, a term in uZZ must be added to (9), terms in u,_, ux_, u,._, 
and u, have to be added to (lo), and the z-coordinate is to be added to (11). 

There are two stages to the numerical solution of elliptic boundary value problems. The first 
stage, called discretization, replaces the continuous problem by a discrete problem with ap- 
proximately the same solution. In the case of (9), (lo), and (ll), one obtains a system of linear 
algebraic equations. The second stage is the solution of this algebraic system. 

Two discretization methods are included in ELLPACK, the finite difference method and the 
finite element method. For finite differences, there are 5-point star, 7-point star, and higher order 
HODIE methods available. For finite elements, Galerkin Splines and collocation techniques are 
provided. 

Methods for solving the discretized linear algebraic equations can be classified as either direct 
or iterative. In ELLPACK, there are a number of direct solving methods provided, such as BAND GE 
(Gaussian elimination with scaled partial pivoting for a general band matrix), LINPACK SPD BAND 

(Cholesky decomposition for a symmetric positive definite band matrix), SPARSE LU UNCOM- 
PRESSED (general sparse Gaussian elimination), and several others. There are also several iterative 
solving techniques available, including SOR (successive overrelaxation), JACOBI SI (Jacobi itera- 
tion with Chebyshev semi-iterative acceleration), JACOBI CG (Jacobi iteration with conjugate 
gradient). 

Users can choose independently between the different discretization methods and solving 
techniques in accordance with the numerical properties of their problem. 

ELLPACK users specify their problem in a simple user-oriented ELLPACK language. The 
ELLPACK preprocessor translates this program into a FORTRAN source program, called the 
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ELLPACK control program. This program is then compiled and linked with a precompiled 
ELLPACK module library. Finally, the program is executed, producing a solution to the problem. 
Tabular listings and contour plots are provided in ELLPACK. 

The ELLPACK language is actually an extension to FORTRAN, that is: ordinary FORTRAN 
statements can be intermixed with ELLPACK statements. Elliptic PDE’s, domains, and boundary 
conditions can be stated directly in this language by using two segments: the EQUATZ~N and the 
BOUNDARY SegIIleIlt. 

Other basic segments are the following: 
DZSCRETZZATZON: The partial differential equation and boundary conditions are approximated 

by discrete linear algebraic equations. Users can choose between several discretization methods 
provided by ELLPACK. 

INDEXING: The equations and unknowns of the discretized system are reordered to facilitate 
the solution of the system. Most of these techniques are meaningful in connection with particular 
solution techniques only. The set of indexing algorithms available in ELLPACK includes: 

(1) NESTED DISSECTION: Computes the ‘nested dissection’ ordering of the equations. This 
technique is used together with sparse Gaussian elimination. 

(2) RED-BLACK: The variables and unknowns are numbered as on a checker board, all ‘red’ 
points before the ‘black’ point. This method is primarily used in connection with REDUCED 
SYSTEM and SOR iteration. 

(3) MINIMUM DEGREE: Computes a minimal degree ordering of the equations. Also this 
algorithm is used with sparse Gaussian elimination. 

SOLUTION: This segment describes the modules used to solve the linear system of equations. 
The user can select among many direct or iterative algorithms. 

OUTPUT: The solution is tabulated or plotted. 
FORTRAN: The FORTRAN segments can be placed freely anywhere in an ELLPACK program. 

They indicate that the included statements are to be inserted into the ELLPACK control program 
without any preprocessing. Users can use FORTRAN segments to define various functions and/or 
to perform special calculations, such as computations that interact with ELLPACK modules for the 
solution of nonlinear or other special problems. 

SUBPROGRAM: This segment defines complete FORTRAN functions or subroutines. 
DECLARATZON and GLOBAL segments can be used to enable interactions between Fortran 

segments and ELLPACK modules. 

4. Description of solution technique 

The numerical solution of the Poisson equation includes linearization of the nonlinear 
equation, discretization of the PDE, and solution of the set of resulting linear algebraic 
equations. 

In order to linearize (8), Newton iteration was used. This method converges very rapidly once 
one gets reasonably close to the solution. 

Let 
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The formula for the Newton iteration is as follows: 

and therefore, 

Let A# = 11/ - $,,: 

~(4, + A#) = a2(q,, + AWax + a2(h, + AWay + $j, exd-&) l (I- Ali/) 

-h ehh) ‘0 + A+> + % 

= aWax + a*4dW + +p exd-hd - h exp&J + & 

+[a2Awax2 + a2A$/?v2 - (+,, ew(-hJ + +n edII/o)) l AG] 

=J$+~~+J%~,)~AYL 

that is 

or 

a2A$/ax2 + a2A4/ay2 - A+(+, exp(-4,) + 4, exp&)) = -J$M. (13) 

Both (12) and (13) are Newton iteration formulae for the Poisson equation. The iteration 
algorithm works as follows: 

choose initial guess Go 
REPEAT 

solve eq. (12) or eq. (13) 

set 4 --f & or Go + A+ --f 4~ 
UNTIL converged. 

Equation (12) lends itself more easily to implementation in ELLPACK. It was therefore used when 
working with ELLPACK. In our own program. about which we shall report in due course, the 
somewhat simpler form of (13) was used. 

We tried several of the finite difference methods and of the finite element methods offered in 
ELLPACK. Several of the solution techniques, both direct and iterative, were investigated. 

In every step of the Newton iteration, the coefficient matrix of the discretized equations is 
reevaluated, and the linearized equations are solved. The execution time consists of the number 
of Newton iteration steps multiplied by the time needed for one iteration which in turn is 
composed of the time needed for discretization and the time needed for the solution of the linear 
equations. 

The ELLPACK language was used to organize the overall FORTRAN program. ELLPACK state- 
ments are interspersed with extensive FORTRAN segments. The total program consists of roughly 
1500 lines of code. 
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5. Comparison of results 
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A p-n junction on a rectangular domain is simulated. Its geometry is shown in Fig. 2. In this 
set of simulation runs, we chose the reverse bias to be 5 volts. This represented a sufficiently 
simple problem to allow us to compare many different numerical algorithms without need for 
extensive number crunching. All computations were performed on a VAX 11/750 running VMS. 

5.1. Comparison of different numerical methods 

In ELLPACK, two different equation representations can be utilized. One is the self-adjoint 
form, i.e. the form of (9). The other is the nonself-adjoint form, i.e. the form of (10). The results 
from our computations show that the discretization time needed in the two cases is substantially 
different. When the number of grid points is chosen to be 24 x 14, and a non-uniform grid is 
specified, the discretization time for the nonself-adjoint form is 24.0 seconds whereas it is 57.0 
seconds in case of the self-adjoint form. For this reason, we have used only the nonself-adjoint 
form in the following computations. 

According to the properties of our problem: 
(1) rectangular domain, 
(2) both Dirichlet and von Neumann conditions exist on the boundaries, 
(3) non-uniform grid, 
(4) non-symmetric linear equations, 

only a subset of the discretization methods and solving methods of ELLPACK can be used. (Some 
of the methods provided in ELLPACK work e.g. only on an equidistantly spaced grid.) 

We compared the following discretization methods and solving algorithms: 
(i) discretization methods: 

_ HERMITE COLLOCATION 

- ~-POINT STAR, 

(ii) solving methods: 
- BANDGE 

- SPARSE LU UNCOMPRESSED-~MINIMUM DEGREE 
_ SPARSE GE NO PIVOTING+MINIMUM DEGREE 

- SOR 

- JACOBI CG+RED-BLACK. 

Fig. 2. Example geometry. 
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INDEX IWG 

- 

tl IR.DEGREE 

M II .DEGREE 

- 

RED-BLACK 

time f 
r of gr 

>ISCRETIZATIOR 

S-POINT STAR 

S-POINT STAR 

5-POINT STAR 

S-PO IRT ST AR 

SPARSE LU URCOMPR. 24 5 06 25 

SPARSE GE NO PIVOT. 23 9 ‘J6 23 

SOR 23 7 --- 11 0 

JACOBI CG no convergence 

Table 1. 

In Table 1, the execution time for the specified problem using the different numerical 
algorithms is listed. From Table 1 we can conclude that 

(1) HERMITE COLLOCATION requires a long execution time. For a NGRX * NGRY grid, we 
obtain 4 NGRX * NGRY collocation points and 4 NGRX * NRGY equations. That is the reason 
why HERMITE COLLOCATION is so inefficient. 

(2) Iterative solution techniques are not suitable for our problem. JACOBI CG does not converge 
at all, and SOR takes longer execution time due to slow convergence. Usually, iterative solution 
techniques are very suitable to solve systems of symmetric - or at least nearly symmetric -, 
positive definite linear equations. This condition is frequently satisfied for Poisson equations. 
However, when a boundary condition of the uon Neumann type is specified, the corresponding 
discrete equations do not keep their symmetry. 

(3) Among the direct solving methods, the two techniques: SPARSE LU UNCOMPRESSED and 
SPARSE GE NO PIVOTING require less execution time. The MINIMUM DEGREE indexing algorithm 
takes only very little additional time, and is thus worth the effort. In this example, the difference 
between the general methods and the methods using sparse matrix techniques is not yet very 
prominent. However, it can be predicted that the sparse methods for solving the linear equations 
will be favored much more evidently when the number of grid points is increased. 

We also compared the computational values of the electric potential obtained by the different 
algorithms. It was found that the electric potential differs less than l.E - 4 volts between the 
different techniques used. 

5.2. Effect of grid width on the results 

When the number of grid points is varied, both the execution time and the storage require- 
ments of different direct solving methods are influenced heavily. Our results are listed in Tables 
2 and 3. From Tables 2 and 3, we can conclude the following facts: 
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SPARSE GE MO PIVOT. 

Table 2. 

(1) Discretization time and solution time grow rapidly with increased number of grid points. 
(2) SPARSE GE NO PIVOTING requires the least execution time and the least storage. 
(3) With SPARSE GE NO PIVOTING, the discretization time is twelve times longer than the 

solution time. Therefore, the key to reducing the execution time is to reduce the discretization 
time. 

We also compared the value of the electric potential as a function of the number of grid 
points. The maximum difference between the values found 
0.15 volts. 

for the electric potential was below 

5.3. Comparison of execution time between ELLPACK and our own handwritten test program 

In order to investigate possibilities for reducing the execution time, we developed another 
program which we from now on shall refer to as the ‘test program’. This program was coded 
from scratch except for the linear system solver module which we borrowed from the LINPACK [3] 
library. We used the module LINPACK BAND for this purpose. All other parts of the test program 
we coded in straight FORTRAN. For discretization, we used a finite difference approach (5-point 
star), and for the Newton iteration, we used eq. (13). However, contrary to the ELLPACK solution, 
most of the discretization work was done only once during initialization rather than repetitively 

Table 3. 
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Table 4. 

during each step of Newton iteration. Only minor portions had to be included into the iteration 
loop. As the discretization proved to be the time critical portion of the algorithm, this 
modification was expected to lead to significant savings in execution time. 

The execution time of our test program for 20 x 14 (non-uniform) grid points was found as 
listed below: 

Initial part of the discretization 3.9 (seconds) 
Iterative part of discretization 0.5 
LINPACK band 11.0 

Comparing these results with those listed in Table 2, it shows clearly that (for our problem) 
ELLPACK can handle the set of resulting linear equations very efficiently, whereas its overhead 
during the discretization process is unacceptable. Nevertheless, we do not regret at all to have 
used the toolkit first. ELLPACK turned out to be very robust, and allowed us to compare different 
algorithms much more effectively than we could have done otherwise. By doing so, we gathered a 
pretty clear picture about the numerical properties of our problem. So far, we have merely 
prototyped. Now, we can start writing production code with the confidence that the chosen path 
shall prove successful. 

5.4. The influence of varying reverse bias voltage on junction 

In Table 4, we summarize the number of Newton iteration steps to convergence together with 
the overall execution time as a function of the reverse bias voltage. From Table 4, it becomes 
evident that the number of Newton iteration steps required for convergence increases rapidly 
with growing reverse bias voltage on junction. Therefore. the execution time grows drastically. To 
reduce the overall execution time, we can either try to reduce the execution time of a single 
iteration step, or we can try to find a better initial guess for the solution to cut down the number 
of iterations to convergence. As we already have optimized the cost of a single iteration (by 
selecting the best numerical algorithm available), there remains the second type of saving to be 
discussed. What we could try is to further simplify the model, either until there exists a cheaper 
algorithm to solve the so simplified problem, or until the simplified problem has an analytical 
solution. This solution could then be used as an improved initial guess for the solution of the 
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ELLPRCK OUTPUT 

U 

l.l7E-01 

8.83E-02 

Y 

5.88E-02 

CONTOUR VALUE 
1 -3.'IgE+Ol 

s 
Y.l6E+02 

z 

p.g@pg 

1:77E:03 

s 

8 
10 

7 

O.OOE+OO 2.50E-02 SOOE-02 7.5OE-02 l.OOE-01 1.25E-01 l.SOE-01 

X 

Fig. 3. Contour-plot of the electric potential distribution of a p-n junction with 100 volts reverse bias, calculated with 
20 x 14 non-uniform grid points. 

more accurate model described in this paper. One straightforward approach might be to use 
initially a smaller number of grid points than that dictated by the required accuracy to obtain a 
(cheaper) solution as an initial guess for the more accurate solution of the problem with more 
grid points. Eventually, the number of grid points could even be gradually increased during the 
Newton iteration. We hope to be able to automate this process to such an extent that the grid 
width selection algorithm can be included into ELLPACK as an additional module. However, this 
part of the program has not yet been completed. 

Figure 3 depicts a contour plot of the electric potential distribution obtained by using the 
ELLPACK program. CONTOUR PLOT is an option directly available within the ELLPACK software. 
Figure 4 graphs the same electric potential distribution as a three-dimensional plot with hidden 
lines removed. For this purpose, we generated a file from within a FORTRAN segment of the 
ELLPACK program. This file is then used as input to the graphics processor of the DARE-INTERAC- 
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CLECTRIC POTENTIAL OF PN-JUNCTION 

X 
J -__- _- 

Fig. 4. Three-dimensional plot with hidden lines removed of the electric potential distribution of a p-n junction with 
100 volts reverse bias, calculated with 20 X 14 non-uniform grid points. 

TIVE [l] simulation software. The reverse bias voltage here was 100 volts, the number of grid 
points was 20 X 14 (non-uniform). 

Conclusions 

Several approaches have been taken to 
hood of breakdown, 

simulate bipolar high-voltage devices in the neighbor- 

In a first attempt, we tried to use the BA~BI [4] program. BAMBI is a special purpose static 
device simulator. The device is described to BAMBI through its topology and doping concentra- 
tion. For this reason, BAMBI seemed to be the most natural candidate for our task. Unfortunately. 
this approach failed totally as BAMBI was too much ‘packaged up’ to be adapted to our needs. 
BAMBI has a very simple input description language, thus whenever applicable, BAMBI is a very 
convenient tool to use. However, BAMBI seems to be somewhat overspecialized. Its flexibility is 
very limited. In particular, BAMBI seems to work acceptably well {though kind of slow) on low 
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voltage devices, whereas the computing time grows unacceptably large when the reverse bias 
voltage is increased. Very often, BAMBI even fails to converge when the reverse bias voltage is 
made sufficiently large. 

Our second approach was to use ELLPACK [9]. Compared to BAMBI, ELLPACK is much less 
specialized. The device is described by means of partial differential equations, and even the 
solution technique must be at least selected, partially even programmed by the user. For this 
reason, ELLPACK is much more difficult to use. However, ELLPACK proved extremely useful for 
our task. The software is very robust. ELLPACK represents a very good compromise between 
convenience and flexibility. ELLPACK was used to find the appropriate model to be used for our 
simulation, as well as the best numerical algorithm for the task. However, ELLPACK is still too 
slow for actual production runs. 

The third approach was to write a program of our own. This program was written from 
scratch except for the linear system solver for which the LINPACK [3] software was used. 
Preliminary results are very satisfactory. To further increase the speed of this program, we shall 
try to find a better initial guess for the solution by using a further simplified model. We shall also 
re-implement the linear system solver by making use of an array processor hooked to a 
VAX/ll-780. A special-purpose user interface will be coded which shall allow to design the 
device interactively on a PC-class machine, and download the preprocessed code for further 
processing to the VAX. It must also be possible to use the output of SUPREM [7] simulations 
directly as input to the device simulator. 
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