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Abstract
This paper deals with unsupervised partitioning. A

�rst goal of this paper is to present an enhancement

to the Equal Frequency Partition (EFP) method that

allows to reduce, to some extent, the main drawback

of this classical classi�cation method, i.e. the data dis-

tribution dependency. A second goal of this work is to

use the Enhanced Equal Frequency Partition (EEFP)

method within the discretization process of the Fuzzy

Inductive Reasoning (FIR) methodology for the iden-

ti�cation of a model of a water demand system. It

is shown that use of the EEFP method allows to ob-

tain more accurate FIR models of the water demand

system, reducing the prediction errors.

1 Introduction

The transformation of continuous variables into dis-

crete variables is a common problem that arises in a

large number of areas within the arti�cial intelligence

�eld. The goal is to objectively partition the data into

homogeneous groups in such a way that object simi-

larity within a group and object dissimilarity between

groups are maximized. Unsupervised partitioning as-

sumes that the data is not labeled with class informa-

tion. This is usually the case when dealing with dy-

namic features or variables. There exist a large num-

ber of unsupervised classi�cation methods (Anderberg

1973; Bezdek et al. 1984; Li and Biswas 1999); one

of the simplest being the equal frequency partition

(EFP) technique. The EFP method has the advan-

tage that it is extremely simple and, in a lot of cases,

the data distribution obtained within the partitions or

groups is quite reasonable. This method has been the

one used most commonly in the discretization process

of the Fuzzy Inductive Reasoning (FIR) methodology

obtaining, usually, good results (Cellier et al. 1996;

Nebot et al. 1996; Nebot et al. 1998). However, the

EFP method is sensitive to data distribution, and good

partitioning will only be obtained if the data distribu-

tion is more or less uniform in the sense that all pos-



sible behaviors of the system are represented with a

comparable number of occurrences.

FIR, as all inductive modeling methodologies, is

based on the data available from the system under

study. Therefore it is necessary to have a rich amount

of data representing all possible behaviors of the sys-

tem in order to identify an accurate (optimal) model.

If the data available from system observations rep-

resent all possible (physical) behaviors with a simi-

lar number of occurrences, then the use of the EFP

method within the FIR methodology is indeed useful,

and very good results are obtained by its use.

However, it can happen that although all possible

behaviors are represented in the registered data, each

has associated a di�erent number of occurrences. For

instance, it could be that a speci�c behavior of the

system occurs frequently, and therefore, lots of data

are registered of this situation. Some other behavioral

pattern occurs rarely, and therefore, this situation is

underrepresented in the data registered from the sys-

tem.

The �rst goal of this paper is to present an en-

hancement to the EFP method to be used within the

Fuzzy Inductive Reasoning methodology that allows

to reduce, to some extent, the data distribution de-

pendency. The second goal of this work is to use the

Enhanced Equal Frequency Partition (EEFP) method

within the discretization step of the FIR methodology

for the identi�cation of a model of a water demand

system. The water distribution network carries water

emanating from wells and rivers for human consump-

tion in the city. It is required that the water arrives

at the destination points with a certain pressure-
ow.

In the �rst part of the paper the EEFP method is de-

scribed in detail, whereas in the second part, the water

demand application is presented and the identi�cation

of FIR models is explained.

2 Enhanced equal frequency partition

method

The equal frequency partition (EFP) method is un-

doubtedly one of the simplest classi�cation methods

available. It consist on distributing the system data

into a prede�ned number of classes maintaining the

same number of occurrences in each class. However,

this method is sensitive to data distribution. In this

section, a modi�cation of the EFP method is proposed

that exploits the advantages of the EFP technique

while trying to reduce its drawbacks.

The idea behind the enhancement of the EFP

method is simple. The EEFP method eliminates mul-

tiple observations of the same behavioral pattern de-

termining if an observation is signi�cantly di�erent

from another or not, then applies EFP to the remain-

ing set of signi�cantly di�erent patterns to decide on

a meaningful set of landmarks.

The EEFP method should take into account two

relevant aspects. The �rst one is to decide which data

values can be considered to be equal. In other words, it

is required to de�ne an interval, �, that represents the
set of observations that are similar and, therefore, that

can be considered repetitions of the same occurrence.

This is described graphically in �gure 1.

The second aspect is to de�ne the minimum num-

ber of similar observations required (samples that are

inside the � interval) in order to consider that this be-

havioral pattern is over-represented. This parameter,

�, is also described in �gure 1. If a number of similar

observations greater than � is found in the data, re-

dundant observations are eliminated. In contrast, if a

set of similar observations with a number of elements

lower than � is found in the data, all occurrences are

kept.

As can be seen in the example of �gure 1, all the

values within the � range are similar observations. �
indicates the minimum number of occurrences neces-

sary to assume that this behavioral pattern is over-

represented. It is clear from the example that the num-

ber of similar values is greater than �, and therefore,

redundant observations (shaded box) are eliminated

from the data set.
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Figure 1. EEFP method parameters

It was decided to implement the � and � values as

input parameters to the algorithm as suitable values of

these two parameters are quite dependent on the data.

This solution is useful during the initial phase of algo-

rithm development, because it allows to test di�erent

values of these parameters easily and to experiment

with them in such a way that appropriate values can

be found for the application at hand. Currently, we

are working on the development of a FIR module that

will perform a pre-study of the application data and



propose meaningful default values for the � and � pa-

rameters.

Once all the over-represented behavioral patterns

are handled (processed), the classical EFP method is

used to determine the landmarks from the resulting

data set. The landmarks obtained are used to clas-

sify the original system data by means of the fuzzi-

�cation function of the FIR methodology. The FIR

fuzzi�cation process converts quantitative values into

qualitative triples. The �rst element of the triple is

the class value, the second element is the fuzzy mem-

bership value, and the third element is the side value.

The side value indicates whether the quantitative value

is to the left or to the right of the peak value of the

associated membership function.
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Figure 2. FIR fuzzi�cation process

Figure 2 shows an example of fuzzi�cation of the

variable Temperature. For instance, a quantitative

temperature value of 23�C is discretized into a quali-

tative class value of `normal' with a fuzzy membership

function value of 0.895, and a side function value of

`right' (since 23 is to the right of the maximum of

the bell{shaped membership function that character-

izes the class `normal').

3 Water demand application

The system to be modeled is the water distribution

network of the city of Sintra in Portugal. The goal of

the water distribution network is to carry water em-

anating from wells and rivers for human consumption

in the city. It is required that the water arrives at the

destination points with a certain pressure-
ow. To this

end, the network has water reservoirs, valves that reg-

ulate the amount of water, and pump stations. Figure

3 represents a simpli�ed diagram of the Sintra water

distribution system.

As it is shown in �gure 3, the simpli�ed diagram

of the water distribution network is composed of 7

reservoirs that must provide the requested water of

each demand. However, there is data available for 6 of

Figure 3. Simpli�ed diagram of the water

demand system

these reservoirs only, namely: Mabrao, Pimenta, Co-

tao, Ranholas, Rinchoa and Merces.

Valves (7)
Demands (6)

Pressure-flows (12)System
Pumps (2)

Figure 4. System inputs and outputs

The water demand network can be viewed as a

system where the inputs are the water demands, the

valves opening and the state of the pumps, whereas the

outputs are the pressures in each node. The inputs and

outputs of the system are summarized in �gure 4.

The water demands for each reservoir are measured

data stemming from the water network. The values of

the other input variables are obtained from the simu-

lation of a control model of the water demand system.

From the control point of view, it is necessary to reg-

ulate the pumps and the valves, and if the reservoirs

are placed at a high altitude, it may also be necessary

to control the turbines because they take advantage

of the kinetic energy. The state of the system is rep-

resented by the 
ow, the pressures and the reservoir

levels.

Discretization of the system variables

The �rst step to obtain the pressure-
ow models is

to discretize the input and output variables by means

of the fuzzi�cation process of the FIR methodology.

To this end, both the EFP and the EEFP methods

have been used to compute the landmarks of all sys-

tem variables. The �rst variables to be discretized are

the water demands. The upper plot of �gure 5 shows



the D1 water demand signal that corresponds to the

Mabrao reservoir.
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Figure 5. Data distribution of the D1 de-

mand (Mabrao reservoir)

The signal ranges from a value of 34 l=s (liters per

second) to a value of 400 l=s, except for a few speci�c

hours when the demand is higher than the upper limit.

The lower plot of �gure 5 shows the sorted data. This

plot can be interpreted as the distribution function of a

histogram. For example, there are 2000 samples with

a water demand of less than 200 l=s. The resulting

signal presents itself as fairly linear, except during the

rightmost interval that contains the outliers.

It was decided to discretize the 6 demand variables

into 3 classes each. Three classes seem to be enough

for capturing the dynamic behavior of these signals.

Once the number of classes is de�ned, both the EFP

and the EEFP methods can be applied to obtain the

landmarks. In order to compute the landmarks when

the EFP method is used, it is necessary to divide the

ordered signal into three classes, each one containing

the same number of occurrences. Therefore, the lower

landmark of class 1 is the smallest value of the sorted

signal, the upper landmark of the same class is the

value that corresponds to one third of the total number

of samples, and so on. The landmarks of the 3 classes

when using the EFP method for the D1 demand signal

(�gure 5) are shown in table 1. The third column

shows the number of occurrences within each class.

Class Landmarks NofO

1 34.0-172.3 1666

2 172.3-244.3 1666

3 244.3-557.5 1668

Table 1. Landmarks of the D1 demand when

using the EFP method

In order to compute the landmarks when the EEFP

method is used, it is necessary to determine the values

of the � and � parameters (see �gure 1). The criterion

that have been adopted in the application at hand, is

to consider that two observations are similar if they

di�er less than 1% of the amplitude range of all ob-

servations. Therefore, the � value in that case is of

1%. On the other hand, it has been considered that

an � value of 10% is acceptable taking into account

the total number of samples available.

The EEFP algorithm is applied with the prede-

termined parameter values obtaining as a result the

sorted original signal without the data associated to

over-represented behavioral patterns. The landmarks

are then computed from the new signal by using the

EFP method, as has been already explained.

As can be seen from the lower plot of �gure 5 there

are few similar observations. Therefore, the landmarks

obtained when applying the EFP and the EEFP meth-

ods are exactly the same in this case. The same pro-

cess has been used to obtain the landmarks for the

other 5 water demand signals. As it happened in the

case of the Mabrao reservoir, the water demand data

for the Pimenta, Cotao, Ranholas, Rinchoa, and Mer-

ces reservoirs don't exhibit over-represented behaviors

and, therefore, the use of the EFP method produces a

reasonable classi�cation for these variables.

The next input variables that should be discretized

are the 7 valves that can be regulated from 0% to 100%

of opening. The observations registered from the sec-

ond valve are presented in �gure 6.
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Figure 6. Data distribution of the second

valve

In the upper plot of this �gure, the observed tra-

jectory of the valve is presented. As can be seen, the

valve operates with varying degrees of opening ranging



between 0% and 10%. The lower plot of the same �g-

ure shows the ordered data. There is a high number of

observations (more than 1000) with an opening of 0%.

Therefore, when the EFP method is used, the compu-

tation of the landmarks become distorted due to the

over-represented behavioral pattern. As in the case of

the water demand variables, it is decided to discretize

all 7 valve signals into three classes each. Table 2 shows

the landmarks of the second valve obtained with the

EFP method.

Class Landmarks NofO

1 0.01-2.685 1666

2 2.685-7.19 1665

3 7.19-8.97 1669

Table 2. Landmarks of the second valve

when using the EFP method

In this case, the �rst class represents almost exclu-

sively the values of 0% of opening. This situation is not

desirable because clearly it is an over-representation

of that system behavior. The landmarks obtained us-

ing the EEFP method for the second valve signal are

shown in table 3. The application of the EEFP method

allows to obtain a more representative distribution of

the data within the classes.

Class Landmarks NofO

1 0.01-4.73 2383

2 4.73-7.28 1199

3 7.28-8.97 1418

Table 3. Landmarks of the second valve

when using the EEFP method

The last input variables to be discretized is the state

of the pumps. In the water network studied, only

two pumps (UB1 and UB2) can be controlled. The

UB1 pump provides water to node 1, whereas the UB2

pump provides water to the Pimenta reservoir corre-

sponding to the D2 demand. Each pump is composed

of two motors, that can either be both stopped, both

pumping, or one stopped and one pumping. This is the

reason why we propose to not use an equal frequency

partition method for these variables, but instead lump

the individual binary states of both motors into a sin-

gle ternary variable, where each ternary state repre-

sents one of the three possible situations as shown in

table 4.

Once all input variables have been discretized, it is

the turn of the 12 output variables. It was decided

to discretize the pressure-
ows into three classes, as it

has been done for all input variables. The pressure-


ows are measured in meters of water column. Fig-

Classes State

1 Zero motors working

2 One motor working

3 Two motors working

Table 4. Classi�cation of the pump vari-

ables

ure 7 shows the distribution data of the pressure-
ow

at node 4.
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Figure 7. Data distribution of the pressure-


ow at node 4

In this node, the pressure-
ow takes values within

the range of 70 to 100 meters of water column. If

we analyze the ordered data (lower plot of �gure 7),

it can be observed that more than one/third of the

total number of samples have a value of 98.8 meters.

Therefore if we use the EFP method to compute the

landmarks, it happens that values of 98.8 can be found

in two di�erent classes. This situation is obviously

undesirable and it is not allowed in the fuzzi�cation

process of FIR methodology. This is the reason why

the upper landmark of class 2 and the lower landmark

of class 3 (that are the same value) are modi�ed in

such a way that all the 98.8 observations are included

in class 3. The landmarks obtained are presented in

table 5.

Class Landmarks NofO

1 72.74-95.95 1665

2 95.95-98.7 1057

3 98.7-98.8 2278

Table 5. Landmarks of the pressure-
ow at

node 4 when using the EFP method

Also in this case, the EEFP method is used to com-

pute the landmarks. Due to the high number of re-

peated occurrences found in the data (�gure 7) it is



to be presumed that the EEFP algorithm will give a

better distribution of the data within the three classes.

Table 6 contains the landmarks obtained when using

the EEFP method.

Class Landmarks NofO

1 72.74-93.84 979

2 93.84-96.8 978

3 96.8-98.8 3043

Table 6. Landmarks of the pressure-
ow at

node 4 when using the EEFP method

At this point the landmarks of all input and output

variables have been obtained by means of the EFP

and EEFP methods. Now the fuzzi�cation process of

the FIR methodology can be applied to each variable

in order to obtain qualitative representations of the

given signals. As explained before, the FIR fuzzi�ca-

tion function converts each quantitative value into a

qualitative triple that contains the class, the member-

ship and the side values (see �gure2). With the qual-

itative data available, the identi�cation of qualitative

pressure-
ow models can take place.

Pressure-
ow model identi�cation

The qualitative model identi�cation process of the

FIR methodology is responsible for �nding causal spa-

tial and temporal relations between system variables

and therefore to obtain the best model (called mask

in the FIR nomenclature) that represents the system.

The identi�cation function evaluates all possible masks

and concludes by means of an entropy reduction mea-

sure, which of them has the highest quality.

Once the best model has been identi�ed, it can be

applied to the qualitative data matrices resulting in

a fuzzy rule base that, in FIR terminology, is called

the behavior matrix. Once the behavior matrix and

the mask are available, predictions of future states of

the system can be made using the FIR fuzzy inference

engine. This process is called fuzzy forecasting. Th

FIR inference engine is a specialization of the k-nearest

neighbor rule, commonly used in the pattern recogni-

tion �eld. For a deeper inside to the FIR methodology,

the reader is referred to (Nebot et al. 1998).

In this section, the FIR qualitative identi�cation

function is used to obtain two models for each one of

the 12 pressure-
ow variables. The �rst model is iden-

ti�ed from the qualitative data obtained when the EFP

method is used to compute the landmarks, whereas the

second model is identi�ed from the qualitative data ob-

tained from discretization when the EEFP method is

used. Once the best models are identi�ed for each vari-

able, the fuzzy forecast function of the FIR methodol-

ogy is used to predict a subset of the data not used

in the identi�cation process. The prediction errors

obtained are computed by means of the formula pre-

sented in equation 1.

MSE =
E[(y(t)� ŷ(t))2]

yvar
� 100% (1)

The FIR model obtained for the pressure-
ow at

node 4 when the EFP method is used to compute the

landmarks is described in equation 2.

P4(t) = ~f(V 4(t); V 6(t); P4(t� 1); P4(t� 24)); (2)

In this formula, the mask (best model) is repre-

sented in equation format for simpli�cation. This for-

mula suggests that the current value of the pressure-


ow at node 4 depends somehow on the value of the

fourth valve at the present time, the value of the sixth

valve also at the present time, and on the values of the

pressure-
ow at node 4 one hour and one day in the

past. In equation 2, ~f denotes a qualitative relation-

ship. It does not stand for any (known or unknown)

explicit formula, but only represents a generic causal

relationship. The quality associated with that model

is 0.7492.

The model presented in equation 2 is then used to

forecast the pressure-
ow at node 4 during one day

(24 samples). It does not make sense in the applica-

tion at hand to predict for more than one day into the

future, because one day su�ces for the purpose of con-

trolling the input variables in an optimal manner. The

upper plot of �gure 8 shows the real vs. the predicted

signals of the pressure-
ow at node 4 when the model

described in equation 2 is used. The solid line rep-

resents the measured signal, whereas the dashed line

represents the forecast. The MSE error in percentage

(see equation 1) obtained is 13.3112%.

As can be seen from the plot, the predicted signal

follows the real curve up to a certain degree. It is evi-

dent that the prediction obtained for the �rst 9 hours

is quite poor.

The FIR model obtained for the pressure-
ow at

node 4 when the EEFP method is used to compute

the landmarks is described in equation 3.

P4(t) = ~f(V 4(t);V 4(t� 15); P4(t� 1); P4(t� 24)) (3)

The model described in equation 3 di�ers in one

component from the model obtained when the classical

EFP method is used. Notice that now, the output vari-

able at present time depends on the value of the fourth

valve �fteen hours in the past and not on the value of

the sixth valve at the present time. The associated
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Figure 8. Prediction of the pressure-
ow at

node 4 with EFP and EEFP method

quality of the new model is 0.7765, i.e., slightly higher

than the quality obtained for the previous model.

The new model is then used to predict the same

data as before, obtaining the results shown in the lower

plot of �gure 8. As can bee seen from the �gure, the

prediction obtained is more accurate, resulting in an

MSE error of only 3.2376%. It is evident that, at least

in this case, the use of the EEFP method helped to ob-

tain more reasonable distributions of the original data

into classes, leading to better fuzzi�cations and a more

accurate model.

EFP EEFP

node 1 3.0602% 1.1269%

node 2 2.5627% 1.5212%

node 3 2.2279% 2.5324%

node 4 13.3112% 3.2376%

node 5 21.0761% 3.3052%

node 6 3.4005% 1.2636%

node 7 0.9704% 0.9838%

node 8 1.2997% 0.4703%

node 9 13.1315% 2.0776%

node 10 0.4109% 0.1219%

node 11 0.4109% 0.2103%

node 12 0.3999% 0.2429%

Table 7. MSE of the pressure-
ow models

at nodes 1-12

The prediction errors computed for the pressure-


ow models at all 12 nodes are shown in table 7. The

�rst column of the table contains the MSE prediction

errors obtained when the EFP method is used to com-

pute the landmarks of all system variables. Taking

into account that the errors are in percentages, the re-

sults obtained are quite acceptable, except at nodes 4,

5, and 9 for which higher forecasting errors are found.

The results obtained when the EEFP method is used

are presented in the second column of the same table.

As can be seen, the errors were reduced considerably

at nodes 4, 5, and 9. However, the errors of most of

the other models were also reduced.

4 Conclusions

In this paper, an enhancement to the classical equal

frequency partition method is proposed. The EEFP

method allows to obtain a better distribution of the

data into classes, while maintaining the simplicity of

the EFP method. The new algorithm is specially use-

ful in those situations where the di�erent system be-

haviors are not represented within the data with sim-

ilar numbers of occurrences. The FIR methodology is

chosen in this work to model a real system, the wa-

ter distribution network of a city of Portugal. The

classical EFP an the new EEFP methods are used in

the fuzzi�cation process of the FIR methodology, and

are compared from the point of view of the prediction

accuracy of the models identi�ed from the classi�ed

data. In this research it is shown that the use of the

EEFP method allows the FIR methodology to synthe-

size models that represent better the system behav-

ior. The prediction errors obtained when the EEFP

method was used in the fuzzi�cation process are usu-

ally lower than the ones obtained when the classical

EFP method was used. More importantly, none of the

models exhibits a poor forecasting quality any longer.
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