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Abstract

In this paper, we have attempted to formalize the
Naive Physics approach to knowledge-based qualita-
tive reasoning in such a way that it can be compared
with the quantitative analysis techniques used in sys-
tem theory. It is shown that Naive Physics models re-
semble classical quantitative models in more respects
than is commonly assumed. This resemblance opens
up an entire catalog of currently unanswered questions
relating to Naive Physics models. It helps prove some
theorems about such qualitative models, but it also
unveils some of the shortcomings of these models.

1 Introduction

Qualitative reasoning has become an important
branch of A.l. research because it seems to play an
important role in human decision making. The ca-
pability of automated decision making is important
in particular in the context of Space exploration and
colonization. In Space, human labor will be a scarce
resource for a long time to come. Thus, we cannot
conceive the conquest of our solar system without the
deployment of high autonomy systems. In order to
colonize our moon or the planet Mars, we must devise
a technology in which autonomously operating robots
can create a livable environment for humans. These
robots will not be able to function properly unless they
have the capability to make decisions on their own in
a partially unknown environment.

How does the decision making process work? Hu-
mans make decisions by envisioning a set of possible
scenarios (experiments), and by analyzing the effects
of these scenarios using mental models. They “sim-
ulate” their mental models using mental simulation.
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The trajectories resulting from a mental simulation
are referred to as episodes. They then go ahead with
implementing the one scenario for which the mental
simulation results in the most advantageous episode.
If robots will ever be able to operate meaningfully on
another planet, they must be able to mimic the hu-
man decision making process. They must be able to
create new models of their environment on the fly, and
use them immediately in “mental” simulation experi-
ments. Thus, we need to design methodologies which
allow us to model the human decision making process,
i.e., we need to model the mechanisms of human un-
derstanding itself.

If I hold a glass full of water in my hand, and if I
open my fingers, I know that the glass will fall down,
and that, upon impact, it will break and spill the water
all over my carpet. However, in my mental simuiation,
I don’t solve any differential equations at all. I don’t
know when exactly the glass will hit the floor, and I
don’t know into how many pieces the glass will disin-
tegrate, but often, these details are not important for
proper decision making. The question thus is whether
we can describe mental processes, that is: unprecise,
qualitative models in precise mathematical terms.

The preceding example can be studied in the fol-
lowing way. I know that a gravitational force exists
which has a tendency to pull objects downward. The
precise amount of that gravitational force is often less
important for decision making than knowledge of the
direction in which it pulls objects. I know that if I
grab the glass with my hands, it can’t move. Since
all objects which are exposed to a resulting force vec-
tor accelerate in the direction of that force vector, I
know that there must exist a reaction force, thus keep-
ing the glass in place. When I open my fingers, the
gravitational force is no longer compensated for, and
thus, the glass will accelerate in the direction of the
gravitational force vector, i.e., the glass will begin to
fall. After some time, the glass reaches the floor with



a finite speed. I know that glasses don’t penetrate
floors. Thus, the glass needs to decelerate abruptly to
a velocity of zero. An abrupt deceleration requires a
very large (theoretically infinitely large) force to ac-
complish. I know that the internal structural stability
of the glass cannot stand such a large force, and there-
fore, the glass will break. I finally know that broken
glasses don’t hold fluids very well, and thus, the water
will be spilled over my carpet.

This example shows a knowledge—based approach to
reasoning about the fate of my glass. Notice that the
entire analysis was accomplished without mentioning
any hard numbers. The gravitational force, the speed
at impact, the force needed to decelerate the glass,
etc. were nowhere quantified. No differential equa-
tion was solved to determine the trajectory behavior
of my glass during its fall. All we needed in order to
solve this problem were rudimentary bits and pieces
of physical knowledge — this is what is referred to as
“Najve Physics.” Knowledge-based qualitative rea-
soning refers to the set of methodologies which enable
us to encode this type of imprecise knowledge in com-
puter algorithms. Several researchers have tackled this
problem. The most comprehensive summary of these
efforts is given in [2].

However, it is not entirely clear that this is the way
how humans reason about simple physical problems.
Maybe, I never consider the gravitational force at all
when I reason about the fate of my glass. Maybe, I
know that the glass will fall down because I remem-
ber that my father, when I was 10 years old, let a two
liter bottle of Chianti wine slip through his fingers,
and our dog came, and licked the entire contents of
the bottle from the carpet, and got himself completely
drunk. But if this were true, how come that my brain
correlated the water glass event with a seemingly un-
related event that happened more than three decades
ago, taking into consideration that I observe and store
an unbelievable manifold of different episodes every
day of my life? How come a physician whom I had
visited only once four years earlier introduced him-
self to me (since his office had misplaced my previous
patient card), but frowned after the third word and
exclaimed: “But you have been here before, haven’t
you?” although the guy must be seeing 50 patients a
day? Our brain obviously has a remarkable capability
to relate different, but seemingly similar, patterns to
each other, and maybe, pattern recognition is at the
heart of most “mental simulations.”

Let me explain why I believe that pattern recogni-
tion is indeed a much more frequently used and much
more powerful tool in assessing qualitatively the be-
havior of a system. I still own a dog who loves to play
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ball. I kick the ball with the side of my foot (I usu-
ally wear sandals, and a straight kick hurts my toes),
and my dog runs after the ball as fast as he can. 1
was able to observe the following phenomenon: If I
place my foot to the left of the ball, my dog will turn
to the right to be able to run after the ball as soon
as I hit it. He somehow knows that the ball will be
kicked to the right. If I now change my strategy, and
place my foot to the right of the ball, my dog imme-
diately swings around to be ready to run to the left.
He obviously has some primitive understanding of the
mechanics involved in ball kicking. However, I assure
you that I never let my dog near my physics texts, and
thus, he had no opportunity to study Newton’s laws
— not even in their naive form.

Thus, there exist two fundamentally different types
of qualitative reasoners. One approach is knowledge-
based and attempts to encode the structure of the sys-
tem, while the other is inductive and attempts to en-
code the behavior of the system. Both approaches have
their distinctive pro’s and con’s and deserve to be fur-
ther pursued. In this paper, we shall concentrate on
the knowledge-based approach, show what has been
accomplished in this context, formalize the approach,
bring it in relation with earlier work on quantitative
models, and unravel its strengths and its weaknesses.
A further elaboration of both approaches can be found
in [5].

2 Definitions

Unfortunately, the literature on qualitative modeling
in general and on Naive Physics in particular is full
of imprecisely defined, partially overlapping, and of-
ten even entirely redundant terminologies. Depend-
ing on the author, we meet terms such as qualita-
tive models, qualitative reasoning, qualitative physics,
naive physics, and common sense reasoning. All of
these terms are used in very similar contexts, and they
ate hardly ever properly defined. I shall use the fol--
lowing terminology:

1. Qualitative variables are variables which assume
a finite ordered set of qualitative values, such
as “minuscule,” “small,” “average,” “large,” and
“gigantic.” The literature on quantitative soft
sciences is a little more precise on this definition
than the literature on artificial intelligence. For
instance, Babbie [1] distinguishes between:

(a) Nominal measures, i.e., variables whose val-
ues have the only characteristics of exhaus-
tiveness and mutual exclusiveness. Nominal



measures are unordered sets. Typical nom-
inal variables might be the religious affili-
ation, or the hair color of a person. Such
variables are not useful as state-variables in
a simulation. They can play a role as pa-
rameters.

(b) Ordinal measures, i.e., variables who are
nominal, and in addition, are rank—ordered.
These variables are what I called above qual-
itative variables. However, sometimes we
shall let go of the condition of mutual ex-
clusiveness, for example, when we operate
on fuzzy sets.

(c

~—

Interval measures, i.e., variables which are
ordinal, and in addition, have the property
that a distance measure can be defined be-
tween any two values, that is: interval vari-
ables can be added to and/or subtracted
from each other. A typical candidate for a

2. Response to a Class of Ezperiments. Until now,

we always examined the response of a system to
a single experiment. Sometimes it is more useful
to examine the set of output trajectories resulting
from applying an entire set of input trajectories
to the system. Qualitative models are sometimes
more adequate for this type of applications. Sen-
sitivity analysis in the large is an alternative [3,4].

. Generalization for Decision Making. It is some-

times hard to “see the forest for the trees.” Quan-
titative models generate quantitative (that is: de-
tailed) responses. It may be difficult to aggre-
gate this detailed information in an automated
system for purposes of knowledge generalization.
It might be better not to generate this detailed
knowledge in the first place. Qualitative model-
ing allows us to aggregate knowledge earlier in the
game. This can sometimes be beneficial.

Evidently, a number of good reasons can be stated
why we may wish to employ qualitative modeling and
qualitative simulation. However, a number of bad rea-
sons are also quite often heard:

“soft” interval variable might be the intelli-
gence quotient.

(d) Ratio measures, i.e., variables which are in-

terval measures, and in addition, have a true o . L. .
1. “Qualitative simulation is cheaper than quanti-

1. Incomplete System Knowledge.

zero point.

2. Qualitative behavior denotes a time—ordered set of

values of a qualitative variable, i.e., an episode.

3. Qualitative models are models that operate on

qualitative states.

4. A qualitative simulation is an episode generator

which infers qualitative behavior from a qualita-
tive model.

Why are we interested in qualitative modeling and

simulation? A number of applications for this method-
ology can be named:

Some details
about the system under investigation are miss-
ing. Without such detail, quantitative simula-
tion (at least in the sense of a single trajectory
generation) cannot work. For example, after an
anomaly is detected in a flight, the pilot will usu-
ally switch off the autopilot since s/he cannot
trust any longer that the model which is an inher-
ent part of the autopilot still reflects the behav-
ior of the modified system adequately. Since the
qualitative model operates on more highly aggre-
gated variables, it may be somewhat more robust,
i.e., it may be less sensitive to system modifica-
tions.
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tative simulation. If quantitative simulation, in
a real-time situation, cannot produce the results
fast enough, qualitative simulation may be the an-
swer to the problem.” Wrong! Algorithms used
for qualitative simulation are by no means faster
than those used in quantitative simulation. In
qualitative simulation, many alternative branches
must generally be explored, whereas quantitative
simulation usually produces one individual trajec-
tory. Thus, quantitative simulation is normally
faster than qualitative simulation if applicable.
Thus, if your quantitative real-time simulation
executes too slowly, don’t go to qualitative sim-
ulation, go to a nearby computer store and buy
yourself a faster computer.

. “Qualitative simulation requires a less profound

understanding of the mechanisms that we wish to
simulate. Therefore, if we don’t fully understand
the mechanisms that we wish to simulate, quan-
titative simulation is out of the question, whereas
qualitative simulation may still work.” Wrong
again! Qualitative simulation has as stringent
constraints as quantitative simulation, they are
just a little different. A convenient user interface
relieves the user from some of the intricacies of
detailed understanding of the simulation mecha-
nisms, not the modeling methodology per se. To-
day’s languages for quantitative simulation (such



as ACSL) are very user—friendly, more so than to-
day’s languages for qualitative simulation. This is
due to the fact that quantitative simulation lan-
guages have been around much longer. Thus, if
you don’t understand what you are doing, don’t
go to qualitative simulation, go to an expert who
does.

Qualitative modeling is not an alternative to quan-
titative modeling. When we have the knowledge avail-
able to produce a decent state-space model, it will in
all likelihood work much better. Don’t believe that,
because we can’t solve differential equations in our
heads, our robots shouldn’t do it either. Qualitative
modeling presents us with an enhancement of our tool-
box, and sometimes, this tool may be just the right
one, but don’t view (as unfortunately many of the re-
searchers do) quantitative and qualitative modeling as
in competition with each other. They are complemen-
tary rather than competitive techniques.

3 State Discretization and
Landmarks

Naive Physics models are characterized by a very lim-
ited set of qualitative values. Variables usually assume
only one of three values: +, 0, and —. In order to
maintain as much realism as possible within our highly
aggregated state-space, we shall make the reasonable
assumption that a continuous variable cannot jump
from positive values to negative values without going
through zero, and vice versa. Thus, we shall expand
episodes as needed by adding values of 0 whenever the
episode switches from + to —, or from — to +. +
and — are two regions, whereas 0 is a landmark. In
all Naive Physics systems, adjacent regions are always
separated by landmarks. The {— 0 +} set is the sim-
plest of all meaningful sets of regions and landmarks.
Different authors use different approaches to alle-
viate the problem of reducing the true behavior of a
physical system to a trivial behavior in the process
of discretization. Kuipers [7] has a mechanism to in-
vent new landmarks on the fly, and he includes the
additional landmarks of —co and +oc right from the
beginning. Morgan [9,10] operates on the minimal set
of regions and landmarks {— 0 +}, expanded only with
two more elements: ? meaning don’t know, and U de-
noting an illegal or inconsistent value. (U is a highly
abstracted version of my Mac’s trash can.) However,
Morgan represents each variable through a vector:

2= (++-) (1)
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meaning that # and # are currently positive, while &
is currently negative. Morgan carries along with the
current value of a state variable information about its
first and second time derivatives. Morgan’s method-
ology can be easily modified to either include the first
time derivative only, or to include higher time deriva-
tives as well. We shall discuss the consequences of
such a modification. However, for most applications, -
the above suggested triple seems to be optimal. In this
paper, I shall basically follow the approach of Mor-
gan since it comes closest to the classical concept of a
state—space.

4 Operation on Qualitative
Variables

Two qualitative variables « and y can easily be added.
The truth table for adding qualitative variables is as
follows:

z\y -0 4+ 7
— - - 7 2
0 [- 0 + 7
ADD =
D + ? 4+ 4 7 (2)
? ? ? 2 ?

Of course, = and y are in fact not scalars but qualitative
vectors. However, we know that:

if 2z = z+y
—z = z+‘_t} (3)

Similarly, we can define qualitative subtraction and
multiplication operators with the following truth ta-
bles:

Y - 0 + 7

- f? — -2

~0 [+ o ?
suB=_ |1 | ’ (4)

? ? 7 ?

and:

z\y - 0 + ?

- [+ 0 — 7

0 0 0 0 O
MULT= _ | 2 o . - (5)

? ? 0 7 7

In the multiplication, the corresponding vector func-
tion looks a little different since:

if z = z-y
—i = z-§+i-y (6)
—% = z-y+2-2-y+a-y



The constant factor of 2 in the second derivative
equation doesn’t appear in the qualitative equations
since 2 - z is positive exactly if = is positive. Thus,
multiplication of a qualitative variable with a positive
constant is a do nothing operation.

The truth table for the qualitative division opera-
tor is not completely obvious. It has been defined as
follows:

z\'y —

+

o +
N e O D

DIV =

N4 o
|
CC~C ©
B

5 Qualitative Simulation

Now, we are ready to perform a qualitative simulation.
Let us explain by means of an example how this works.
Figure 1 shows a simple RC circuit:

L

WD o R

v

Figure 12.1. Simple RC circuit.

We wish to study the behavior of this circuit for a
step function applied to the current source, assuming
that the initial voltage across the capacitor is nega-
tive. This problem had originally been proposed by
Williams [11].

A quantitative state—space description for this prob-
lem can be given as follows:

-1 1

S 8
rc teo" ®)
r

(9)

where the input u is the current through the source,
and the output y is the voltage across the capacitor.
Using our software, QualSim, the qualitative version of
this state—space description can be specified as follows:

z

y:

// [zdot] = CQSTATE(x)
u=CPLUS;
zdot = QSU B(u, z);
RETURN
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and:

/1 = QOUT(z)
RyE;'U’RN

where CQSTATE models the continuous qualitative
state equations, and QOUT models the qualitative out-
put equations. The qualitative subtraction (QSUB) of
u — z is the qualitative equivalent of the quantitative
state equation since positive constant multipliers can
be ignored in the qualitative model.

The initial conditions can be specified as:

/] [#] = CQSTATEIC(dummy)
e =IMINUS;
RETURN

The vector IMINUS denotes an initial negative qual-
itative value:

IMINUS=(-177) (10)

We happen to know that the initial capacitor volt-
age is negative, but we don’t claim any knowledge
about the initial value of the derivative of this volt-
age.

We can assign the initial value to = by calling
CQSTATEIC. Thereafter, we can call CQSTATE to
compute the initial value of the derivative. We find:

t z z
0 ((=?27) (+77)

However, since z(2) must be equal to (1), we can
replace one of our question marks, and iterate once
more:

i z z
0/(-?27) (+7 9
0 ((— +7 (+- ?))

We repeat the same process a second time:
t z z
0/(-27 (+7 7
ol (-+7 (+-97
0\(-+-) (+-4)

and by now, all question marks have disappeared.
The relation between z and & is called a consistency
constraint, and the mechanism to ensure consistency
among all such relations is called the process of con-
straint propagation [6].

Now, we are ready to qualitatively integrate the state
vector to its next value, incrementing the qualitative



clock to 1. Here, my methodology diverges from Mor-
gan’s. I use a qualitative forward Euler algorithm to
integrate the state equations. The quantitative version
of this algorithm can be written as:

Tpp1 = Tk + At - g

(11)

and its qualitative counterpart can thus be written as:

Tr4t — QADD(.’Dk,ik) (12)

which has been made available as:
T4l = QINT(:vk,mk) (13)

QINT is a little more general than QADD since it
can integrate an entire qualitative state vector whereas
QADD operates only on one single qualitative variable
(which is in itself a vector of length three). In our
example, these two functions are identical since we
analyze a first—order system.

The result of this integration is:

(-7 (+7 7
(=+7 (+-7
(=+-) (+-4)
2?27 (277

-0 o ™

Unfortunately, our previous method of constraint
propagation will not help us any further at this point.

We need to ezpand our search, i.e., replace the ?'s
by all possible combinations of —, 0, and 4. However,
here we can apply a new set of constraints which we
call continuity constraints. The first continuity con-
straint had been mentioned previously. If z; was +,
zx41 can only be + or 0, but never —, since no vari-
able can jump from + to — without passing through 0
on the way. Of course, the same holds true for #; and
Zx. But more continuity constraints exist. For exam-
ple, if zx was + and Z; was either + or 0, then @x44
must be +, and cannot be 0. The full set of continuity
constraints is described in [5,9].

Repeated integration leads to:

t z z

0/(-+-) (+-+)
1](0+-) (+-+)
2| (++-) (+-+4)
3{(+00) (000
4\(+00) (000

After four steps, the system reaches a continuous
steady-state.
QualSim provides a function:

[y,z] = CQSIM(nstp) (14)
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which computes the continuous qualitative simula-
tion of the system described by the user coded
functions CQSTATE.CTR, CQSTATEIC.CTR, and
QOUT.CTR over nstp steps. The function:

QPLOT(y) (15)

produces the graph shown in Figure 2.

}zﬂpiso dic Behavior
. T . H

0 1. 2. a. 4,
Qualitative Time

Figure 2. Episode of the RC circuit.

Figure 2 shows indeed the only possible physical so-
lution to this problem. Encouraged by these nice re-
sults, let us try a somewhat more difficult problem:

(16)
(17

Ty = —“a-z3

(i:z = =b- Ty
which can be rewritten as:
# =—(a-b)-z1 = —w? . ay (18)
with the analytical solution:
z;(t) = A-sin(wt) (19)
z,(t) = (Aw):cos(wt) (20)
Let us check whether our qualitative simulation al-
gorithm is able to reproduce this solution for us.

This problem is described in QualSim using the
qualitative state—space model:

// [zdot] = CQSTATE(z)

zl==z(1:3);
z2 = z(4:6);
zldot = x2;

z2dot = QMINUS(z1);
zdot = [z1dot, z2dot];
RETURN

It becomes evident that z is indeed the entire state
vector which must first be unpacked. The qualitative
output equations are coded as:



/]y =
RETURN

QOUT(z)

Since we wish to look at both state variables, we
have no reason to unpack z in the first place. The
initial conditions are assigned as follows:

// [g] = CQSTATEIC(dummy)
1 = IZERO;
22 =IPLUS,
z = [z1,22);

RETURN

We simulate this problem over eight integration
steps, and find:

i Ty T2 il iz

0/(0+0) (+0-) (+0-) (0 - 0)
L (#4-) (F==) (#==) (==+)
2/ (+0-) (0-0) (0 -0 (-0+4)
3 (h==) (==4) (==+) (=++)
410 -0 (-0+4) (-0+) (0 +0)
58 (——+) (=++4) (=++4) (++-)
6[(-04) (04 0) (040 (+0-)
T (=++) (++-) (++-) (+--)
8\(0+0) (+0-) (+0-) (0—0)

At this point, the system reaches a periodic steady-
state. QualSim’s qualitative plot function generates
the following curves:

Episodic Behavior

b}

Qualitative Time

T2

. 4. 3
Qualitative Time

Figure 3. Episode of the sine wave model.

Unfortunately, the same approach will not work for
more complex systems, such as a second order system
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with damping. This time, CQSIM is no longer able
to eliminate all question marks by means of satisfying
continuity constraints. Consequently, the episodical
behavior splits into several branches which must all
be explored, and very quickly, QualSim runs out of
memory since there are simply too many branches to
be followed.

Tony Morgan had an excellent idea how to overcome
this problem [10]. Rather than trying to compute all
episodes explicitly, he suggested to determine all legal
qualitative states of the system, and then qualitatively
integrate (or differentiate) over one step to find all
legal successors of each of these legal states (which
must, of course, also be among the legal states of the
system).

Let me explain this concept by means of our second—
order system with damping. In phase variables, this
problem can be described as:

/] [zdot] = CQSTATE(z)
zl==z(1:3);
x2 = z(4: 6);
zldot = x2;
22dot = QSUB(QMINUS(z1), 22);
zdot = [z1dot, z2dot];

RETURN

We can evaluate all legal states by declaring the
initial states as unknown. In this way, QualSim will
determine the set of all feasible initial states which
is, of course, identical with the set of legal states. In
QualSim, this can be accomplished in the following
way:

// [z2] = CQSTATEIC (dummy)
zl = IWHAT;,
z2=IWHAT,;
z = [z1, 22];

RETURN

The global variable IWHAT sets the qualitative vec-
tor to (? 7 ?) (initial unknown). The QualSim state-
ment:

= CQSIM(1) (21)

computes the set of legal states of this system, whereas
the statement:

[y1 z]

[y, z] =

computes the set of legal states and their immediate
successors. The results of the analysis can be summa-
rized as follows:

CQSIM(2) (22)



Table 1 State Transition Table of Second-Order System

state # state successor state #’s
M-+ 1@
(2) | (=0+4) | (5)
B) | (=+-) | (4, (7), (&)
(4) | (=+0) | (3),(8)
(8) | (=++) | (4
(6) | (0 —+) | (1)
(1)1 (0 00) 1 (7)
(8) | (0 +-) | (13)
(9) | (+—-) | (10)
(10) | (+—0) | (6), (11)
(11) | (+=+) | (6), (7), (10)
(12) | (+0=) | (9)
(13) | (++-) | (12)

This is a so—called finite state transition table.
While the information provided in the state transition
table can be extracted from the z matrix generated by
the CQSIM function, it is more convenient to use the
statement:

fst = CQPERT(0) (23)

which calls CQSIM, and then postprocesses the data
to generate the finite state transition table directly.
CQPERT assumes that the system is specified using
phase variables. CQPERT takes a dummy argument.

It is possible to represent the finite state transi-
tion table graphically in the form of a so—alled PERT
network. The PERT network of the above system is
shown in Figure 4.

In a PERT network, each legal state is represented
by a labeled node (a numbered circle). Transitions be-
tween states are indicated by directed paths. The two
dashed paths in Figure 4 denote the soft transitions
that lead to steady-state.

This method is indeed equivalent to exploring all
episodes. Any given initial condition is represented by
a legal state. Episodes starting from that initial con-
dition can be found by simply following the directed
paths through the PERT network. Whenever we pass
through a node from which two or more transitions
emanate, the qualitative behavior branches into sev-
eral alternative episodes.

If the system is undercritically damped, its qualita-
tive path will circle around the PERT network until,
as t — oo, it finally moves into the steady-state node
7. If the system is overcritically damped, it will move
to either state 3 or 11, whichever it reaches first, and
stay in this node until, as £ — oo, the system again
moves into its steady-state node 7. Thus, the quali-
tative simulation has indeed been able to capture the
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physical behavior of this system correctly.

Figure 4. PERT network of second—order system
with damping.

Unfortunately, as we proceed to a third order sys-
tem, the PERT network becomes also unwieldy. The
resulting state transition table contains 68 legal states,
and up to eight paths emanate from a single node. The
resulting PERT network is a mess. The graph is far
from planar, and paths go in all directions. Thus, the
best we can achieve here is to work with the finite state
transition table directly.

6 Summary and Conclusions

Unfortunately, the current state—of-the-art Naive
Physics approach to modeling shows considerably
more adversities than advantages. Let me list the
problems that we are faced with:

1. The Naive Physics approach did not live up to
its promise to help us with the modeling process.
We still need to derive a state-space model manu-
ally. Thus, the approach does not help us yet with
antomating the process of decision making. How-
ever, the approach saves us from the necessity of
identifying model parameters through optimiza-
tion which may potentially be a useful property.

2. While we were able to reduce the Naive Physics
model to the familiar state—space description (or
rather its qualitative counterpart), the qualita-
tive simulation has a tendency to explode, i.e.,



to branch out immediately into an unmanageable
multitude of different episodes. Thus, qualita-
tive simulation is not robust at all. We cannot
blindly take any state-space model, convert it to
its qualitative form, run QualSim, and hope to get
anything meaningful out of it. However, robust-
ness was exactly what we were after in the first
place. Morgan’s new approach using the finite
state transition table helps alleviate this problem
to some extent.

. In order to get QualSim to work, we often require
previous insight into the problem at hand, i.e., we
must possess what we just try to gain — a most
uncomfortable catch 22 situation.

. Until now, QualSim can solve only trivial prob-
lems. The approach does not naturally extend to
solving more complex problems involving higher
order models. Thus, while QualSim allows us (in
fact, forces us) to provide the system with a prior:
medel information and while we are theoretically
able to incorporate new knowledge on the fly (a
frequently quoted deficiency of the inductive ap-
proach), we can in practice not do so, because the
new knowledge will quickly enhance the system
complexity to a degree at which QualSim fails to
produce anything meaningful.

. Many state-space models involve trigonometric
functions such as sin or cos. No qualitative coun-
terpart to those functions can be defined unless
we can limit the range of their inputs (small sig-

nal behavior).

. Naive Physics allows us to specify parameters as
being positive or negative only. This is not of
much practical use. In most engineering prob-
lems, we know the parameter values with a tol-
erance of say +£10%. Unfortunately, the Naive
Physics approach does not allow us to specify a
limited range for a parameter. Consequently, the
episodes produced by the qualitative simulation
are usually too rich since they include the behav-
ior of the system also for values of the param-
eters outside their physically meaningful range.
Kuipers’ QSIM program provides a partial answer
to this problem(8]. QSIM operates on qualitative
vectors of length two, but while the derivatives
are always ternary variables of type {— 0 +},
the state variables themselves may contain ad-
ditional landmarks, and new landmarks can ac-
tually be discovered on the fly. This advantage
was made possible (and is paid for) by forcing the
user to formulate all constraints and the results
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of all qualitative operations explicitly, rather than
relying on a set of implicit constraints and com-
putational rules as QualSim does. This makes
the problem formulation a little more difficult to
derive for QSIM than for QualSim, but it makes
QSIM a little more flexible than QualSim.

This paper has outlined the similarity between the
quantitative state—space analysis of (especially linear)
system theory and the knowledge-based approach to
qualitative modeling. This similarity has its beauties
and opens up a catalog of hitherto unanswered ques-
tions:

1. When we solve a quantitative linear control prob-
lem, we must always check for controllability and
observability of our control system. However,
problems with controllability and observability re-
late to singularities in the parameter space. Since
our qualitative models refer to parameters only
as ranges (e.g., p is positive) rather than as indi-
vidual values, the concepts of controllability and
observability have been thrown away in the tran-
sition. However in reality, the problem still ex-
ists. It would be useful to investigate whether
there are unreachable qualitative states in a sys-
tem, and under what conditions these exist. Us-
ing QualSim, the analysis is straightforward. We
simply compute the state transition table of the
system by letting both the initial states and the
input assume values of IWHAT. However, we
weren’t able yet to come up with a general ex-
pression (similar to the controllability matrix of
linear system theory) which would allow us to de-
termine the existence of unreachable qualitative
states conveniently and without resorting to ex-
haustive search.

2. In QualSim, we don’t make the assumption of pa-
rameters being constant. If we let p be positive, p
can be either constant or a function of time. Thus,
while the model structure preserves the concept
of linearity, the equally useful concept of time-
invarience has been put to the sword in the tran-
sition. We might be able to get some of the power
of that concept back by introducing a gqualitative
similarity transformation. Only those state tran-
sitions are physically valid which are generated by
all similar qualitative state—space representations.

3. It is easy to define a qualitative equivalent to
discrete-time systems. This has been shown in
[5]. Many of the known properties of discrete-
time systems can be reproduced in their qual-
itative counterparts. For example, it is known



that discrete-time first—order systems can oscil-
late while continuous-time first—order systems
cannot oscillate. This behavior is reproduced in
the qualitative analysis. Unfortunately, qualita-
tive discrete~time models lead to even more am-
biguity and have an even higher branching factor
than qualitative continuous-time models. Yet,
the concept is useful, and it would e.g. be inter-
esting to check whether we can reproduce qual-
itatively the fact that non-linear discrete-time
first—order models can lead to chaotic behavior
(e.g., the logistic equation), while their continu-
ous counterparts are never chaotic for any system
order smaller than three.

Naive Physics is still a wide open research field.
While I am not yet convinced that this is really the
right way to go, this is a fruitful area for research,
since so many open questions remain to be answered.
Only the future can tell whether this technique as a
whole will survive, or whether it will end up in the U
of science.

References

[1] Earl Babbie, The Practice of Social Research, fifth
edition, Wadsworth Publishing Company, Bel-
mont, CA, 1989.

[2

Daniel G. Bobrow, Ed., Qualitative Reasoning
About Physical Systems, MIT Press, Cambridge,
MA, 1985.

[3] Frangois E. Cellier, “Enhanced Run-Time Exper-
iments for Continuous System Simulation Lan-
guages,” Proceedings SCS MuliiConference on
Languages for Continuous System Simulation,

(F.E. Cellier, ed.), San Diego, CA, pp. 78-83, 1986.

Frangois E. Cellier and C. Magnus Rimvall, “Ma-
trix Environments for Continuous System Model-
ing and Simulation,” Simulation, 52(4), pp. 141-
149, 1989.

Frangois E. Cellier, Continuous System Modeling,
Springer—Verlag, New York, 1991.

Ernest Davis, “Constraint Propagation with Inter-
val Labels,” Artificial Intelligence, 32, pp. 281-
331, 1987.

Benjamin Kuipers, “Qualitative Simulation,” Ar-
tificial Intelligence, 29, pp. 289-338, 1986.

(8l

Benjamin Kuipers and Adam Farquhar, QSIM: A
Tool for Qualitative Simulation, Internal Report:

49

Artificial Intelligence Laboratory, The University
of Texas at Austin, 1987.

[9] Antony J. Morgan, The Qualitative Behaviour of
Dynamic Physical Systems, Ph.D. Dissertation,
Wolfson College, The University of Cambridge,
Cambridge, U.K., 1988.

[10] Antony J. Morgan, “Accuracy in Qualitative De-
scriptions of Behaviour,” Proceedings Winter Sim-
ulation Conference, New Orleans, LA pp. 520-526,
1990.

[11] Brian C. Williams, “Qualitative Analysis of MOS
Circuits,” Artificial Intelligence, 24, pp. 281-346,
1984.



