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ABSTRACT

A major problem in the biomedical domain is knowledge gen-
eralization. Is knowledge acquired from and about one pa-
tient at all applicable to another, and if so, to what extent?
Can an inductive qualitative model acquired by analyzing
data retrieved from one patient be used to predict the be-
havior of another? The purpose of this paper is to discuss
these questions in the context of a qualitative modeling and
simulation methodology entitled fuzzy inductive reasoning.

To this end, a technique based on combining knowledge
obtained from different patients is presented in this paper
that makes it possible to derive a single model characterizing
a specific class of similar patients undergoing similar oper-
ations. Data streams stemming from different patients are
grouped together, separated by segments of “missing data”
in order to prevent the creation of fake causal relationships
at the seam between neighboring data streams in the con-
catenated data set.

A medical application relating to the control of a spe-
cific anaesthetic agent administered to patients undergoing
surgery is used to demonstrate the feasibility of this method.
Two data streams stemming from two different patients un-
dergoing different operations were used to obtain a single
model identifying a similar patient/operation class.

It will be shown that the predictions obtained by this com-
mon model are not as good as those obtained from each pa-
tient alone using patient—specific models. This is reasonable
and characteristic of all knowledge generalization schemes.
However, the results obtained are still significant and useful
for medical advice in the operating theater.

INTRODUCTION

Qualitative reasoning is currently an area of much interest
in the research community. Different qualitative methodolo-
gies have been developed over the past two decades, including
expert systems, inductive reasoning, neural networks, quali-
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tative physics, discrete—event systems, and fuzzy systems.

An important area where these methodologies may play
an essential role are the soft sciences, such as biomedicine,
economy, and psychology. The underlying laws that govern
the behavior of systems from such application areas are usu-
ally imprecisely known or totally unknown. Therefore, it is
very difficult and in most cases even impossible to obtain a
precise mathematical model identifying the dynamic behav-
ior of such systems.

This is particularly true in many biomedical applications
where the only knowledge of the system dynamics available
is that learned by medical doctors through personal experi-
ence. However, this knowledge is difficult to communicate
since it is not codified. It is therefore a worthwhile task
to seek mathematical tools that promote the codification of
qualitative medical knowledge for the purpose of better com-
munication. Knowledge codified in this manner is commonly
referred to as a qualitative model. The test by which the
success of qualitative modeling is assessed is by measuring
the predictive power of the model, ascertained by means of
qualitative simulation.

One problem that researchers in biomedicine are often
faced with is the large variability in individual patient be-
havior. Is knowledge acquired from and about one patient
at all applicable to another, and if so, to what extent? Can
an inductive qualitative model acquired by analyzing data
retrieved from one patient be used to predict the behavior of
another? It is this question that is at the heart of this paper.

This paper focuses on the preconditioning of biomedical
data to eliminate patient—specific behavior. In most biomed-
ical applications, such as, for instance, the control of depth of
anaesthesia of a patient undergoing surgery, it is extremely
useful to have available a model that identifies not only the
behavior of one concrete patient on a specific day during a
specific operation, but one that is able to capture the be-
havior of a class of similar patients undergoing similar op-
erations. The definition of what makes different patients or
operations similar is left to the medical experts.



It does not make practical sense, from a medical point of
view, to first have to identify a model for a given patient
during surgery to be able to predict his or her behavior at
some later time. A reliable model must be ready for use
before surgery begins. It is therefore important to be able to
synthesize a generic model that is valid for a specific type of
patient undergoing a given kind of surgery.

THE METHODOLOGY

For this porpose, a qualitative modeling methodology called
Fuzzy Inductive Reasoninghas been proposed. The inductive
reasoning methodology had originally been developed by G.
Klir (Klir 1985) as a tool for general system analysis to study
the conceptual modes of behavior of systems. One implemen-
tation of this methodology is SAPS-II (Cellier and Yandell
1987). Fuzzy measures were introduced into the method-
ology independently by (Klir and Folger 1988; Klir 1989;
Wang and Klir 1992) and by (Li and Cellier 1990). Even
more recently, SAPS-II has been propagated as a tool for
qualitatively studying the behavior of highly complex non—
linear technical systems (Cellier et al. 1992; de Albornoz and
Cellier 1993a, 1993b) as well as biomedical systems (Nebot
et al. 1993).

In the fuzzy inductive reasoning approach, qualitative sys-
tems are represented (modeled) through finite state machines
that are automatically derived by means of so—called optimal
masks, and their episodical behavior is inferred (simulated)
using a technique called fuzzy forecasting.

A mask denotes a structural relationship between different
variables, and the optimal mask is the mask that maximizes
the forecasting power of the inductive reasoning process. The
optimal mask is selected from a set of candidate masks by a
process of exhaustive search. The quality (forecasting power)
of each mask is evaluated, and the one with the highest qual-
ity is returned as the optimal mask.

Once the optimal mask is found, it is possible to derive a
state transition matrix from the optimal mask and the avail-
able data. The state transition matrix is a finite—state ma-
chine that lists, for each input state (i.e., each combination
of input values), all possible output states together with an
assessment of the likelihood of their occurrences. Once the
state transition matrix has been found, a qualitative simula-
tion can be performed by applying the forecasting function
of the inductive reasoning methodology.

For a deeper insight into this methodology, the reader is
referred to (Cellier 1991), (Cellier et al. 1992), (Cellier and
Yandell 1987), and (Li and Cellier 1990).

In order to be able to combine two or more patient data
sets, a new feature called missing data option has been used.
Only complete data records are used in the computation
of the state transition matrix, whereas contaminated data
records are ignored. The missing data feature enables the
researcher to work with sets of incomplete data (very com-

mon in biomedical systems), and extract as much informa-
tion from them as they contain. The feature makes it possi-
ble to convert incomplete quantitative data sets to reduced
qualitative data sets in order to derive the best possible qual-
itative model for prediction of future system behavior. The
missing data option is described in detail in (Nebot and Cel-
lier 1994).

This option is essential for combining data stemming from
different patients for the purpose of desensitizing the derived
qualitative model to patient—specific characteristics of the
observed data streams. Since the research focuses on models
of dynamic behavior, the advocated methodology searches
for causal relationships between variables measured at dif-
ferent points in time. Therefore, if the data set stemming
from one patient is placed immediately adjacent to the data
set stemming from another patient, fake causal relationships
are created at the seam on the two data streams. These
fake relationships can cause a severe degradation of the fore-
casting power of the derived qualitative model. The solution
is to add gaps of “missing data” between neighboring data
streams stemming from different patients, thereby prevent-
ing the methodology from extracting from the combined data
set contaminated data records containing mixed information
from different data sources.

An important factor to take into account when different
patients’ data sets are combined is the normalization of the
data. Usually, different patients will have different DC values
for each variable. Therefore, if data stemming from such
patients are to be combined, it is necessary to normalize the
data. This process is called prefiltering of the data. Both
linear and nonlinear prefiltering procedures are known, but
only linear prefiltering should be applied in order to prevent
a degradation of the relevant correlation functions (Nebot et
al. 1994). In this paper, the mean value of each variable is
subtracted from all elements of the corresponding trajectory.
This simple normalization procedure is applied to the data of
each patient separately, prior to concatenating the two data
records.

In order to improve the quality of the prediction and re-
duce the risk of coming up with entirely incorrect forecast
values, a voting procedure is adopted. Instead of working
with a single optimal mask, as was done in earlier papers,
the three best masks are evaluated, and three different state
transition matrices are obtained. In the forecasting process,
three separate forecasts are obtained using the three state
transition matrices.

Let My, My, and M. be the three best masks. Each of
these masks leads to a different forecast. Let them be called
Fo, Fp, and F.. Three distance measures are computed in
the following way:

Do =abs(Fa —Fp) + abs(Faq — F) (1)
Dy = abs(Fy, — Fo) + abs(Fy, — F¢) (2)
D. =abs(F.—Fa) + abs(F.— Fp) (3)



Once the distance measures have been computed, the pre-
dicted value with the largest distance measure is refused.
The new forcast value will be the mean value of the two pre-
dicted points obtained with the two remaining masks. For
instance, if Dy > D4 and Dy > D., then forecast Fp is re-
jected, and the new forecast is computed as:

_ Fa+ Fe
B 2

F (4)

This technique offers a systematic way to compute predic-
tions for all patients in the patient/operation class. In the
next section, the technique is used in a biomedical applica-
tion.

AN APPLICATION

The efficiency of the advocated technique is being demon-
strated by means of an application from anaesthesiology.
The techique is applied to a biomedical system for predicting
the right value of an anaesthetic agent to be administered to
patients during surgery. The control of depth of anaesthesia
is a difficult undertaking. The use of anaesthetic agents can
produce severe complications and side effects, which, under
extreme conditions, may even cause the death of the patient.
It is therefore essential that the dose of anaesthetic agents is
limited to the minimum amount necessary for proper anaes-
thesia thereby reducing undesired side effects and minimizing
the risk to the patient.

Two different data streams stemming from two different
patients undergoing different types of surgery were analyzed.
One data stream was obtained from a male patient 35 years
of age weighing 50 kilograms undergoing a renal transplant
operation. The other data set was obtained from another
male patient 57 years of age weighing 75 kilograms undergo-

ing abdominal-perineal resection surgery.

For both patients, the clinical variables comprising heart
rate (H R), respiration rate (RR), and systolic arterial pres-
sure (SAP) of the patient were selected as the key clinical
indicator signals to be used for suggesting an anaesthetic
dose (Dose), i.e., the control signal. The controller model is
determined by the qualitative relationship between its three
input variables: SAP, HR, and RR; and its single output

variable: Dose.
SAP —
HR — C&”t;‘g'er Dose
RR ——= 0

In a previous publication, (Nebot et al. 1993), separate
qualitative models for the two patients had been obtained:

For the first patient, the model (optimal mask) obtained
was the following:

\F SAP HR RR Dose
t — 206t 0 0 0 0
t— 196t 0 0 0 0
t— 116t 0 0 0 0
t— 106t 0 o 0 -1 (5)
t— 96t 0 0 0 0
t— 6t 0 0 0 0
t -2 0 0 +1
This mask denotes the relationship:
Dose(t) = f(Dose(t —106t),SAP(t)) (6)

For the second patient, the optimal mask obtained was:

AT SAP HR RR Dose

¢ — 206t 0 0o 0 0

t — 196t 0 0o 0 0

t— 116t 0 0o 0 0

t—105t | -1 0o 0 -2 (7)
t— 95t 0 0o 0 0

t— 6t 0 0o 0 0

t 0 -3 0 41

which denotes the relationship:

Dose(t) = f(SAP(t — 106t), Dose(t — 106t), HR(t))  (8)

As can be seen, the obtained qualitative models were dis-
tinct, and it had not been possible at that time to apply
either of the two qualitative models to the other patient and
obtain meaningful predictions of that patient’s future behav-
ior.

Therefore, it was decided to combine the data from the
two patients in order to extract a set of models that are able
to offer acceptable predictions for both patients. The two in-
dividual data sets contain 325 and 369 records, respectively.
A gap of 40 “missing values” were inserted connecting the
two data sets. Consequently, a single data set of 734 values
resulted to be used in identifying a set of three suboptimal
masks.

Patient A Miss_data Patient B
|-—————— | | *kkkkkkkkk| | ——————mmm— |
1 325 1 40 1



As was to be expected, the DC values of the data sets from
the two patients were different, thus, it was necessary to
normalize the data in the manner previously described.

At this point, the data is ready to start the model iden-
tification process. To this end, it is required to recode the
data into qualitative variables. It was decided to recode (dis-
cretize) the variables SAP, HR, and Dose into three qual-
itative levels (classes), whereas RR was recoded into two
qualitative levels only.

The first 291 rows of patient A combined with the gap of
“missing values” together with the first 335 rows of patient
B were used as past history data to compute the optimal
mask.

Past history data:

Patient A Miss_data Patient B
|-———— | | *kkkkkkkkk| | ———-————m— o —— |
1 291 1 40 1

Fuzzy forecasting is used to predict new qualitative class
and fuzzy membership values for variable Dose for the last
34 rows of each patient.

The optimal mask obtained for the combined data set was
the following:

£\ SAP HR RR Dose
t — 206t 0 -1 0 0
t — 196t 0 0 0 0
t— 116t 0 0 0 0
t — 106t 0 0o 0 =2 (9)
t — 96t 0 0 0 0
t— 6t 0 0 0 0
t -3 0 0 +1
This mask denotes the relationship:
Dose(t) = f(HR(t — 205t), Dose(t — 106t), SAP(t)) (10)

It turns out that the prediction obtained using this optimal
mask alone is not good enough, and therefore, the previously
described voting method had to be used.

To this end, a set of three suboptimal masks needs to be
defined. One of the three masks is the optimal mask obtained
for the combined data set. The other two masks could be
chosen as suboptimal masks from the mask history. How-
ever, a different approach was taken. The second mask was

obtained using “common sense.” It has been shown that the
two optimal masks obtained for the two patient data sets sep-
arately were different. Whereas one reaches the best forecast
for patient A, the other does the same for patient B. How-
ever, neither of them gave acceptable results for the other
patient. It makes sense to think that if the input patterns
of the two masks are combined, a good forecast for both pa-
tients could be encountered. Following this reasoning, the
second mask was constructed:

A\ SAP HR RR Dose

i — 2061 0 0o 0 0

¢ — 1961 0 0o 0 0

t— 116 0 0o 0 0

t—106t | -1 0o 0 -2 (11)
t— 95t 0 0o 0 0

t— 5t 0 0o 0 0

¢ -3 -4 0 41

This mask denotes the relationship:

Dose(t) = f(SAP(t— 106t), Dose(t —106t), SAP(t), HR(t)) (12)

This mask, when used alone gives worse results than the
previous one, but in concert with the other two voting masks,
it may be acceptable.

Finally, the optimal mask obtained for the second patient
when the two data sets were treated separately was chosen
as the third mask in the voting set.

The forecasting results for the two data sets using the
voting scheme are shown in Figure 1.
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Figure 1: Prediction results using combined models

As can be seen, the prediction curve follows the real curve
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Figure 2: Prediction results using individual models

in an acceptable way. The predictions are not as good as
those obtained from the individual models, shown in figure 2,
but they are clinically meaningful.

Computing the least square error of the predictions for the
two patients, the following results are obtained:

e The forecast Dose to be applied to patient A when the
individual model is used has an error of 0.4886, whereas
the error 1s 0.5449 when the combined model is used.

e The forecast Dose to be applied to patient B when the
individual model is used has an error of 1.4156, whereas
the error is of 1.8224 when the combined model is used.

Therefore, it is clear that the predictive power has decreased,
but not to an unacceptably large extent.

CONCLUSIONS

This paper presents a systematic way for processing medical
information obtained from different patients undergoing sim-
ilar operations. The measured data streams stemming from
different patients/operations are combined in such a way as
to allow the synthesis of a common model that can be used
for an entire class of similar patients undergoing similar types
of surgery.

Using the fuzzy inductive reasoning methodology aug-
mented by the missing data option, it has now become feasi-
ble to generate a single qualitative model that can be used to
predict the future behavior of patients within an entire class
of similar patient/operation pairs. The predictions are not
as good as those obtained from individual models, but they
are still clinically meaningful. Moreover, the new technique
carries a potential for knowledge generalization, a desirable
property lacking in the approach used earlier.

A quantification of the degradation of the predictive power
of the combined model relative to the individual models was

also presented in this paper.
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