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ABSTRACT

This paper focuses on limitations to predictability of sys-
tem behavior. The concept of a causality horizon is in-
troduced that helps determine the Likelihood of success of
a qualitative prediction. The Fuzzy Inductive Reasoning
(FIR) methodology is the tool used in this paper to model
and simulate (forecast) the system behavior.

Two systems, a linear state-space model and a biomed-
ical system, serve to demonstrate the concept. These very
different types of systems were chosen in order to illustrate
the differences in predictability between applications from
technical domains and those from soft sciences areas. It
is much more difficult to obtain decent predictions for soft
science systems than to obtain accurate predictions for sys-
tems from the hard sciences. The purpose of this paper is
to explain this discrepancy.

INTRODUCTION

Qualitative methodologies have been applied to a wide
range of physical domains such as muclear power plants,
aerospace, and robotics, but also to soft sciences such as
biomedicine, economy, and psychology. In all these cases,
qualitative methods have been introduced as tools to form
models of dynamic systems without precise knowledge of
the underlying laws that govern the behavior of these sys-
tems and to predict, ir qualitative terms, how they react to
input stimuli.

The paper focuses on limitations to predictability of sys-
tem behavior through induction. These limitations are
demonstrated by applying a particular inductive modeling
and simulation technique, called fuzzy inductive reasoning
(FIR), to two types of systems: a linear state-space model,
and observations of input/cutput behavior of a biomedical
system. The causality horizon is introduced, a conceptual
barrier limiting the predictability of future states of the sys-
tem under investigation.

The inductive reasoning methodology was originally de-
veloped by G. Klir (Klir 1985) as a tool for general system
analysis to study the conceptual modes of behavior of sys-
tems. One implementation of this methodology is SAPS-II
(Cellier and Yandell 1987). Fuzzy measures were introduced
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into the methodology independently by (Klir and Folger
1988; Klir 1989; Wang and Klir 1992), and by (Li and Cellier
1990). Even more recently, SAPS-II has been propagated
as a tool for gualitatively studying the behavior of highly
complex non-linear technical systems (Cellier et al. 1992;
de Albornoz and Cellier 1993a, 1993b) as well as biomedical
systems {Nebot et al. 1993). ‘ ’

Experiences with these applications have shown that the
quality of predictions is not always the same. In partic-
ular, it was much more difficult to obtain even half-way
decent predictions for the biomedical application, whereas
the predictions in the technical applications were accurate
far beyond our original expectations. It is the purpose of
this paper to iluminate and explain this discrepancy.

FUZZY INDUCTIVE REASONING
Identification of a FIR Model

For identifying a FIR model, a large set of rich data is
required. The term “rich” refers to the quality of the data.

. The available data should reflect the possible behavioral

patterns of the system to be modeled. The FIR model can
smoothly interpolate between similar behavioral patterns,
but it cannot extrapolate far beyond the horizon of previous
experiences.

In SAPS-II, the knowledge about the system is repre-
sented by a large data matrix with one row per sample, and
as many columns as there are variables in the system to be
modeléd. Thus, each row represents one data record, and
each column represents one trajectory. This data matrix is
called the raw data matriz. For example:
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where u; are the inputs, y; the outputs, n,.. is the number

of data records, and 6t is the sampling interval.

From the raw data matrix, the FIR methodology is able
to identify a model of a given system for the purpose of fore-
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casting its future behavior for any given input stream that
does not lead to system behavior much outside the range
of previously observed behavioral patterns. A model de-
scribes relationships between system variables. In the FIR
methodology, these relationships are represented by a so—
called mask. For instance, the following mask:
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represents the equation:

y1(t) = F(ua(t — 26t), y2(t — 26¢), ua(t — 62),u1(2))  (3)

where  denotes a qualitative functional relationship. The
negative elements in the mask matrix denote inputs of the
qualitative functional relationship. The sequence in which
they are enumerated is immaterial.- The positive value de-
notes the single output of the qualitative functional rela-
tionship. A mask has the same number of columns as the
raw data matrix to which it should be applied, and it has
a certain number of rows called the depth of the mask.
Neighboring rows of the mask represent neighboring data
records. Thus, a mask of depth n covers a time interval of
At = (n — 1) - 6t time units.

In the process of qualitative modeling, each of a set of
possible masks is compared to the others with respect to its
potential merit. The optimality of the mask is evaluated
with respect to the maximization of its forcasting power.

Determination of the Mask Depth

How should the time distance between two logged en-
tries of the trajectory behavior, §2, and the time span to be
covered by the mask, At, be chosen? Experience has shown
that the mask should cover the largest time constant, #;, and
that the sampling rate, §t, should be no larger than half the
shortest time constant, t,, of the system to be captured by
the model, thus:

. s

The depth of the mask can then be computed as follows:

At2> 14

depth = round(%) +1 (5)

How are the two time constants determined in practice?
The concept of a time constant is borrowed from linear sys-
tem theory. In a non-linear system, time constants can
only be defined through the eigenvalues of its Jacobian, and
may therefore be time—variant themselves. If the time con-
stants vary too much over time, the FIR methodology may
not be able to use one and the same mask for the entire
time period to be explored. If an analytical (quantitative)
model of the system under investigation is available, the
relevant time constants can be read out from it. If at least
the physical system itself is available for experimentation, a
frequency response (Bode diagram) can be measured, and
the time constants can be estimated from it. If only time
series are available that may have been measured earlier by

someone else, or if the physical system is not open to free
experimentation, such as in the case of a biomedical system
involving humans, spectra of the input and output signals
can be determined, but the information obtained from those
may be deceiving. Ultimately, the modeler may have to rely
on expert opinion as to what these time constants may be.

In this paper, it is shown that the mask depth is not only
dictated by the two time constants mentioned earlier, but
is Hmited also by yet another factor that has been coined
the causality horizon. Up to this point, no measure of the
causality between inputs and outputs was taken into ac-
count. Seemingly, any two signals can be declared as “in-
puts” and “outputs” of a “system,” and a system response
can be predicted between them. Obviously, this cannot be
done. A measure of causality should be introduced that al-
lows to determine the likelihood of success of a qualitative
prediction. Such a measure is the correlation function.

In the previously used mask, the output y; depended on
current and past values of the inputs u; and on past values
of the outputs y;. The autocorrelation function for y;, as
well as the crosscorrelation functions between »; and y; and
the crosscorrelation between y2 and 3 can be computed.
All these functions decay for sufficiently large values of the
time lapse At. The correlation functions can be viewed as
measures of causality. Once a sufficiently long time span At
has elapsed, the output, y1(t), is no longer causally related
to any of the inputs, u;(¢ — At), the other output, y2(t —

" At), or its own past, y1(t — At), since the corresponding

correlation functions for this value of At are small.

By making At larger and larger, the inductive reasoner is
told to predict the future from old data values that are no
longer causally related to the current time. This obviously
can’t work. The effect is that, even if the best possible mask
spanning At time units is used, recurrences of the same in-
put patterns lead to all legal output values with approxi-
mately equal probability. This is just another way of saying
that the output does not causally depend on these inputs.
The forecasting algorithm within the FIR methodology is
therefore uncertain which value to predict and chooses one
of the values arbitrarily, assigning to its forecast a low con-
fidence value. In those cases, the forecast is poor and looks
like noise.

If At is chosen smaller than the shortest time constant to
be captured, the FIR forecast basically consists of a constant
value (in lack of better knowledge, tomorrow’s weather is

- predicted to be the same as today’s). If At is increased

to cover the fast time constants but not the slow ones, the
forecast exhibits local maxima and minima where the real
data show them, but the forecast won’t follow the general
trend, i.e., it cannot follow the slow time constants. If At is
chosen sufficiently large for all time constants to be covered
but not larger than the causality horizon, the forecast will be
the best that can be obtained. All these types of behaviors
can be seen in the following examples. :

LINEAR SYSTEM

The linear system used in this example is described by
the following equations:
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It is demonstrated with this exampie, how the selections of
5t and At influence the guality of the forecast. To this end,
At is varied, and an optimal mask is computed in each case
using a subset of the available data. These optimal masks
are then used to forecast the remainder of the data stream.

Three major types of behavior can be observed in this
experiment:

St <ts, 1 < At < Cp

In this experiment, 6t and At were calculated using the
characteristics of the linear system. This system exhibits
two time constants, a slow (large) one of t; = 2.7 seconds,
and a fast (small) one of ¢, = 0.3 seconds. Consequently,
6t = 0.15 seconds and At = 2.7 seconds were used, which
yields a mask depth of depth = 19.

With these values for At and ¢, the reasoner operates
in a region where both time constants are captured and, as
shown in figure 1, the crosscorrelation function between in-
put and output and the autocorrelation of the output are
comfortably large. Therefore, the predictions of future out-
put values are expected to be good, as can be verified in
figure 2.
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Figure 1: Crosscorrelation Function

§t < ts, 4, Chn < At

In this test, the concept of the causality horizon is il-
lustrated. The mask depth is being repetitively increased,
leading to a progressive deterioration of the prediction qual-
ity. This happens because the mask now stretches beyond
the limit imposed by the causality horizon. When the mask
depth is increased to a value of 101 rows, corresponding to
At = 15 seconds, the prediction of future outputs looks like
noise, as shown in figure 3. At that point, the crosscorre-
lation and autocorrelation functions have already decayed
to approximately 60% of their maximum values, and the
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Figure 2: Real vs. Pted. Behavior {Mask Depth 19)

causal relation between input and the output
sufficiently strong.

is no longer

OUTPUTY

Figure 3: Real vs. Pted. Behavior (Mask Depth 101)

§t, At < t,, b, Cr

Now, the time span covered by the mask is made smaller
than the shortest time constant to be captured by the
model. A 6t of 0.003 seconds and a mask depth of depth =3
are used in this test, therefore, At captures 0.006 seconds,
a value smaller than the faster of the two time constants.

As was to be expected, the reasoner predicts a constant
value for the output. This is shown in figure 4.

This example shows clearly that the upper lmit of the
predictability of system behavior is defined by the causal-
ity horizon. The correlation functions provide a causality
measure that is essential for understanding why the guality
of predictions is not always the same. Figure 5 shows the
forecast guality, measured as:

Q=12 (8)

where erms denotes the sqare root of the mean value of the
squared error over the prediction period, and 7 denotes the

494



0.354}

0.3521

0351

0.348 N " . " N
0 20 40 & 80 100 120 140 160 180 200

SAMPLE NUMBER

Figure 4: Real vs. Pted. Behavior (Mask Depth 3)

mean value of the predicted output over the same period
plotted across the mask depth.

QUALITY OF THE FORECAST (Q)
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Figure 5: Quality of the Forecast vs. Mask Depth

BIOMEDICAL SYSTEM

It is much more difficult to obtain even half-way decent
predictions for biomedical than for technical applications.
This is due to the qualitative shape of the correlation func-
tions in the two cases. Whereas the technical systems usu-
ally offer wide correlation functions, biomedical correlation
functions are often quite narrow.

A biomedical system for predicting the right value of an
anaesthetic agent to be applied to patients during surgery
is used. The clinical variables comprising heart rate (HR),
respiration rate (RR), and systolic arterial pressure (SAP),
were selected as the key clinical indicator signals to be used
for suggesting an anaesthetic dose (the control signal).

According to informatiorn obtained from anaesthetists,
the slowest time constant of interest in this system is on
the order of 10 minutes, and the fastest time constant of
importance is on the order of 1 minute (Nebot et al. 1993).

As in the case of the linear system, the variation in fore-
cast quality as a function of the time span covered by the
mask, At, will be shown.

ft<ty,t1 < At < Ch

In accordance with previously made recommendations,
values of 6t = 0.5 seconds and At = 10 seconds were chosen.
Consequently, the mask depth is 21. With this choice, the
{forecast exhibits indeed the best results that can be obtained
for this system. These results are shown in figure 6.
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Figure 6: Real vs. Pted. Behavior (Mask Depth 21)

It turns out that, in this example, the causality horizon
is just about as large as the largest time constant to be
modeled. Thus, the forecast is never as good as in the case
of the linear system since the effects of causality degradation
set in before the slowest time constants are truly and fully
covered by the mask. The slowest time constant is just
beyond the causality horizon. The maxima and minima are
predicted correctly, but the forecast is not bias free. There is
a tendency for drifting away. Figure 7 shows the correlation
fanctions.
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Figure 7: Autocorrelation Function (DOSE)

§t < ts,t,Ch < At

When At is increased, the quality of the forecasts dete-
riorates rapidly, and the forecasts look like noise. Figure 8
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shows the results obtained with a mask depth of 35. When
the mask depth is increased from 25 to 51, erms grows pro-
portionally.
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Figure 8: Real vs. Pted. Behavior (Mask Depth 35)

§t, At < t4,4,Ch

Here, a sampling rate of §t = 0.2 minutes was used. For
At to be smaller than %,, a mask depth of depth = 2 was
chosen.

The fuzzy inductive reasoner predicts that the amount of
anaesthetic agent to be administered to the patient should
be the same that was administered to this patient one sam-
pling period earlier. Therefore, it forecasts a straight line.
This result is illustrated in figure 9.
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Figure 9: Real vs. Pted. Behavior (Mask Depth 2)

CONCLUSIONS

In this paper, the concept of a causality horizon has been
introduced. It has been demostrated by means of two ex-
amples that the causality horizon is an important factor
influencing the forecast quality. It was shown that the cor-
relation functions are a good indicator for the causality hori-
zon.

The first example is a linear system. In this situation, the
causality horizon is quite large, guaranteeing -a good predic-

tion if At covers both time constants and is not chosen un-
reasonably large. Several tests were conducted varying At,
which showed the influence on forecast quality. The fore-
cast quality vs. mask depth was computed and presented
in figure 5.

For the second example, a soft science system has been
chosen. Such systems don’t lend themselves as readily to ob-
taining good predictions as technical applications do. This
is primarily due to the inherent reduction of their causality
horizons. This paper illustrates this reduction and explains
how it influences the forecast quality.
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