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ABSTRACT

In this paper, Fuzzy Inductive Reasoning, FIR, will be ap-
plied to the systematic design of an autopilot of a cargo ship
to demonstrate that this methodology works well when ap-
plied to highly non-linear plants. The application at hand
shows as well the use of several fuzzy inductive reasoners
coupled in parallel to resolve a single MIMO controller into
several MISO controllers. The functionality of the approach
is demonstrated by simulating the quantitative plant to-
gether with its qualitative controllers in a mixed quantita-
tive/qualitative simulation enviroment. An important issue
in the context of the systematic design presented here is
the use of a new technique for obtaining the inverse model
dynamics of the plant. In order to evaluate the perfor-
mance of the Fuzzy Inductive Reasoning Based Controller,
FIRBC, open-loop and closed-loop design stages are tested
by means of simulation, and the results are compared with
a Fuzzy Model Reference Learning Controller, FMRLC, re-
cently proposed for use in the same application.

INTRODUCTION

Control of complex processes, such as highly non-linear,
time-varying, or variable-structure systems, is still a topic
of great interest to the engineering community. Classi-
cal controllers, such as the PID controller, don’t work ad-
equately when used to operate highly non-linear plants,
plants subjected to strong environmental perturbations (dis-
turbances), or plants with vastly different operating points.
In all these cases, it is necessary to constantly re—calibrate
the controller parameters for optimal control system perfor-
mance.

Adaptive controllers [3] have been introduced as a
means to automate the process of controller parameter re—-
adjustment. However, the first generation of adaptive con-
trollers was based on an assumption of a linear plant to be
controlled. More recently, a second generation of adaptive
controllers incorporating Artificial Intelligence [9]), Fuzzy
System [13], and/or Neural Network [15] technologies was
introduced to circumvent the previously mentioned limita-
tions of first generation adaptive controllers.

The fuzzy controller has potential advantages when the
specifications of control require robustness, adaptability,
and flexibility to either environmental perturbations or ef-
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fects of unmodeled plant dynamics. Fuzzy controllers are
basically logic controllers using multivalued logic. The
fuzzy controller discretizes the non-linear high—dimensional
continuous operating space of the controller into discrete
classes, then optimizes the behavior of the controller in
terms of these discrete classes as a finite state machine, and
finally uses the fuzzy membership information to smoothly
interpolate beetween neighboring discrete points in the con-~
tinuous operating space.

The application of fuzzy controller technology has, how-
ever, some drawbacks. One of them is that, until now, fuzzy
controllers were always designed heuristically and in an ad
hoc manner, based on expert knowledge of a human op-
erator. Whereas this property of fuzzy control is seen as
an advantage by some researchers (no complicated theory is
needed to come up with a fuzzy controller for a highly non—
linear plant; since the fuzzy controller is not based upon a
plant model, it may be more robust to effects of unmodeled
plant dynamics), it makes the tuning of a fuzzy controller
with multiple inputs and multiple outputs a very tedious
and awkward undertaking.

This article deals with the systematic design of fuzzy
controllers, preserving the benign properties of the fuzzy
controller technology, while simplifying the design process
and drastically reducing the time needed to tune the fuzzy
controller for optimal control performance. The proposed
methodology makes use of qualitative modeling and simu-
lation based upon Fuzzy Inductive Reasoning (FIR) [5]. In
[7], the principal feasibility of the proposed controller de-
sign technique has been demonstrated by means of a very
simple, synthetic, and linear plant to be controlled, and the
methodology was outlined in detail.

In the present paper, the methodology will be applied
to the systematic design of an autopilot of a cargo ship to
demonstrate that the approach also works for non-linear
plants as they are encountered in real-world applications.
The cargo ship application was chosen since there already
exists an ample number of previous publications dealing
with this system (1, 2, 3, 11, 12, 13]. This makes it possi-
ble to compare the results obtained by the newly proposed
systematic fuzzy controller design technique with those pre-
viously obtained and most recently summarized in {13].
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SHIP STEERING MODEL
Direct Model

The ship dynamics can be described using a model with two
input variables, the rudder angle, §, and the engine thrust,
f, and two output variables, the heading of the ship, ¥, and
its velocity, u. However, for the purpose of the autopilot

design, this model is unnecessarily complicated. Most au-

topilots are designed to keep the ship on a predetermined
course while minimizing fuel consumption. Te this end, it
suffices to work with a simplified model that uses the rudder

angle, §, and the ship velocity, u, as inputs, and the head- -~

ing of the ship, 1, as its single output. Such a model was
proposed in [4]. It can be encoded as:

model class CargoShip

terminal delta, u, pst

local psid, psi2d, psi3d, deltad

local H, K, taul, tau2, tau3 -
local taulinwv, taulinv, taul2inv, lu

parameter KO0 = —3.86, taul0 = 5.66
parameter tau20 = 0.38, tau30 = 0.89
parameter [ =161.0, e =1.0, b=1.0

taulinv = 1.0/taul

tau2inv = 1.0/tau2

taul2inv = taulinu » tauinvy
lu=lfu

K = Koflu

taul = taulO*lu

tau2 = tau20 = lu

tau3 = taul0 * {u

psi.‘d‘ = der(psi)

psi2d = der(psid)

psi3d = der(psi2d)

deltad = der(delta)

H = (a * psid » psid + b) * psid

psi3d + (taulinv + tauinv) = psi2d + taul2inv =« H—- >
= K * taul2inv * (tau3 * deltad + delta)

end

using a Dymola [5, 10] description. The ship dynamics
are captured by a single third-order non-linear differential
equation in the ship heading, ¥. The rudder dynamics, &,
are also taken into accoumnt. 71, T2, and 73 are three time
constants that depend on the ship velocity, 2, and the ship
length, I. K is a gain value that also depends on the same
quantities. Finally, H describes a non-linear damping term.
The notation should be fairly self-explanatory.

Reference Model

The ship is supposed to behave similar to the following
second—order linear reference model:

model class Reference

terminal psir, psim
local psimd, psim2d

psimd = der(psim)
psim2d = der{psimd)

psim2d + 0.1 x psimd 4 0.0025 * psim = 0.0025 * psir

end

where ¥ represents the reference heading of the ship, and
1, denotes the set value of the heading. Both the ship model
and the reference model are exactly as used in [13] (Eqs. (7)
and (9)).

DESIGN PHYLOSOPHY

If the inverse plant dynamics are perfectly known, the con-
trol problem becomes trivial {7]. A naive approach to trivial
model reference control of a plant using the inverse dynam-
ics is outlined in Fig.1.

Set Value | Reference | Desired Inverse Plant Real | Real
— Plant e
Input Model Qutput Dynamics | Input Plant | Output

Figure 1: Naive Controller

If the plant dynamics are exactly known, the two rightmost

- boxes cancel out, and the overall system behaves exactly like

its reference model. The real output will be exactly equal to
the desired output. Of course, the naive controller doesn’t
work. The reader may consider a linear plant for simplicity.
If the plant is strictly proper (more poles than zeros), the
inverse plant is non—proper, i.e., exhibits differential behav-
ior. If the plant is non—minimum phase (zeros in the right
half plane), the inverse plant is unstable. In that case, an
unstable pole-zero pair is being cancelled between the in-
verse dynamics model and the direct plant model, a nono
for every control engineer. Finally, since this is open-loop
control, the controller cannot correct for unmodeled plant
dynamics or disturbances.

So, if this approach doesn’t work, why mention it? There
is nothing fundamentally wrong with trying to approximate
inverse plant dynamics. In fact, all controller designs are
either directly or indirectly based on such approximations.
The intrinsic control problem is: given a plant and a desired
output trajectory, what is the best possible input trajectory
that shall make the system output look as similar as pos-
sible to the desired output trajectory? In order to answer
this question, one needs either directly or indirectly a knowl-
edge of the inverse plant dynamics. Thus, what is wrong in
the naive controller design is not the fact that it is based
on inverse plant dynamics, but only the way in which this
knowledge was used.

The previous objections will now be countered one at a
time. Most plants are strictly proper, i.e., the plant does
not have a direct input/output coupling, a step applied to
the input does not lead to a step of the output (in this
formulation, the concept carries through also to non-linear
plants). This is not a serious problem. All that needs to be
done to solve it is to realize that both the reference model
and the inverse plant dynamics are models, thus, these are
sets of differential equations that don’t need to be realized
separately. It suffices to give the reference model sufficiently
many poles to make the combined system consisting of the
reference model cascaded with the inverse plant dynamics
model at least proper. In the example at hand, the plant it-
self has three poles and one zero. Thus, the reference model
needs at least two more poles than zeros to make the cas-
caded system proper. This is exactly what the reference
model was used for in the first place (although many con-
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troller design techniques may not say so explicitly).

The cascaded model can be described as follows:

model CascadeSystem

submodel (Reference) Ref
submodel (CargoShip) Plant

input psir, u

output delta
Ref.psir = psir
Plant.psi = Ref.psim
Plantau=1u :
delta = Plant.delta

end

The CascadeSystern model invokes two submodels, one of
class Reference called Ref, the other of class CargoShip
called Plant. The model references two external inputs
(driving functions) and one output, and connects the sub-
systems into the system. Plant.psi = Ref.psim means that
the variable 9 of the plant is to be set equal to the variable
1m of the reference model, etc.

The plant got connected into the cascade system “the
wrong way around.” Consequently, this is a higher-index
model, since there exist constraints between outputs of inte-
grators. However, Dymola is perfectly capable of automat-
ically reducing the index of a higher-index model, thereby
generating a model in state-space form [6].

The following Dymola script file:

enter model
Q@ship.dym

differentiate
variable state ship.delta, ship.psi, ship.psid
partition

language acsl
outfile ship.csl
output model

stop

generates an ACSL [14] simulation program for the cascaded
system. The differentiate command performs the index re-
duction. It turns out that the model was of index 4, thus
the Pantelides algorithm [16] had to be applied thrice in a
row to reduce the model to index 1. Although the sum of
state variables of the two submodels is five, the overall sys-
tem order is only three, thus three state variables need to
be selected. The partition command then solves the compu-
tational causality assignment problem, determining which
equation should be solved for what variable. Finally, an

more right [8]. The answer is again simple: a local con-
troller needs to be built that moves the unstable zeros into
the left-half complex plane. Subsequently, the original plant
together with its local controller is treated as the new plant
to be controlled.

The final objection is the most serious one, and this is
where control engineers earn their income. The trick is to
modify the design such that the same objectives are at-
tained while changing the former open-loop control into a-
closed-loop control with additional properties relating to
disturbance suppression and plant parameter sensitivity re-
duction.

FUZZY CONTROLLER SYNTHESIS

The overall design of a FIRBC can be decomposed into the
following five stages:

First, the cascade model consisting of the reference
model and the inverse plant dynamics model must be
obtained following the strategy explained in the previ-
ous section of this paper.

Next, a qualitative model of the fuzzy controller(s)
must be obtained based upon measurements of the ref-
erence input(s) of the control system, the output(s) of
the reference model, and the output(s) of the cascade
model.

The design of the controller(s) must then be validated
in open loop by comparing the plant input(s) suggested
by the fuzzy controller(s) with the desired plant inputs
obtained earlier in the design.

Subsequently, the fuzzy controller can be integrated
with the plant in a closed-loop configuration. Stability
and performance of the control system are being tested.

Finally, stabilization/tracking control loops can be
added to the overall control structure at this point in
time if this turns out to be necessary.

Stage I of the design has already been explained in the pre-
vious section of the paper. The symbolic formula manipu-
lator inside Dymola has been proven capable of deriving a
closed—form analytical model of the cascade system out of
independent descriptions of the direct plant dynamics and
the desired reference model.

However, before the next stage can be tackled, one re-
maining problem with the first stage needs to be addressed.
In the direct plant dynamics model, the rudder deflection,
8, was used as an input. However, the model itself contains
also the variable §. This is awkward since it forces the sim-
ulation program to numerically differentiate a qualitatively
computed input variable — an utterly dubious undertaking
at best.

ACSL model is generated that can be simulated after plug--

ging in appropriate driving functions.

Secondly, what about non-minimum phase behavior? In-
deed, large ships have a tendency to exhibit non-minimum
phase behavior. Such behavior in a human—controlled sys-
tem is annoying at best. The pilot turns the steering wheel
to the left, and the boat reacts by turning right. So, the
pilot turns the steering wheel more left, and the boat turns

Several references have overcome this problem by neglect-
ing the rudder dynamics, i.e., by setting § = 0, claiming
that the rudder dynamics are so much faster than the ship
dynamics that they can be ignored. However, when trying
this approach, it could be noticed that the rudder deflec-
tion often exceeds the physically allowable limits of 37°.
The rudder deflection used to control the ship can be kept
within the allowed range by placing a hard limiter between
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the controller and the plant. However, this introduces a
cumulative error degrading the control performance beyond
acceptable limits.

A second solution might be to replace the previously used
input of the plant, §, by its derivative, é, and numerically
integrate § into & inside the plant model. However, this ap-
proach doesn’t work very well either, since § is less strongly
coupled to the plant output, ¥, than §. This will be shown
in due course. Thus, this approach weakens the performance
of the fuzzy controller beyond recovery.

A third approach is to sever the relationship between
5 and § inside the plant model, eliminating the equation
der(delta) = deltad from the plant model. delta and deltad
can now be treated as two separate input variables to the
plant, and two separate (parallel) fuzzy controllers can be
designed, one computing values of delta, and the other com-
puting values of deltad. This approach worked beautifully.

Now, the attentive reader may wonder how the relation-
ship between § and § might be severed in a real ship. Where
does the rudder need to be sawn apart in order to achieve
that trick? Of course, this cannot be done. However, it is
perfectly feasible to design a PID-type controller that takes
as inputs the signals delta and deltad suggested by the two
fuzzy conigollers, and generates as output a single signal §,
such that é is as close as possible to deltad, yet driving § to
delta. This PID controller is harmless since it only corrects
for errors that are of second-order small. Consequently, it
does not need to be adjusted for different operating points.

Qualitative Fuzzy Controller Design

In the second design stage, the two qualitative controller
models need to be identified. In order to do so, the following
experiment is performed, as illustrated in Fig.2:
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Figure 2: Qualitative model identification — Exp.1.

Binary random noise input is applied to the first system
input, ¥, and a sinusoidal excitation is applied to the sec-
ond system input, ». The reactions of the reference model,
¥m, and of the cascaded model, § and &, are observed. All
five quantities are recorded into a raw data matriz, where
each column denotes one variable and each row denotes
one data record (sampling point). The simulation was cat-
ried through 7000 seconds of simulated time. The first
6000 seconds were used for identifying the qualitative mod-
els. The remainder of the time history is used for validation
purposes. The sampling time was chosen to be 1 second.
The training data are shown in Fig.3.

Using fuzzy recoding, a technique explained in [5], each
quantitative data value is then converted to an equivalent
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Figure 3: Training data set.

qualitative triple consisting of a class value, a fuzzy mem-
bership value, and a side value. As a result of this trais-
formation, three data matrices are obtained, one containing
the class values, the second containing the membership val-
ues, and the third containing the side values. These three
matrices are then used in the process of fuzzy inductive rea-
soning.

In the next step, the two qualitative models are gener-
ated using optimal mask analysis as explained in [5, 7]. The
topology of the two controller models is shown in Fig.4. An
optimal mask is a temporal causal relation between the in-
put variables and the output variable. The optimality func-
tion is based on the forecasting power of the mask, com-
puted through use of the Shannon entropy measure.
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Figure 4: Controller topology — Exp.2.

Thereby, a qualitative triple of the first desired plant input,
delta, is computed as a qualitative function of the two sys-
tem inputs, ¢, and u, the output of the reference model,
Pm, and past values of all these quantities. A qualitative
triple of the second desired plant input, deltad, is computed
as a qualitative function of the two system inputs, %, and
u, and the variable 6. It turns out that the optimal mask
for deltad does not make use of the output of the reference
model, ¥, at all. This is the reason why the previously
attempted solution of replacing § by & as a control input to
the plant failed.
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Validation of the Qualitative Models

In the third design stage, the results of two qualitative simu-
lations of the two models across 1000 seconds are compared
with the last 1000 seconds of the previously performed quan-
titative simulation in open loop, in order to verify the qual-
ity of the forecast. This process is shown in Fig.5 where
REGEN. is an abbreviation for regeneration, a technique
converting qualitative triples back to quantitative variables.
Thus, the RECODE module is the fuzzifier, whereas the
REGEN. module is the defuzzifierin the system.
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Figure 5: Validation process.

The good results of the validation stage are shown in Fig.6.
Error signals were displayed since the original signals them-
selves are practically indistinguishable one from another.
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Figure 6: Forecast quality results.

Integration of Fuzzy Controllers

Once the errors in the previous experiment have been shown
to be sufficiently small, the control loops can be closed as
illustrated in Fig.7.

There is no direct error computation between the desired
output, ¥, and the real output, ¥, as in most of the other
control configurations. The trick is that the qualitative
model was designed using %m, but is now used with ¥,
replaced by . This has the same overall effect. It can be
noticed that the previously designed qualitative model has
now become the fuzzy controller in this configuration.

However, no—one told the fuzzy controller that it is im-
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Figure 7: Fuzzy controller — FIRBC.

portant to keep 9 close to ¥m. In fact, the FIRBC doesn’t
even know what ¥, is. Consequently, the ship position will
ever-so-slowly drift away from its desired course. Thus, a
tracking control loop is introduced, in which the difference
between the desired ship position, 1, and the real ship
position, ¥, is fed back into the rudder deflection.

The malevolent reader may now suspect that an oldfash-
ioned P-controller was introduced through the back door
- that does all the work, whereas the fuzzy controller was
only left in the system to make the paper pass by the re-
viewers. This is not true. It is like in driving school. It
is really the student who does all the driving. The teacher
only reaches over from time to time to give an ever—so—
gentle nudge to the steering wheel in order to prevent the
car from unfriendly encounters with nearby trees. It is really
the fuzzy controller that does all the work. The feedback
signal that comes through the tracking control loop is much
smaller in magritude than the signal that comes through
the fuzzy controller. All it does is to provide an additional
incentive to the plant for staying on track. The feedback
gain, k, assumes a value of k = 0.2. This value was found
through experimentation. Since the P-controller only cor-
rects errors that are of second—order small, no adjustments
to the operating point are needed.

In its feedback configuration, the fuzzy controller will be
able to correct for the effects of environmental perturbations
and unmodeled plant dynamics. However, if these effects
become prominent, the control may deteriorate. For exam-
ple, wind velocity and direction will have a substantial effect
on ship performance, and consequently, an indirect correc-
tion may not be good enough. Yet, the solution is simple.
All that needs to be done is to augment the plant model
CargoShip such that it accounts for the effects of these two
additional input variables. Dymola will then automatically
include these variables also in the cascade model. They are
then treated in exactly the same fashion as the ship veloc-
ity, . The raw data model obtains two additional columns,
and the qualitative model obtains two additional inputs,
but everything else remains the same. Of course, since the
qualitative model now has four different inputs, consider-
ably more training data may be needed for the data base
used by the fuzzy controller. However, all this can be done
off-line, and is therefore relatively harmless.

In order to compare the performance of the FIRBC with
earlier designs such as the FMRLC design advocated in

527



<. Reference Input
6ok ~= Reference Model Response |
- - - Cargo Ship Response
w
2
o
£
3
]
=
od
3
-
<
H
3
& ] -
-40

1 Error berween the Ref. Mode} Output and the Cargo Ship Heading

“ A‘VAL\}J\“VAWA‘VANA”VAWA“VAL\JA J

4000
Tirne (sec)

2

05

-

Ref. Mode! Ervar (deg)
o)

-1
4

5000 6000

Figure 8: FIRBC comparative performance.

[13], the same experiment was reproduced that Layne and
Passino used to test the performance of their design. The
characteristics of this experiment are: constant ship veloc-
ity of 5.0 m/s, six cycles of perturbation of #,: (1) course of
45° to the left during the first 250 seconds, (2) course of 0°
during the nest 250 seconds, (3) course of 45° to the right
during the following 250 seconds, (4) course of 0° during the
last 250 seconds of the cycle. The results of this closed-loop
experiment are shown in Fig.8. Both responses lock prac-
tically identical, and both perform better than the Gradi-
ent and Lyapunov Model Reference Adaptative Controllers.
Both techniques also avoid unrealistically large rudder de-
flections. In contrast to the FMRLC, the FIRBC has been
identified for perturbations of both « and ¥, and does not
need to be reidentified if the ship ‘velocity changes.

With respect to the amount of input energy spent on
the conmtrol in order to obtain an accurate tracking of the
reference course defined as E = §% (13], the FMRLC spends
E = 17.3368 during the 6000 seconds of the experiment.
The FIRBC spends £ = 13.111 during the same period.

CONCLUSIONS

The proposed architecture is not truly a learning control
scheme.It is an optimal control scheme that synthesizes an
optimal set of fuzzy rules off-line from a set of training data.
It is proposed that using the knowledge available in the form
of a quantitative direct plant model is an advantage. Direct
plant dynamics are fairly easy to come by, and as long as the
process of generating from it the cascade model and from
there the fuzzy controller can be fully automated, there is

nothing wrong with this approach. Moreover, it would be
fairly easy to build on top of the synthesized fuzzy con-
trol architecture presented in this paper a fuzzy member-
ship adaptation scheme similar to the one advocated in [13)
allowing the controller to adapt itself to slow variations in
plant dynamics. As other fuzzy controller design techniques,
also the newly proposed FIRBC methodology suffers from
a high degree of heuristicism. No attempts have been made
to prove stability or convergence. However, the results ob-
tained lock very promising indeed.
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