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Abstract

This paper deals with the assessment of the reliabil-
ity of predictions made in the context of the fuzzy
inductive reasoning methodology. The reliability
of predictions is assessed by means of two di�er-
ent con�dence measures, a proximity measure, and
a similarity measure. A time series and a single{
input/single{output (SISO) system are used as two
di�erent applications to study the viability of these
measures.

Keywords: Qualitative Modeling, Qualitative
Simulation, Fuzzy Inductive Reasoning, Estima-
tion of Modeling Error.

INTRODUCTION

Models never re
ect all facets of reality. Models
are always somewhat reductionistic in nature, and
consequently, simulation results are never totally
reliable. Hence it is important to always interpret
simulation results with caution and a certain de-
gree of scepticism.

The degree of uncertainty associated with a
model of a system depends heavily on the nature
of that system. Simple man{made engineering sys-
tems, such as electronic circuits, are characterized
by a small degree of uncertainty, since it is an ac-
tual design goal when fabricating these systems
to keep the degree of uncertainty small. On the
other hand, biological or economic systems are usu-

ally characterized by a fairly large degree of uncer-
tainty.

Although the request for scepticism is a good
mandate on moral grounds, is it also a practical de-
mand? How should, for example, a medical practi-
tioner know how to judge the reliability of a predic-
tion made? He or she has no way of knowing how
good the predictions of a simulation model are that
he or she may be using. Hence it is important to
instil scepticism into the simulation software itself,
rather than demanding it of its user.

Assessing the inaccuracy of a simulation result is
in itself a modeling task. Yet, the same methodol-
ogy that is used to model the output to be pre-
dicted cannot be used to model its error. This
would lead to a paradoxical situation. If it indeed
were possible to compute, in a deterministic sense,
the inaccuracy of a prediction made, then one could
simply subtract the predicted prediction error from
the prediction itself and obtain the precise value of
the output. Evidently, this cannot be done. The
modeling error can only be modeled in a statistical
sense.

In this paper, two con�dence measures im-
plemented inside the fuzzy inductive reasoning
methodology will be described that assess the error
of a prediction made simultaneously with making
the prediction.

In a robust modeling methodology capable of

1



dealing with model uncertainty (as qualitative
modeling techniques should always be), modeling
the modeling error should not be an afterthought.
Modeling the output and modeling its error should
be done simultaneously. A modeling and simula-
tion methodology that does not take the model un-
certainty into consideration from the beginning is
not robust when dealing with uncertain situations.

In the next section, the two con�dence measures,
a proximity measure and a similarity measure, are
described in the context of the Fuzzy Inductive
Reasoning (FIR) methodology. A description of
the main elements of the FIR methodology can be
found in a companion paper published in the same
set of proceedings (L�opez 96). A more detailed de-
scription of all facets of the methodology can be
found in (Cellier 96).

Subsequently, two applications, one related to
time series forecasting and the other to SISO sys-
tems modeling, are studied in order to discuss the
viability and e�ectiveness of the proposed con�-
dence measures.

CONFIDENCE MEASURES

OF THE FIR METHODOLOGY

Before the proximity and similarity measures can
be properly presented, it is necessary to introduce
some concepts and de�nitions related to the fuzzy
inductive reasoning methodology.

FIR always deals with multi{input/single{
output (MISO) systems. Therefore, each state con-
sists of a number of input variables and a single
output variable. In the forecasting process, FIR
compares the current values of the set of input vari-
ables (the so{called input state) with all the input
states stored in the experience data base, which
was constructed during training, i.e., in the model-
ing process. It determines, which are the �ve near-
est neighbors in terms of their input states in the
experience data base, and estimates the new out-
put value as a weighted sum of the output values of
the �ve nearest neighbors, i.e., proximity is deter-
mined in the input space, leading to a set of weight
factors that are then used for interpolation in the
output space.

In order to create a meaningful metric of proxim-
ity in the input space, it is necessary to normalize
the input variables. This is accomplished using a
so{called pseudo{regeneration (Cellier 91) of the
previously fuzzi�ed input variables (L�opez 96):

posi = classi + sidei � (1:0�Membi) (1)

where the class values are assumed to be integers
starting from `1' representing the lowest class, and
the side values are also integers assuming the values
`�1,' `0,' and `+1,' representing the logical values
`left,' `center,' and `right' of the fuzzy membership
function (Cellier 96). The index i represents the ith

input variable in the input state of the current ob-
servation. The position value, posi can be viewed
as a normalized pseudo{regeneration of the ith in-
put variable. Irrespective of the original values of
the input variable, posi assumes values in the range
[1:0; 1:5] for the lowest class, [1:5; 2:5] for the next
higher class, etc.

Similarly,

posij = classij + sideij � (1:0�Membij) (2)

represents the normalized pseudo{regeneration of
the ith input variable of the jth nearest neighbor
in the experience data base.

pos = [ pos1; pos2; : : : ; posn ] (3)

is the position vector representing the current in-
put state, assuming that the system to be modeled
contains n m{inputs (L�opez 96), and:

posj = [ pos1j; pos2j ; : : : ; posnj ] (4)

represents the corresponding position vector of the
jth nearest neighbor.

The position vectors of the �ve nearest neighbors
are the starting point for computing both types of
con�dence measures.

The Proximity Measure

The idea behind assessing the reliability by means
of the proximity measure is directly related to the
distance of the observations available in the expe-
rience data base to the new observation. If the new
observation is very close to one or several previous
observations, then the con�dence in the prediction
made is high. On the other hand, if the new obser-
vation is quite far away from all of its �ve nearest



neighbors and a lot of interpolation has to be done
to determine the new output value, then the pre-
diction should be assessed as less reliable.

The distance between the current input state and
its jth nearest neighbor is computed as:

disj = kpos� posjk (5)

In order to prevent a possible division by zero in
the proposed algorithm, it is necessary to avoid
distance values of 0:0:

dj = max(disj ; �) (6)

where � is the smallest number that can be distin-
guished from 1:0 in addition.

sd =
5X

j=1

dj (7)

is the sum of the distances of the �ve nearest neigh-
bors, and:

drelj =
dj

sd
(8)

are the relative distances. By applying this algo-
rithm either to the entire experience data base or a
suitable subset thereof, the �ve nearest neighbors
can be determined while simultaneously computing
their distance functions.

The interpolation is done in the output space.
Absolute weights are computed as:

wabsj
=

1:0

drelj
(9)

and

sw =
5X

j=1

wabsj
(10)

is the sum of the absolute weights. Hence the rel-
ative weights can be computed as:

wrelj =
wabsj

sw
(11)

The average distance used to determine the con-
�dence measure is computed as a weighted sum of
the relative distances of the �ve nearest neighbors:

dconf =
5X

j=1

wrelj
� dj (12)

The largest possible value of the average distance
can be calculated as:

dconf
max

=

vuut
nX
i=1

(ncli � 1)2 (13)

where ncli is the number of classes used in the fuzzi-
�cation of the ith input variable.

Finally, the con�dence is evaluated as:

conf1 = 1:0�
dconf

dconf
max

(14)

where conf is a quality measure (Cellier 91), i.e., a
real{valued number in the range [0:0; 1:0]. Values
close to 1:0 denote a high con�dence in the predic-
tion made, whereas values close to 0:0 denote a low
con�dence in the forecast.

The Similarity Measure

Measures of con�dence can also be de�ned without
the explicit use of a distance function. The simi-
larity measure proposed in this paper is a general-
ization of the classical set{theoretic equality func-
tions. These generalizations rely on the de�nitions
of cardinality and di�erence in fuzzy set theory.

The similarity measure presented in this sec-
tion, which was originally proposed by Dubois and
Prad�e (Dubois 80) is based on intersection, union,
and cardinality:

S1(A;B) =
k A \B k

k A [B k

Clearly, when A = B, then S1(A;B) = 1:0, and
when A and B are totally disjoint, then S1(A;B) =
0:0.

In FIR, this concept is implemented in the fol-
lowing way. The position variables posi assume



values in the range [1:0; ncli]. They are normalized
once more:

Pi =
(posi � 1)

(ncli � 1)
(15)

The Pi variables assume values in the range
[0:0; 1:0]. Similarly, the re{normalized position
value for the ith input variable of the jth nearest
neighbor in the normalized experience data base
can be computed as:

Pij =
(posij � 1)

(ncli � 1)
(16)

The similarity of the ith input variable of the
jth nearest neighbor based on intersection is then
de�ned as follows:

Sij =
min(Pi; Pij)

max(Pi; Pij)
(17)

The overall similarity of the jth neighbor is de-
�ned as the average similarity of all its input vari-
ables in the input space:

simj =
1

n

nX
i=1

Sij (18)

The similarity measure for the new forecast value
is consequently de�ned as the weighted average of
the similarities of the �ve nearest neighbors:

conf2 =
nX
i=1

wrelj
� simj (19)

Also conf2 is a quality measure in the range
[0:0; 1:0]. Values close to 1:0 denote a reliable fore-
cast.

APPLICATIONS

Central Nervous System

In this section, the two previously explained con-
�dence measures, the proximity measure and the
similarity measure, are studied in the context of a
SISO system, one facet of the cardiovascular sys-
tem of the human body.

The cardiovascular system is composed of the
hemodynamical system and the Central Nervous
System (CNS) control. The CNS comprises, among
others, the signals that are transmitted from the
brain to the heart and to the blood vessels for con-
trolling the hemodynamical system.

A mixed quantitative and qualitative model of
the cardiovascular system using FIR to describe
the qualitative subsystems has been presented in
(Nebot 96). It contains �ve separate FIR con-
troller models. One of the �ve controllers that
compose the CNS, the Peripheric Resistance (PR)
controller, is used, in this paper, as an example to
study the validity of the two con�dence measures
presented in the previous sections when applied to
systems with input and output signals.

The input of the system is the Carotid Sinus
Pressure and the output is the Peripheric Resis-
tance control signal. The peripheric resistance con-
troller FIR model is presented in Eq. 20. It is an
optimal mask (L�opez 96) of depth �ve. A set of
5000 data values has been used in the identi�cation
process in order to obtain the optimal mask that
best captures the behavior of the given system.
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CSP PR

t� 4�t 0 �1
t� 3�t 0 0
t� 2�t �2 �3
t� �t 0 0
t 0 +1

1
CCCA (20)

The model was validated by using it to forecast
six di�erent data sets that had not been employed
in the model identi�cation process, i.e., using data
that the model had never seen before. Each one of
these six data sets, with a size of about 600 data
points each, contains signals representing speci�c
morphologies, allowing the validation of the model
for di�erent system behaviors. The upper portion
of Figure 1 shows a comparison of the output ob-
tained by forecasting one of the data sets using the
FIR model with the true measured output.

There is only a short interval around the sample
300 where the FIR model was unable to predict
accurately how the signal is supposed to continue.
This insecurity is related to non{stationary be-
havioral characteristics of the measurement data.
The peripheric resistance control level during var-
ious Valsalva maneuvers recorded in the experi-
ence data base was always slightly di�erent during
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Figure 1: Proximity and Similarity Forecasts for
the FIR Peripheric Resistance Controller Model.

this period, and consequently, FIR is insecure as
to what precisely it should predict, and oscillates
between the di�erent plausible predictions. The
forecast shown in Figure 1 represents the poorest
result obtained for any of the six testing data sets.

During the qualitative simulation process, the
con�dence measures are computed together with
the forecast. The lower portions of Figure 1 show
the two con�dence measures, i.e., the proximity and
the similarity measure.

The forecast depicted in the upper portion of
Figure 1 shows that the prediction is excellent dur-
ing the early part of the simulation. It is also quite
good during the late part of the simulation period.
However, there is a time segment, approximately
between samples 170 and 360, where the quality
of the prediction is reduced. Between samples 170
and 240, the high{frequency components of the sig-
nal are not properly represented, and between sam-
ples 240 and 360, the prediction is outright wrong.
Both con�dence measures respond reliably to the
prediction error, as can be seen in Figures 1. The
con�dence values in the early and late segments
of the simulation are very high, whereas they are
much reduced in the middle section. It can also
be noticed that the similarity measure is more sen-
sitive to the prediction errors than the proximity
measure.

Water Demand Time Series

A FIR model has been obtained to predict the daily
water demand of a section of the city of Barcelona

(L�opez 96). The available measurement data con-
tain the daily water demand of approximately two
years. The demand is measured in m3.

In a �rst experiment, which is the experiment de-
scribed in detail in (L�opez 96), a look ahead of one
day was performed, i.e., a single new data point was
predicted each day on the basis of the true measure-
ments from the previous two weeks. 570 days (from
January 1985 to 24 July 1986) were used as train-
ing data, whereas the �nal 128 days (from 25 July
to 29 November 1986) were used as testing data.
Figure 2 shows the forecasts (dashed line) together
with the measured values (continuous line). Under-
neath, the two con�dence measures are depicted.
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Figure 2: Water Demand FIR single{step predic-
tion from 25.06.1986 - 29.11.1986 together with
con�dence measures

Contrary to the cardiology example, the relation-
ship between the prediction error and the con�-
dence measures is not immediately evident. The
con�dence seems to go down during the weekends,
which is an artifact of data deprivation more than
anything else. There were simply a smaller number
of neighbors available in the experience data base
representing previous weekend days.

However, the relationship between the predic-
tion error and the two con�dence measures can be
shown statistically. To this end, the crosscorrela-
tion between the prediction error and (1:0� confi)
was computed using Matlab's xcov function. The
results are shown in Figure 3.

It can be seen clearly that there exists a posi-
tive correlation between the two quantities at the
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Figure 3: Crosscorrelation between prediction er-
ror and (1� confi)

center, which is what was to be expected if the
con�dence measure operates correctly. It can also
be noticed that the correlation is a little higher
in the case of the similarity measure, which is an
indication of the somewhat higher sensitivity and
reliability of this con�dence measure.

In a second experiment, a prediction over mul-
tiple steps was performed. As before, the �rst
570 days were used for training, but then, a pre-
diction was made with a look ahead over 50 days
without incorporating any additional measurement
data. Consequently, the later forecasts rely entirely
on previously made forecasts, and eventually, the
quality of the forecast must deteriorate.

Underneath the forecast, the cumulative con�-
dences are given. The cumulative con�dence of a
point is de�ned recursively as the product of the
local con�dence of that point with the cumulative
con�dence of the previous point. It turns out that
a prediction with a look ahead of one week can
be done reliably. The second week's prediction is
still quite good. The 7{day cycle is preserved for a
few more weeks, before even it gets washed away.
When the cumulative con�dence decays to a value
below roughly 50%, the prediction must be con-
sidered unreliable, and consequently, SAPS{II, our
implementation of FIR, can be instructed to reject
making any predictions with too low a cumulative
con�dence value.

Discussion

The two examples presented above are very use-
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Figure 4: Water Demand FIR multiple{step pre-
diction from 22.11.1986 - 30.11.1986 together with
cumulative con�dence measures

ful in analyzing the characteristics of the proposed
con�dence measures, as well as the capabilities of
FIR for prediction in two very di�erent situations.
The central nervous system data correspond to a
process that is largely deterministic, except at the
peaks when the precise value is di�erent from one
period to the next, whereas the water demand time
series corresponds to a stochastic quasi{stationary
process.

The con�dence measures proposed above are re-
lated to how deterministic the data base is, i.e.,
how close or disperse the outputs are for any one
input pattern. When a process is mostly deter-
ministic, SAPS{II will produce a good model and
in most cases, there exists only one possible out-
put for a given input pattern, or possible alterna-
tive outputs are very close, so that the con�dence
will be high and the error will be low. In the few
cases where a number of disperse outputs exists
for a certain input pattern, it is more likely that a
larger prediction error occurs, and this corresponds
to a lower con�dence zone. This can be clearly
observed in the central nervous system example,
where the correlation between the prediction error
and (1 � confidence) for both measures, is very
high. The same is not true, however, in the case
of the water demand time series. In this exam-
ple, the prediction error and (1 � confidence) are
still statistically related, at least in the single{step
prediction, as shown in Figure 3. The correlation
coe�cient is 0.3890 in the case of the similarity
measure, and 0.3342 in the case of the proximity
measure.



CONCLUSIONS

When using fuzzy inductive reasoning models in
prediction, it is very important to generate not
only forecasts for the output variables, but also
measures of the reliability of each forecast. In this
context, two measures of the reliability of FIR pre-
dictions have been proposed, a proximity measure

and a similarity measure. After testing these mea-
sures on a largely deterministic input{output sys-
tem and on a mostly stochastic time series, a few
conclusions can be drawn:

� The similarity measure is more sensitive to
the prediction error than the proximity mea-
sure. This is reasonable, because the similar-
ity measure preserves more information about
the qualitative di�erence between a new input
state and its neighbors in the experience data
base than the proximity measure.

� Since the models derived by SAPS are largely
deterministic and autoregressive, in both the
deterministic and the autoregressive stochas-
tic processes, the proposed measures are use-
ful tools to evaluate the likelihood of errors.
More speci�cally, large proximity or similarity
values indicate that a low prediction error is
likely to occur.

� In time series corresponding to stochastic pro-
cesses that are not entirely autoregressive,
i.e., processes where the errors may be cor-
related, there is not necessarily a signi�cant
correlation between the prediction error and
(1 � confidence). Therefore, the correlation
between these two entities may, in general, be
used as an indicator of how well the series in
question may be �tted by an autoregressive or
deterministic model.

A remark of a more philosophical nature is in place
as well. The better the modeling methodology
works, the less likely it is that a measure of the
quality of the prediction can be made. If indeed
the model were to exploit all the information that is
available in the measurement data, then the model
of the prediction error would necessarily have to be-
have like uncorrelated white noise, because what-
ever can be said about the prediction error can, at
least in theory, be exploited to improve the model.
In practice, this is not a big problem. As long
as the prediction error does not behave like white
noise, the information obtained is useful to assess

the quality of the prediction. On the other hand,
once the prediction error starts to behave like white
noise, the researcher can be assured that he or she
has exploited every bit of knowledge available and
has come up with the best possible model already.
Hence, even in that case, the error analysis tells us
something of value.

The authors are continuing their research work
in this area, speci�cally on the improvement of the
modeling and prediction capabilities of SAPS to
general stochastic processes, and on the derivation
of new con�dence measures.
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