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Abstract

This paper presents the application of fuzzy induc-
tive reasoning (FIR) to time{series analysis and
forecasting. This methodology had previously been
applied to modeling and control of dynamic input{
output systems [de Albornoz 96], [Mugica 95],
[Nebot 94]. The research e�ort discussed in this
paper presents a �rst attempt at assessing the suit-
ability of this qualitative modeling methodology for
forecasting time{series, i.e., for predicting the fu-
ture development of signals on the basis of their
own past, without identifying the systems that
produce these signals. The performance of FIR
in time{series forecasting is compared with Box{
Jenkins methods and neural networks in a case
study.

Keywords: Qualitative Simulation, Forecasting,
Fuzzy Inductive Reasoning, Time Series, Water
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INTRODUCTION

Given a stable physical plant. Its eigendynamics
die naturally out due to the stability properties of
the plant. Consequently, the outputs of the plant
are predominantly driven by its inputs, and not by
its eigendynamics. Mathematical models of such
systems can either be obtained deductively from
�rst principles, or inductively by observing the in-
puts and outputs of the plant over a given period
of time. In both cases, the mathematical model ob-
tained is expected to be characterised by the same
stability properties as the physical plant it repre-
sents. Hence it is possible to make predictions of
future outputs over an essentially unlimited time
horizon as long as the system characteristics re-
main the same and as long as the future input
streams are precisely known. Errors made in the

prediction will not accumulate, but get dissipated
away as a consequence of the stability properties of
the model.

Time series analysis is fundamentally di�erent
from the mathematical modeling and simulation of
systems in several respects. Although a time se-
ries can be interpreted as an output of a system, it
is, by de�nition, an output of an unknown system.
Neither the system characteristics nor the input
functions are known, and consequently, time{series
analysis must content itself with estimating future
output values by means of extrapolation from their
own past. The more benign (i.e., stable) the un-
known system that produces the time series, the
less likely this will work. In the extreme case, one
could imagine a system with a transfer function of
1.0 driven by white noise. Clearly, any attempt at
performing a time{series analysis on the output of
this system must be futile, whereas a systems anal-
ysis would work perfectly, since the input functions
are expected to be known in that case.

The scienti�c community has been interested in
the analysis of time series for a long time. Time se-
ries are important when studying the behavior of a
system that is not completely understood, such as
the time{varying intensity of a star, or the stock
market. Clearly, one should not expect similarly
accurate results when forecasting a time series as
when simulating a known system with known in-
puts. It is also important to recognize that the
time horizon of a meaningful prediction will, in this
case, usually be limited, and in fact, may be rather
short. Furthermore, a successful prediction of a
time series depends on the characteristics of the
time series. It is to be expected that a station-
ary or quasi{stationary process can be predicted
better and over a longer time horizon than a non{
stationary process.
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In this paper, a new technique for the analysis
of time series shall be presented, a technique that
hitherto has only been used for qualitative model-
ing and simulation of systems. The performance
of this new methodology, called Fuzzy Inductive
Reasoning (FIR) shall be compared with that of
a Box{Jenkins approach as well as with a neural
network solution. The case study that is presented
in this paper is limited to a single time series, de-
scribing the water demand of a section of the city of
Barcelona. This time series has been selected, be-
cause earlier attempts at predicting this time series
have previously been reported in the literature.

Several methodologies have been used in the past
to analyze and forecast time series. The method-
ologies that were reported in the literature range
from linear modeling [Chat�eld 89], [Priestley 81],
[Box 76] to more complex non{linear techniques
[Tong 90], [Volterra 59]. Yet more recently, neu-
ral networks and state{space reconstruction have
successfully been applied to the analysis of time se-
ries [Casdagli 92], [Weigend 90]. Learning methods
for systems modeling, such as neural networks and
FIR, derive implicit models of the systems in ques-
tion, by extracting regularities in the input/output
behavior from a set of training examples. These
same methods can also be applied to the analysis
of time series. In this case, they exploit regularities
within the observed output patterns.

FUZZY INDUCTIVE REASONING

Fuzzy inductive reasoning is a modeling and sim-
ulation methodology that generates a qualitative
input/output model of a system by �nding the
best possible fuzzy �nite state machine between
discretized (fuzzi�ed) input and output states of
the system. The methodology is composed of the
following main functions:

� Fuzzi�cation. The process of converting quan-
titative variables into qualitative triples is
called recoding. The �rst component of the
triple is the class value, the second is the fuzzy
membership function value, and the third is
the side value [Cellier 96]. The process of
recoding is applied to each observed variable
(trajectory) separately. The recoded qualita-
tive episodical behavior is stored in three ma-
trices, one containing the class values, the sec-
ond storing the membership function values,
and the third keeping the side values. Each
column of these matrices represents one of the
observed variables, and each row represents on

recorded state. The trajectory behavior can
thus be separated into a set of input trajec-
tories, ui, concatenated from the right with a
set of output trajectories, yi, as shown in the
following example (three inputs and one out-
put):
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CCCCCCA
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� Qualitative Modeling. Once the quantitative
trajectory behavior has been recoded into a
qualitative episodical behavior, the process of
modeling consists of �nding �nite automata
relations between the recoded variables that
make the resulting state transition matrices as
deterministic as possible. Such a relation is
called a mask. An example of a mask might
be:
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tn
x u1 u2 u3 y1

t� 2�t 0 0 0 �1
t� �t 0 �2 �3 0
t �4 0 0 +1

1
A (2)

The negative elements in this matrix denote
inputs of the qualitative functional relation-
ship, so{called m{inputs. The above exam-
ple has four m{inputs. The positive value
represents the m{output. A mask denotes
a dynamic relationship between qualitative
variables. A mask has the same number of
columns as the episodical behavior to which
it is applied, and it has a certain number of
rows. The number of rows of the mask matrix
is called the depth of the mask. The mask can
be used to 
atten a dynamic relationship out
into a static relationship. A mask candidate
matrix is an ensemble of all possible masks,
from which the best one is chosen by a mech-
anism of exhaustive search. The mask candi-
date matrix contains �1 elements where the
mask has a potential m{input, it contains a
+1 element where the mask has its m{output,
and it contains 0 elements to denote forbidden
connections. Thus, the mask candidate matrix
for the previous four{variable example will be:
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x u1 u2 u3 y1

t� 2�t �1 �1 �1 �1
t� �t �1 �1 �1 �1
t �1 �1 �1 +1

1
A (3)

Each of the possible masks is compared to the
others with respect to its potential merit. The
optimality of the mask is evaluated with re-
spect to the maximization of its forecasting
power. The Shannon entropy measure is used
to determine the uncertainty associated with
the forecasting of the desired output state, for
given feasible input states [Cellier 96].

� Qualitative Simulation. Once the optimal
mask has been determined, it can be ap-
plied to the given raw data matrix result-
ing in an input/output matrix. Since the in-
put/output matrix contains functional rela-
tionships within single rows, the rows of the
input/output matrix can be sorted in alphanu-
merical order. The result of this operation is
called the input/output behavior matrix of the
system. The input/output behavior matrix is
a �nite state machine. For each combination
of input values, it shows which output is most
likely to be observed [Cellier 96].

� Defuzzi�cation. This is the inverse function of
the recoding process. In fuzzy inductive rea-
soning, it is called regeneration [Cellier 96].

For a more detailed information on this method-
ology, the reader is referred to [Nebot 94], [Mug-
ica 95], [Cellier 96].

TIME SERIES FORECASTING

In the previous section, it was shown how FIR can
be applied to identifying a model of a system. Each
FIR model is characterized by a set of mask in-
puts, the so{called m{inputs that best determine
the output to be predicted, i.e., the so{called m{
output. Whereas them{output is always an output
of the system, the m{inputs can be chosen among
the input variables and older values of the outputs.
Hence the same methodology can also be used for
modeling time series. In this case, there aren't any
recorded input variables, and all m{inputs must be
chosen among earlier values of the recorded out-
puts.

In the simplest (yet most di�cult to predict)
case, only a single variable, the time series, has

been observed, the future values of which are to be
predicted on the basis of their own past. In this
case, the mask candidate matrix will have n rows
and one column. The mask candidate vector con-
tains �1 elements where the mask has potential
inputs, a +1 where the mask has its output (al-
ways at the bottom of the vector), and it contains
0 elements to denote forbidden connections.

In order to decide the depth of the mask, the
autocorrelation function is used. The mask should
be made as deep as is necessary to capture the sig-
ni�cant autocorrelation coe�cients.

WATER DEMAND PREDICTION

As a case study, FIR techniques have been ap-
plied to the modeling and forecasting of the se-
ries of daily water demand in an important section
of Barcelona. The data contain daily water de-
mand of roughly two years. The reason for the
choice is the availability of two other models devel-
oped previously, which will be useful for compari-
son [Quevedo 88], [Gri~n�o 92]. A plot of the series
is shown in Figure 1. The process is approximately
stationary and its variance is roughly constant, as
can be seen in the �gure. It is a quasi{stationary
process with weekly and seasonal quasi{periodic
characteristics. A seven{day cycle can be observed
on examination of the series. During the weekends,
less water is being used than during week days. In
addition, it can be noticed that the water demand
drops during the month of August as a consequence
of the summer holiday period. Shorter drop peri-
ods can also be observed during the Easter week
and other public holidays.
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Figure 1: Daily water demand time series January
1985 - November 1986

Figure 2 depicts the autocorrelation function. It
clearly shows the weekly cycle. It is quite evident



that the water demand on any given day is strongly
correlated with the water demand seven days ear-
lier.
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Figure 2: Autocorrelation function of daily demand
series

SAPS{II, our implementation of the FIR
methodology, was used as a qualitative simulator.
SAPS{II is a toolbox of Matlab. The data were di-
vided into two di�erent sets: 570 days (from Jan-
uary 1985 to 24 July 1986) for the training, and
128 days (from 25 July to 29 November 1986) for
the test.

The steps for the qualitative simulation were the
following:

� Fuzzi�cation. The quantitative data were re-
coded into three classes each. The series does
not require any data preprocessing before the
modeling stage.

� Qualitative Modeling. The autocorrelation
function (Figure 2) shows the signi�cance of
the periods 7, 14, 21. A mask candidate vec-
tor of depth 15 was proposed to SAPS{II:

0
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u1

t� 14�t �1
t� 13�t �1
� � � �1
t� 7�t �1
� � � �1
t� 2�t �1
t� �t �1
t +1

1
CCCCCCCCCCA

(4)

The following optimal mask was found by
SAPS{II:
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u1

t � 14�t �1
t � 13�t 0
� � � 0
t � 7�t �2
� � � 0
t � 2�t 0
t � �t �3
t +1

1
CCCCCCCCCCA

(5)

The optimal mask shows the 7{day weekly de-
pendency. The mask found by SAPS{II is
perfectly reasonable. Clearly, the last day's
demand should be taken into consideration,
as well as the demand of one and two weeks
back. This is precisely what SAPS{II recom-
mended. This is consistent with the structure
used by the ARIMA model of this time series
[Quevedo 88].

� Qualitative Simulation. Figure 3 shows the
forecasting obtained from this qualitative
model. The dashed line represents the pre-
dicted values, and the solid line shows the real
values. The look{ahead period was one day,
i.e., FIR was asked to predict todays water de-
mand on the basis of the measurements taken
yesterday, one week back, and two weeks back.
None of the predictions ever relied on previ-
ously predicted data. This is exactly what also
both of the previous models did. The experi-
mental design was driven by the requirements
of the city government who were not interested
in longer{range predictions. FIR has been able
to predict the behavior of the time series quite
well. It learned the 7{day cycle, and it was
able to predict also the slower frequency char-
acteristics reasonably well. The larger errors
during the month of August are caused by
data deprivation. There is clearly a lack of
relevant data in the experience data base, i.e.,
the data that were used for training the model.
Other methodologies used preprocessing or in-
tervention analysis to take care of situations,
where known external events cause e�ects on
the values of the series. No such techniques
have yet been used in the FIRmodel, although
they may prove useful in the future. The re-
sults are, nevertheless, satisfactory in that the
errors are largely redressed in a few days, i.e.
the model adapts to the new situation quickly.
This is true both for sudden drops and for sud-
den increases in the water consumption.
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Figure 3: Water Demand FIR prediction from 25
July to 29 November 1986

COMPARISON OF FIR WITH OTHER

TECHNIQUES

The same water demand time series had previ-
ously been studied using two di�erent methodolo-
gies, Neural Networks [Gri~n�o 92] and Box{Jenkins
[Quevedo 88].

For the application of the Box{Jenkins method
[Quevedo 88], the water demand series was desea-
sonalized by di�erencing at lag 7, i.e., by using:

dy(t) = y(t) � y(t � 7) (6)

as input to the ARIMA model.

SAPS{II, on the other hand found a qualitative
model in a totally automated fashion. The model
has three inputs and one output. The optimal
mask suggests the most signi�cant lags. The lags
are the same as the signi�cant coe�cients in the
�tted ARIMA(7,7,7) model [Quevedo 88].

[Gri~n�o 92] suggested a neural network with 15
inputs nodes, 20 hidden nodes, and 1 output node.
Figure 4 shows the prediction of this model.

The mean percentage error obtained with the
ARIMA model, the neural network model, and
the FIR model were 4:5%, 4:2%, and 4:6%, re-
spectively. It is important to remark that, in
the ARIMA model, intervention analysis was per-
formed, and the ARIMA model was augmented
by adding deterministic components to account for
seasonal variations. This required a much more te-
dious analysis of the series. In the neural network
model, the number of layers and the number of
neurons per layer had to be chosen very carefully,
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Figure 4: Water Demand NN prediction from 25
July to 29 November 1986

and the training of the neural network was a rather
slow process.

The authors believe that the results obtained
with SAPS{II, with no data preprocessing at all
and with no manual intervention of the designer,
show an excellent potential of this methodology for
the application of time{series predictions.

CONCLUSIONS

A �rst attempt at assessing the potential of FIR for
time{series forecasting has been presented. The re-
sults obtained for thegiven case study are very en-
couraging in that the forecasting redresses errors
quickly, and the prediction error obtained is com-
parable to those of ARIMA modeling and neural
networks. An asset of SAPS{II, as compared with
the other two methodologies, is that it generates
the model quickly and in a completely automated
fashion.

At this stage of the research, two main conclu-
sions can be drawn that would generalize to the
applicability of FIR to predict other time series of
quasi{stationary processes:

1. SAPS will e�ciently and e�ectively detect the
signi�cant lags in the series that lead to an
optimal mask.

2. The FIR model of a time series is mostly an
autoregressive model, so that the errors are
assumed to be uncorrelated. Therefore it will
work well on series that correspond to de-
terministic, or autoregressive stochastic pro-
cesses.

Other series corresponding to largely stochastic



processes where the errors are correlated are mod-
eled correctly inasmuch as correlation of the errors
can be captured with a �nite number of autoregres-
sive terms. It is important to remark that this is
very often the case in time{series analyses. How-
ever, a further step in the research is underway
in order to endow SAPS with capabilities to treat
stochastic series where the errors are signi�cantly
correlated.
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