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ABSTRACT

This paper deals with two of the main tasks of Fault
Monitoring Systems (FMS): fault detection and fault
identification. During fault detection, the FMS should
recognize that the plant behavior is abnormal, and
therefore, that the plant is not working properly. Dur-
ing fault identification, the FMS should conclude which
type of failure has occurred. The first goal of this work
is to consolidate a new fault detection technique, called
enveloping, that was developed in the context of the
Fuzzy Inductive Reasoning Fault Monitoring System
(FIRFMS). The second and primary goal of this paper
is to introduce the model acceptability measure as a tool
to enhance and make more robust the fault identifica-
tion process in the context of FIRFMS. The envelop-
ing technique and the model acceptability measure are
applied to an electric circuit model previously used for
such purpose in the literature. It is shown that the new
methods outperform the ones previously advocated in
FIRFMS for that purposel.

Keywords: Fuzzy Systems, Inductive Reasoning,
Fault Monitoring Systems.

INTRODUCTION

There has been a growing demand for fault monitor-
ing systems (FMS) in recent years due to the increased
complexity of modern engineering systems that are be-
ing governed by ever more complex and sophisticated
control architectures. The increase in complexity en-
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tails an increase in the number of possible faults and
the frequency of occurrence of these faults. In conse-
quence, the demanded functionality of FMS have also
grown over time. At present, a decent FMS needs to be
able to at least detect, identify, and explain the differ-
ent faults that may occur in the system through time.

There exists an intensive research activity in this
area that includes quantitative as well as qualitative ap-
proaches. Quantitative approaches are primarily based
on statistical techniques, first order logic, control the-
ory, mathematical modeling, and computer simulation
[Pau, 1981; Basseville and Nikiforov, 1993; Patton,
1989; Kumamaru et al., 1984]. The main drawback
of quantitative techniques is that they operate on a
quantitative and precisely formulated plant model that
is not always available. Also, human plant operators
usually rely on heuristic knowledge that is easy to be
captured by means of qualitative methodologies. There
is a large amount of research done in the area of qualita-
tive FMS, primarily making use of expert systems and
neural networks [Boullart et al., 1992; Crespo, 1993;
Kandel, 1992; Miller et al., 1990].

In this paper, the qualitative Fuzzy Inductive Rea-
soning (FIR) methodology has been chosen in order to
introduce new approaches for the detection and iden-
tification of system faults. FIR was first used as a
FMS methodology by [Albornoz, 1996]. Since then,
the detection and identification phases have been en-
hanced, as will be shown in the present paper. In this
section, a brief introduction of the FIR methodology
follows. Also, a schematic explanation of the detec-
tion and identification processes as they had been in-
troduced by Albornoz is provided.
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Figure 1: FIR Fault Detection Process

The new enveloping technique as well as the accept-
ability measure, that allow to reduce the time to failure
detection and to increase the FMS robustness, are in-
troduced in subsequent sections. Finally, an example
of an electric circuit is presented to show the feasibility
of the new approach.

Fuzzy Inductive Reasoning

The Fuzzy Inductive Reasoning methodology emerged
from the General Systems Problem Solving (GSPS)
methodology developed by Klir [Klir, 1985] and is com-
posed of four main processes, namely: fuzzification,
qualitative model identification, fuzzy forecasting, and
defuzzification.

In the FIR fuzzification process, quantitative vari-
ables are fuzzified (discretized) into a fuzzy triple, con-
sisting of a class, a membership, and a side value. The
side function gives information about the position of
the quantitative value with respect to the maximum
of the membership function (left, middle, right) of the
chosen class. It is important to note that the same in-
formation is contained in the qualitative triple as in the
original quantitative value, hence no information is lost
in the fuzzification process.

FIR is fed with data measured from the system under
study, converted to fuzzy information by means of the
previously described fuzzification function. The quali-
tative model identification process of the FIR method-
ology is responsible of finding spatial and temporal
causal relations between variables and, therefore, of
obtaining the best qualitative model that represents
the system. A FIR model is composed by a so-called
mask and the behavior matriz. The mask represents the

structure of the model, whereas the behavior matrix is
the associated “rule base.”

The qualitative model identification process evalu-
ates the possible masks and concludes which of them
offers the highest quality from the point of view of an
entropy reduction measure.

Once the best mask has been identified, it can be ap-
plied to the qualitative data obtained from the system
resulting in a particular rule base (behavior matrix).
Once the rule base and the mask are available, the sys-
tem’s prediction can take place using the FIR inference
engine. This process is called fuzzy forecasting. The
FIR inference engine is a specialization of the k-nearest
neighbor rule, commonly used in the pattern recogni-
tion field. This technique computes a distance measure
between the input pattern, for which the output predic-
tion should be obtained, and all patterns stored in the
behavior matrix that match (with regard to the class
value) the input pattern. The predicted output is then
computed as a weighted mean of the outputs associ-
ated with the k nearest neighbors, i.e., those neighbors
that exhibit the smallest distance measure in the input
space.

Defuzzification is the inverse process of fuzzification.
It allows to convert the qualitative predicted output
(a qualitative triple) into a quantitative variable that
can then be used as input to an external quantitative
model. For a deeper insight of the FIR methodology
cf. [Cellier et al., 1996].

Fault Detection

The fault detection process in the context of the FIR
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Figure 2: FIR Fault Identification Process

methodology is described in figure 1. In figure 1, the
dark boxes represent FIR processes, whereas the white
boxes constitute the fault detection procedure. The
data measured from the system is converted to quali-
tative triples (class, membership, side) by means of the
FIR fuzzification process. The fuzzy forecasting pro-
cess predicts the next output value, also a qualitative
triple, from the qualitative data using the model (mask)
that represents the current behavior of the system. The
detection procedure operates as follows:

e The class of the predicted output value is com-
pared with the class of the real output value. The
comparison is done by subtracting the class of the
real value from that of the predicted value. The
result of this subtraction is called instantaneous
error.

o The instantaneous errors are stored in a matrix to
which an error filter is applied. The error filter
accumulates instantaneous errors over a movable
time window with a predefined size. This window
is shifted over the error matrix, and the instanta-
neous errors found within that time window are
summed up to form the accumulated error.

o A threshold is specified by the modeler. When the
accumulated error is greater than the threshold,
an alarm is triggered, and it is then necessary to
identify the fault that has occurred.

Fault Identification

Once a fault has been detected, it is necessary to iden-
tify it. This is accomplished in the FIR methodology
by means of the fault identification process presented
in figure 2. The fault identification procedure operates
as follows:

e Once the alarm has been triggered because an ab-
normal behavior has been detected, a second time
window is selected. The size of this time window
defines the number of prediction values that will
be used in order to identify the fault that has been
produced. Therefore, the time window guides the
prediction during the identification process. A nar-
row time window is desired because it implies a fast
model identification.

e For each fault model stored in the fault model li-
brary, a prediction of future system behavior is
made using the FIR fuzzy forecasting process for
the duration indicated by the chosen time window.

e The prediction errors produced during each of the
forecasting processes are accumulated. Therefore,
each fault model stored in the library has associ-
ated a cumulative error. The model with the low-
est cumulative error is selected as the one that best
represents the new behavior of the system and,
consequently, the detected fault has been identi-
fied.

The FMS approach described above was developed by
[Albornoz, 96]. The enveloping technique and its as-
sociated acceptability measure offer an improvement
of the fault detection and identification processes de-
scribed above. In the next section, these two new con-
cepts are introduced and explained in more detail.

ENVELOPING

The idea of using the enveloping concept in fault de-
tection emerged from the fact that, in the previously
used approach [Albornoz, 96], only a part of the avail-
able information, namely that contained in the class
values, was being used, whereas the membership and
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Figure 3: Example of FIR fault detection using the enveloping method (Time window=15)

side values were ignored. The decision that a fault has
occurred was exclusively based on the class values. The
enveloping concept is based on the §-nearest neighbors
(quantitative values) that are computed inside the FIR,
inference machine by means of the k-nearest neighbor
rule. As has been explained in the FIR section, a dis-
tance measure is computed between the input pattern,
for which the output prediction should be obtained, and
all patterns stored in the behavior matrix that match
that input pattern. The five patterns that exhibit the
shortest distance are selected as the 5-nearest neigh-
bors.

As shown in figure 3, the envelope is composed of
an upper bound (maximum value) and a lower bound
(minimum value) that delimit the area in which the
real output signal is expected to lie. The envelope
is computed by using the five nearest neighbors sep-
arately in predictions, i.e., without averaging. If the
observed (real) value leaves the bounds specified by the
envelope, an instantaneous error is recorded, meaning
that the model used in the prediction no longer repre-
sents the system at that specific point in time. As in
the fault detection procedure described in the previous
section, the instantaneous errors recorded inside a pre-
determined time window are accumulated. When the
cumulative error surpasses the specified threshold, an
alarm is triggered, and it is then necessary to identify
the fault that has occurred.

A narrow enveloping interval implies that the five
neighbors are close to each other, meaning that the in-
formation available of the behavior of the system at
that point in time is rich. In contrast, a wide envelop-
ing interval means that there is not a lot of information

available about the system at that point in time, and
therefore, the nearest neighbors are far away from each
other. The maximum and minimum values that de-
termine the bounds of the envelope can be adjusted
by means of an additional fudge factor, n, that rep-
resents the model prediction error. This factor is ob-
tained by using the model in the prediction of known
values that have been used in the model identification
process. The fudge factor is added to the upper bound
and subtracted from the lower bound of the envelope
as shown in figure 3. The n value provides an idea of
the goodness of the model relative to the goodness of
the data available to identify it. The goodness of the
model refers to the prediction error, whereas the good-
ness of the data refers to the richness of the data avail-
able for identification. The fudge factor adds flexibility
to the enveloping concept by incorporating known in-
formation related to the quality of the data observed
from the system. It is important to keep in mind that
the FIR methodology is driven by the system’s behav-
ior rather than relying on structural knowledge, and
therefore, the amount and richness of the data avail-
able from the system are crucial in order to assure the
identification of an accurate and reliable model that
represents it.

Figure 3 presents an example of FIR fault detection
using the enveloping concept with a time window of
15 prediction points. The upper and lower dotted lines
represent the upper and lower bounds of the envelope,
respectively, whereas the continuous line is the real out-
put signal. In the bottom part of the figure, the in-
stantaneous errors are accumulated. As can be seen,
the real value leaves the envelope for the first time at
point number 6 where the observed value exceeds the



upper bound of the envelope, causing an instantaneous
error. The same occurs at points number 7 and 11.
The threshold of accumulated errors specified in this
example was 3, and therefore, the alarm is triggered
in point number 11 when the third instantaneous error
arrives. The next step is the identification of the fault
that occurred and has been detected.

ACCEPTABILITY MEASURE

The identification process can have additional prob-
lems that have not been mentioned before, e.g., when
the produced fault is not a foreseen fault and, there-
fore, is not available in the fault library, or when differ-
ent faults have common traits that make it difficult to
distinguish between them. The acceptability measure
helps to deal with such problems. The acceptability
measure is a metric that quantifies the relative suitabil-
ity of the candidate models, i.e., the models contained
in the fault library. This metric allows to determine
when an observed fault is not available in the fault
library, and it indicates to the user if multiple fault
models can reasonably explain an observed fault.

It is possible to specify an acceptability measure of
the i;, model by means of the following formula:

I.
C;=1.0—I—“‘—

Gmax

i.e., the acceptability measure of the i;; models, C;
can be computed by use of the sum of instantaneous er-
rors (the so-called alarm indicators) for that particular
model, I,,, and the maximum number of alarm indica-
tors possible (depends on the size of the time window),
IL,... C;is a confidence measure, i.e., a real-valued
number in the range [0, 1], where larger values indicate
increased confidence.

Unfortunately, the proposed formula is not good
enough, because it could happen that there are two
almost perfect models, i.e., two separate models with
Ci and C; almost at 1.0. In the acceptability mea-
sure, it is important to take the dispersion among the
C; values into account. This can be accomplished by
computing a relative confidence:

C;

Crel‘- = —=
Zz:l Ck

Now, if there is only one model with a high value of
Ci, Cres, will still be very high, but if there are other

models with high C; values as well, C,¢ ; will be much
smaller.

Unfortunately, even this formula is not yet good
enough. It could happen that there is no C; with a
large value, only one with a small value, while all oth-
ers are zero. In this case, Cpe; will be undeservedly
high. Therefore, the following final formula is proposed
as the acceptability measure that captures the quality
of the model selection:

Qi = Ci * Crel,-

The usefulness of the acceptability measure and the
enveloping method is presented in the next section by
means of their application to an electric circuit.

ELECTRIC CIRCUIT

The application that is presented in this section is an
electric circuit that contains three binary switches that
allow to define eight different structures depending on
the switch positions. It can be considered that in a
natural working regime all the switches are closed, and
this structure is represented with the binary relation
000 (SW3 =0, SWy = 0 and SW; = 0). The electric
circuit is described in figure 4.
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Figure 4: Electric circuit

The input signal of the circuit, Uy, produces a binary
aleatory signal with values in the range [0, 0.001] volts.
The output of the circuit is the voltage measured across
the resistance R4. The quantitative model of the circuit
has been built using Dymola [Elmqvist, 1995], and the
continuous system simulation language ACSL is used
for the simulation of the model.

The main goal of this application is to show the via-
bility of the FIRFMS approach to detecting and identi-
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fying structural changes in the circuit, i.e., the qualita-
tive circuit state as specified by the status of the three
switches. In order to achieve this goal, the first step
is to obtain the FIR qualitative models that constitute
the fault library. In this example, four different struc-
tures have been selected: 000, 001, 010 and 011. For
each of them, the system is simulated over 0.4 seconds
using ACSL with a sampling time of 0.0002 seconds.
The first 1000 data points are used by FIR to iden-
tify the model and from those, the last 100 are used
to verify the model and compute the fudge factor n,
as outlined in the previous section. The mean square
error in percentage is used to compute n, as described
in equation 1.

MSE = Ely(t) 3D 100% (1)

yvar

where yyar denotes the variance of y(t).

In order to illustrate this process, the prediction errors
obtained for circuits 000 and 011 are shown in figures
5 and 6, respectively.

The upper plots of figures 5 and 6 show the input
signal (dashed line), as well as the real (solid line) and
predicted (dotted line) output signals. In both figures,
the real and predicted output signals are indistinguish-
able, due to the high accuracy of the prediction. This
is the reason why the prediction error (real minus pre-
dicted value) is shown in the bottom plots of the two
figures. The MSE errors computed by means of equa-
tion 1 are 1.2 % 10~5%, 1.1 % 1075%, 6.3 * 10~"%, and
3.4 % 10~8% for circuits 000, 001, 010 and 011, respec-
tively. These MSE errors constitute the n component
of the enveloping procedure. The FIR models obtained
for the four circuits were also validated with data not
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Figure 7: FIRFMS results when applied to the electric circuit using the enveloping technique together with the

acceptability measure (TW=10 samples)

used in the identification process obtaining MSE errors
almost as small as those previously shown. The FIR
models (masks and behavior matrices) of the four cir-
cuits are stored in the fault model library and will be
used during detection of structural changes occurring
in the system, and during identification of the resulting
new structures.

The experiment described in figure 7 is used to show
the performance of the enveloping technique and model
acceptability measure and to compare them with the
detection and identification processes that were previ-
ously used [Albornoz, 96]. The top plot of this figure
describes the structure of the system that corresponds
to each one of the four models. Model 0 is equivalent
to the circuit that has all three switches set to zero.
Model 1 has SW3=0, SW2=0, and SW1=1. Model 2
is characterized by SW3=0, SW2=1, and SW1=0. Fi-
nally, model 3 corresponds to SW3=0, SW2=1, and
SW1=1.

The top plot of figure 7 defines the experiment. Data
observed while the system is operating in the four
modes characterized by models 0, 1, 2, and 3 are sam-
pled and stored. FIRFMS has to detect each structural
change of the circuit and to identify the model that cor-
responds to the new structure as accurately as possible.

In the middle plot of figure 7, the FIRFMS results
are presented. FIRFMS detects that the first structure
corresponds to model 0. Shortly after sample 500, it de-
tects a change of the structure of the system and iden-
tifies model 1 as the best model to represent the new

structure. FIRFMS detects a new structural change
just after sample 1000, identifying model 2 as the best
model representing the system during the subsequent
period. Finally, at sample 1500, FIRFMS detects the
last change on the system’s structure, and identifies
model 3 as the one that best captures the behavior of
the circuit in the final period of the simulation. As
shown in the plot, FIRFMS made a mistake in the pe-
riod associated to model 3. It detected a new structural
change and identified model 2 as the new structure,
when, in reality, no structural change in the circuit took
place. This is due to the fact that during the last sim-
ulation segment, several of the models can be used to
explain the behavior of the system.

The bottom plot of figure 7 shows the acceptability
measure of the winning model. Each of the four models
has its own acceptability measure, but only the largest
of them (resulting in the selected model of the plot
above) is shown. Whereas the acceptability measure
varies a lot, on average, it assumes a value of some-
where around 0.6 during the first three simulation seg-
ments. During the final segment, the average accept-
ability measure is lower, somewhere around 0.4. This
is because, during that segment, several of the models
can reasonably explain the observed behavior. Yet, ex-
cept for one mistake, FIRFMS picked consistently the
correct model.

Notice that often the acceptability measure assumes
a value of one. This means that only one model (the
one identified by FIR) is able to predict correctly all
the data points of the associated time window, whereas
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the other three models are not able to predict any of
the data points. Usually, the acceptability measure as-
sumes values between 0.25 and 1, corresponding to the
cases where some models predict better than others the
specific time window, although almost all of them are
able to predict a portion of the data points that com-
pose the associated time window. In these cases, FIR
identifies the model with the smallest number of predic-
tion errors. Values of the acceptability measure lower
than 0.25 mean that, in general, all the models have
problems to predict the time window. Therefore, it
would be necessary to determine a threshold in the ac-
ceptability measure that indicates that the current be-
havior cannot reasonably be represented by any model
contained in the model library. In our example, only
some points corresponding to the last segment of the
simulation exhibit this kind of low acceptability mea-
sure values, and this is due to the fact that the behav-
ior of model 3 of the system is the one most difficult to
identify, as will be shown later.

One final remark relating to the acceptability mea-
sure: whenever the real output signal is in steady-state,
the acceptability measure assumes small values. This is
due to the fact that all four circuits exhibit similar be-
havior in the vicinity of steady-state, because the gain
has been normalized to one. The number of prediction
errors obtained in this zone are similarly small for all
models, and consequently, the acceptability measure is
distributed among all of the models. This kind of sit-
uations could cause mistakes in the detection process
if steady-state operation were allowed to continue over
an extended period of time.

The top plot of figure 8 shows the results obtained
when the detection and identification procedures of the

Albornoz approach are used in the same experiment.
As can be seen in the figure, the fault monitoring sys-
tem is able to detect and identify correctly the first two
models, though it needs more time than the new ap-
proach to detect the switch from model 0 to model 1.
Yet, the technique is not capable to correctly identify
models 2 and 3. During the third simulation period, the
FMS makes two mistakes, whereas during the fourth
and final segment (corresponding to model 3), the FMS
detects a large number of structural changes in the cir-
cuit and identifies several models for different periods,
making it impossible to know what is happening in the
system. The time window chosen in this experiment
was of 10 samples, and the threshold specified was of 2
cumulative errors.

The results can be somewhat improved by increasing
the time window to 50 samples. The bottom plot of
figure 8 shows these results. In this case, the first three
models are identified reliably, but the FMS is still not
able to identify correctly model 3. Moreover, due to
the fact that the time window has been increased, the
detection process slows down, and the FMS needs yet
more time to recognize that a structural change has
occurred in the system.

CONCLUSIONS

In this paper two new concepts, the enveloping tech-
nique and the model acceptability measure, are intro-
duced in the context of the Fuzzy Inductive Reasoning
Fault Monitoring System. These concepts allow to im-
prove the fault detection and identification processes
of FIRFMS significantly by reducing the time needed
to detect a failure and by increasing the robustness of



the FMS. The new FIRFMS is able to identify faults
that have occurred in the system or its new structure
in a more reliably fashion than previously proposed ap-
proaches. An example of an electric circuit is presented
to show the feasibility of the new concepts and their

performance in comparison with the previously used
FIRFMS.
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