CHAPTER 3

General System Problem Solving
Paradigm for Qualitative Modeling

Francgois E. Cellier

Abstract

In this chapter qualitative modeling is applied to inductively reason about
the behavior of physical systems. Inductive reasoning does not dwell on
the principles of “naive physics” as the commonsense reasoning does, but
rather implements a sort of pattern-recognition mechanism. The basic
differences between inductitive reasoning and commonsense reasoning are
explained. It is shown under which conditions either of the two ap-
proaches may be more successful than the other.

1. Introduction

What is qualitative simulation as opposed to quantitative simulation? Let me
begin by putting some commonly quoted myths about qualitative simulation
to the sword.

Qualitative simulation is cheaper than quantitative simulation. If quanti-
tative simulation, e.g. in a real-time situation, cannot produce the results
fast enough, qualitative simulation may be the answer to the problem.

Algorithms used for qualitative simulation are by no means faster than those
used in quantitative simulation. In qualitative simulation, there are generally
plenty of alternative branches to be explored, whereas quantitative simulation
usually produces one individual trajectory. Thus, quantitative simulation
is normally faster than qualitative simulation if applicable. Thus, if your
quantitative real-time simulation executes too slowly, do not go to qualita-
tive simulation; go to a nearby computer store and buy yourself a faster
computer.

Qualitative simulation requires a less profound understanding of the
mechanisms that we wish to simulate. Therefore, if we don’t fully under-
stand the mechanisms that we wish to simulate, quantitative simulation
is out of the question, whereas qualitative simulation may still work.
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Wrong again! Qualitative simulation has as stringent constraints as quan-
titative simulation; they are just a little different. It is a convenient user
interface that relieves the user from some of the intricacies of detailed under-
standing of the simulation mechanisms and not the modeling methodology
per se. Today’s languages for quantitative simulation are very user friendly,
more so than today’s languages for qualitative simulation. This is due to the
fact that quantitative simulation languages have been around for much longer.
Thus, if you do not understand what you are doing, do not go to qualitative
simulation; go to an expert who does.

There are today at least three different methodologies around that are
all advocated under the name “qualitative modeling” and/or “qualitative
simulation.” One of them uses the so-called “naive physics™ approach. Its
original proponents were mostly found among the social sciences, and it is in
those circles where the second of the above propositions is frequently heard
(e.g., [1]). Today, this school of thought is mostly found among the artificial
intelligence experts (e.g., [4, 5, 7]). Since none of those above is represented
in this book directly, I shall briefly introduce the formulation of Kuipers [7],
which seems the most advanced among these types of qualitative simulation
mechanisms. ' o

The second approach is usually referred to as commonsense reasoning (this
term is sometimes also used by the “naive physicists”) and originates from
stochastic signal processing. Whereas the former approach dwells on in-
complete knowledge about system parameters, this approach dwells on the
signals (trajectories) produced by these models and takes into consideration
the uncertainties in the obtained data. Many of the more recent results in this
arena are derived from fuzzy logic. The most prominent advocate for these
types of qualitative models is Zadeh [13—16]. Since these results are being
discussed in the chapter by George Klir, I shall refrain from discussing these
results within my chapter as well.

The third and last approach is called inductive reasoning and originates from
general system theory. One of its foremost proponents is Klir [6]. It is this
approach that will be explained in most detail in this chapter.

2. The Quantitative Approach
We are going to analyze a simple linear continuous-time single-input/single-
output system of the type '
X=A'x+bu
y=¢'x+d-u,

where the system matrices A, b, ¢/, and d are represented in controller-
canonical form, namely,
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0 1 0 0
X = 0 0 1{'x+|0]u
—c —b —a 1

y=0 0 0):x+(0)u

where a, b, and ¢ are three unknown but positive parameters.

In quantitative simulation (and in control theory) this is called a state-space
representation of the system. Most quantitative simulation languages (but not
all) will require these equations to be written individually, that is, in the
form:

X1 =Xy,
Xy = X3,
Xy3=—cCc'x; —bx,—ax;+u,
Yy =X,

which can be represented through the block diagram shown in Figure 3.1. We
executed several quantitative simulation runs with different values for the
three parameters. The results of these simulations are presented in Figure 3.2.
It becomes evident that this system exhibits at least four qualitatively different
modes of operation: exponential decay, damped oscillation, undamped oscil-
lation, and excited oscillation.

We can look at the system analytically. The characteristic polynomial of
this system is

det(A-I" —A)=1>+a- A2+ b -1+ c=00.

The roots of the characteristic polynomial are the eigenmodi of the system.
We can analyze the stability of the system, for example, by setting up a
Routh—Hurwitz scheme:

[ X2=%3 I X1=X2.l Y=x4

N

FiGure 3.1. Block diagram for quantitative simulation.
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If all the elements in the first column of the Routh—Hurwitz scheme are
positive, the system is stable, that is, all three roots are in the left half
A-plane. Otherwise, the number of sign changes in the first column of the
Routh—Hurwitz scheme determines the number of unstable poles, that is, the
poles in the right half A1-plane. It can be seen that, if ¢ > a- b, all three poles
are in the left half plane. They can all be located on the negative real axis
(exponential decay), or one can be located on the negative real axis while the
other two form a conjugate complex pole pair (damped oscillation). If c = a- b,
one pole is still on the negative real axis, while the two dominant poles are
now on the imaginary axis itself (undamped oscillation). If ¢ < a- b, one pole
is still on the negative real axis, while the other two poles form a conjugate
complex pole pair in the right half plane (excited oscillation). These are indeed
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all possible cases (for positive coefficients 4, b, and ¢), as the following analysis
shows. .
Consider the case of the excited oscillation with

A’l = —X,
2’2 =y+j.zp
Ay=y—jz

In this case, we can write the characteristic polynomial as_
A+x)@A—y—j2(h-y+j2=00,
which can be rewritten as
A2 4 (x = 2047 + (¥* + 22 — 2x9)4 + x(»* + 2%) = 0.0,
which has positive coefficients iff
a=x—2y>00,
b= y?+z2 — 2xy > 0.0,
¢ =x(y*+2%) > 00,

whereby x, y, and z are all positive. The third condition is obviously always
satisfied. The first condition can be rewritten as

x> 2y
or
2xy > 4y%,
which we can plug into the second condition:
2+ 22 > 2xy > 4y?%;

that is, in the borderline case

Re

F1GURE 3.3. Domain of possible pole loca-
tions. tgle) =/%
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and therefore,

=3y,

This is shown in Figure 3.3, in which the possible pole locations for positive
coefficients a, b, and ¢ are shredded. Therefore, it was verified that this system
does not exhibit any other modes of operation than the four modes shown in
Figure 3.2.

3. The Naive Physics Approach

The naive physics approach has been designed to deal with exactly the type
of situation that we are faced with here: a system that is structurally completely
defined, but which contains a set of parameters (such as our parameters a, b,
and c), the values of which are not totally determined.

Numerical mathematicians and quantitative simulationists always express
their equations such that they can integrate signals rather than differentiate
them (since the numerical properties of integration are much more benign
than those of differentiation, the naive physicists traditionally prefer the
differentiation operator, probably because naive physics evolved from the
analytical physics, and not from the numerical physics).

We can easily transform our set of equations into the desired form, by
solving for the x; instead of the x; variables

b a 1 1

X, = —Exl —Exz —Zx3 + Eu,
Xy = X1,
X3 = X3,
| V=X

which can be represented through the block diagram shown in Figure 3.4.
Kuipers [7] decomposes these equations into a set of primitive equations, for
example, of the form

Uy —

FiGURE 3.4. Block diagram using the differentiation operator.
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H, = ——j,
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H, = ——x%,,
C
1
H3 - —_3&39
H 1
=—u’
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. HS = Hl + Hz,
H6 = H3 + H4:
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X3 z)},
X3 = )52.

At this point, we can eliminate the unknown parameters by replacing the exact
first four equations by their qualitative counterparts

Hy = M™()),
H, = M™(x,),
H; = M7™(x3),
H, = M"(u),

where M~ stands for any monotonically decreasing function of the input
argument and M~ stands for any monotonically increasing function of the
input argument. Using predicate logic, the nine equations can finally be
represented as

M~ (x5, Hy),

M~ (x5, H,),

M~ (%5, Hy),
M*(u, Hy),
ADD(H, ,H,,H;),
ADD(H,,H,, Hy),
ADD(Hs, Hg, y),
DERIV(y,x,),
DERIV(x,,x;),
DERIV(x;,X5),
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FiGuRre 3.5. Kuiper’s diagram.

which are ten equations (Which Kuipers calls “constraints”) in eleven variables
(which Kuipers calls “parameters”). Kuipers [7] also uses his own form of
block diagram as depicted in Figure 3.5.

4. The Constraint Propagation Approach

At this point, we are ready to perform a qualitative simulation. How this works
is explained in detail in [7]. The system starts off from the initial condition
(assuming that the initial condition is known)} and performs one simulation
step by considering all possible state transitions from the initial condition.
Many (hopefully most) of these transitions will be in contradiction with one
or several of the equations (constraints) and can therefore be rejected. This
process of pruning is what is commonly referred to as “constraint propaga-
tion.” Each state that cannot be rejected will be considered a new initial point
for the next step of the simulation to be performed. If several states are possible
as the outcome of one simulation step, this is considered a bifurcation point.
Each branch will lead to one simulation thereafter. The simulation terminates
under any of the following conditions:

1. The next system state is exactly the same as the current system state. In this
case, the system has become quiescent.

2. The next system state is exactly the same as a previously found system state.
In this case, the system has become periodic.

3. During the next system state, a variable becomes infinite. In this case, the
system has become divergent.

Hopefully, there are not too many bifurcation points in the simulation since,
otherwise, not much can be said about the behavior of the system.
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Kuipers [7] proved that every type of behavior that is physically possible
will be found by his QSIM algorithm. However, it may happen that the
qualitative simulation suggests additional modes of operation that are not
physically possible. This means that, without even running the example, we
know for sure that QSIM will at least find four different modes of operation,
namely, those that were shown in Figure 3.2.

Unfortunately, this does not tell us very much. It is almost as stating that
tomorrow the weather will be the same as today, or it may change. The
problem with this “simple” example is that, although it is simple from a
mathematical point of view, it is not simple from a physical perspective. There
are tight feedback loops in this model that create a close interaction between
the various state variables, and therefore, relatively small changes in param-
eter values may lead to a qualitatively different pattern of overall system
performance.

The “naive physics” approach works particularly well for simple physical
phenomena, the basic functioning of which an untrained human observer can
easily understand in qualitative terms. Feedback loops make most problems
intractable for the untrained human observer and thereby defeat also the
“naive physics” type of qualitative simulator.

It is this strong correlation between the types of problems that humans can
analyze in qualitative terms and the types of problems that naive physics can
handle that made several of the advocates of this technique proclaim that
“naive physics is the way how humans go about qualitative problem solving.”
I personally doubt that this statement is correct and suggest that the similarity
between the two types of behaviors is more of an analogy than of a homomor-
phism. The cause of my skepticism will be explained right away.

I have a dog who loves to play ball. I kick the ball with the side of my foot
(I usually wear sandals, and a straight kick hurts my toes), and my dog runs
after the ball as fast as he can. I was able to observe the following phenomenon.
If T place my foot to the left of the ball, my dog will turn to the right to be
able to run after the ball as soon as I hit it. He somehow knows that the ball
will be kicked to the right. If I now change my strategy and place my foot to
the right of the ball, my dog immediately swings around to be ready to run
to the left. He obviously has some primitive understanding of the mechanics
involved in ball kicking. However, I assure you that I never let my dog
near my physics books, and thus, he had no opportunity to study Newton’s
laws—not even in their naive form.

I believe that my dog knows the rules of “naive physics” without knowledge
of the system structure, simply as a phenomenon of patiern recognition. The
human brain (and to some extent also the dog brain) is great at recognizing
patterns that have been experienced before in a similar form. Unfortunately,
our von Neumann computer architecture is very bad at reproducing this
capability. It takes massive parallel processing, for example, in the form of a
neural network to reproduce something faintly. similar to my dog’s (but not
yet my own) capability of pattern recognition.
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However, even if “naive physics” provides us only with an analog and
not with a homomorphism to the human problem-solving approach, the
technique works well when applied to the right problem. The type of problems
for which the “naive physics” approach works well are characterized by the
following properties:

1. The physical structure of the problem is well defined. Only some of the
parameter values are incompletely known.

2. The physical structure of the problem is rather simple.

3. Subsystems are loosely coupled.

4. There are few or no feedback loops involved, and if there are feedback loops
in the system, they do not dominate the system behavior.’

5. An Induction-Based Approach

This time, we want to start from a completely different premise. Before, it was
assumed that the structure of the system under study is known except for the
numerical values of some of its parameters. This time, we want to assume that
we know little to nothing about the structure of the system. The system is a
“black box.” All we have is a set of observations of inputs and outputs. The
question now is, Can we qualitatively forecast the behavior of this system for
other types on inputs for which we did not previously observe the system
behavior? While the former situation could be interpreted as a parameter
estimation problem, the latter presents itself as a structure identification
problem.

-While the goal of the previous type of qualitative simulation was to replicate
the way humans reason about physical systems of which they have a basic
qualitative understanding, the goal of the new type of qualitative modeling is
to learn the behavior of an unknown system from observation. Maybe, this
approach is closer to what my dog went through when he “learned” the basic
properties of ball kicking.

6. Quantitative Simulation for the Purpose of
Fact Gathering

Let us analyze the simple linear continuous-time single-input/multi-output
system

0 1 0 0
X = 0 0 1['x+(0]
-2 -3 —4 1
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which is one particular system in the class of systems that we discussed before
except for the fact that we now measure multiple outputs. The trick is that we
are going to use this structure exclusively to obtain trajectory behavior using
quantitative simulation, as if we were recording (measuring) the input/output
behavior of a physical black-box system. Thereafter, we shall immediately
forget all that we know about the system structure. From then on, we shall
work with the recorded trajectories exclusively and see whether we can create
a qualitative model that is able to predict the behavior of this unknown system
qualitatively for an arbitrary input sequence.

We shall discretize the time axis by adequately sampling the three-state
variables over the simulation domain. We shall then recode the continuous
variables into a set of distinct levels using the interval mapping technique; that
is, if the continuous variable is within a certain interval, it will be mapped into
a discrete value. If we use, for example, five levels for a particular variable, say,
a temperature reading, we can map the continuous domain of recorded
temperatures into the set of integers {1,2,3,4,5} that can be interpreted as
“yery cold,” “cold,” “moderate,” “hot,” and “very hot.” These are what Kuipers
[7] calls landmarks.

Selection of an adequate sampling rate and an appropriate set of landmarks
is crucial to the success of the endeavor, and we shall discuss how good values
for these quantities can be determined.

Thereafter, we shall discuss how we can use the recoded measurement data
to come up with a qualitative model with optimized forecasting power.

In order to retrieve as much information from the system as possible, we
decided to excite the system with a stochastic binary input signal; that is, the
input is either “high” or “low,” and the transitions between the two possible
states are chosen at random [2].

7. The General System Problem Solving (GSPS)
Framework

General System Problem Solving (GSPS) [6] is a methodological framework
arising from General Systems Theory that allows the user to define and
analyze types of systems problems. In this methodology, systems are defined
through a hierarchically arranged set of epistemological subsystems. Fore-
casting and reconstruction analysis capabilities are two examples of the capa-
bilities of the GSPS methodological tools. An on-line monitoring system can
be implemented in the GSPS framework by using its inductive inference
capability to imitate the human learning process.

SAPS-II [3] is software coded at the University of Arizona that implements
the basic concepts of the GSPS framework. SAPS-II has been implemented
as an application function library to the control systems design software
CTRL-C [9]. In terms of common artificial intelligence terminology, we can
say that SAPS-II employs CTRL-C as an artificial intelligence shell.
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GSPS or analysis through General Systems Theory starts by defining a
region in the universe where the system and the observer coexist and interact.
A system in this context can be interpreted as a set of relations between some
objects that belong to that region of the universe and in which the observer
is interested.

Therefore, the first step to problem solving, or analysis, is the definition of
the system: What is it that is of interest to us concerning the problem under
study? A set of variables to represent the system has to be chosen, and this set
is to be classified into input variables and output variables, which is a natural
classification of the variables: Input variables depend on the environment and
control the output variabies.

8. The Epistemological Hierarchy

The GSPS framework is a hierarchically arranged set of epistemological
subsystems. Starting at level zero, the amount of knowledge in the systems
increases as we climb up the epistemological ladder. The lower level sub-
systems are contained in the ones that are at higher epistemological levels.

At the lowest epistemological level, we find the source system, which rep-
resents the system as it is recognized by the observer. The amount of informa-
tion present at this level represents the basic description of the problem in
which the observer is interested: which variables are relevant to the problem,
what causal relationships are present among them (which are inputs and
which are outputs to the system), and which are the states these variables
can possibly assume along their time-history. The number of states, or
levels, that each variable can potentially assume is essentially problem depen-
dent. It should be kept as low as possible without unacceptable loss of
information. .

The next epistemological level in the hierarchy is represented by the data
system. It includes the source system and, additionally, the time-history of all
the variables of interest.

Yet one epistemological level higher, we find the behavior system, which
holds, besides the knowledge inherent to both, source and data systems, a set
of time-invariant relationships among the chosen variables for a given set of
initial or boundary conditions. Behavior systems can be considered basic cells
for yet higher epistemological levels, the so-called structure systems, which we
shall not, however, discuss in this treatise. .

The time-invariant relationships among the variables are transiation rules
mapping these variables into their common spaces. They can be used to
generate new states of the variables within the time span defined in the Data
Model, providing in this way an inductive inference capability in the method-
ology. Due to this characteristic, behavior systems are sometimes also referred
to as generative systems.
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9. The Concept of a Mask

A Data Model in the GSPS framework is an n,, X n,,, matrix, where n__ is
the number of recordings (data points) collected in the time span covered by
the Data Model, and n,,, is the number of variables present in the model. This
is a matrix representation of the time-history of the system, and the convention
is that time increases from the top to the bottom of the matrix.

A mask is a matrix representation of a translation rule for a given Data
Model; hence, it is a matrix representation of a Behavior Model of the system.
The dimensions of the mask are (d + 1) x n,,,, where d is the depth of the
mask representing the number of sampling time units covered by the mask.

The active elements of a mask are called sampling variables and represent
the variables that are to be considered in the translation rule associated with
the time instant they occur.

Generative masks include in their structure the notion of causality among
the variables. Elements of a generative mask are zero, negative, or positive,
meaning “neutral element,” “generating element,” and “generated element,”
respectively. For example, a generative mask like

v, Uy U3 Uy Us
t — 2At 0 0 —1 0 0
t—At (=2 0 0 -3 0
t 0 —4 0 0 +1

corresponds to the translation rule

vs(t) = flvs(t — 242), 0, (t — A1), v4(t — At), v,(1)),

where v;(7) is the state assumed by the variable v; at time t = 7. Within one
set of sampling variables, for example, the inputs, the numbering sequence is
immaterial. We chose to number them from the left to the right and from the
top to the bottom.

10. The Sampling Interval

Note that the Behavior Model above takes samples of the Data Model at
every Atth data point to predict the state of vs. Hence, At is the sampling
interval ¢, of the collected data set. There is not a precise way of determining
the most effective sampling interval to be used, but a good rule of thumb is
that the mask should cover the dynamics of the slowest mode in the model
[2]. In the case of the given example, the mask has depth 2, and the sampling
interval At should then be about half of the slowest time constant of the model.
In our case, the slowest time constant was found to be approximately 3 time
units. Accordingly, we select the sampling period to be 1.5 time units. Expe-
rimentation with different sampling periods verified this to be a good choice.
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Notice, however, that, as outlined in [2], selection of an appropriate sam-
pling rate is absolutely crucial to the success of our endeavor; thus, careful
experimentation with this parameter is indicated under all circumstances.

11. Converting Quantitative Data into Qualitative Data

In order to be able to reason qualitatively about the behavior of our system,
we need to convert the “measured” quantitative data (i.e., continuous variables)
into qualitative data (i.e., variables of an enumerated type). GSPS calls this
process the recoding of the measurement data. SAPS-II provides for various
algorithms to recode real variables into sets of integers.

Due to the type of the quantitative simulation experiment, we notice that
the control input % is already a binary variable and, therefore, does not require
any further recoding.

The three output variables y,, y,, and y,, however, are truly continuous
variables, and an appropriate selection of the recoding procedure will decide
over success or failure of our endeavor. The number of recoding levels to be
used for each variable has, intuitively, to be odd if we want to have a “normal”
range of operation and variations about it.

The choice of the appropriate number of levels (landmarks) is a somewhat
problematicissue. There is always a conflict between the demands of simplicity
for the purpose of a strong forecasting power, and an improved resolution for
the purpose of a strong expressiveness of the model. Recoding each variable
into one level only results in an infinitely “valid” model with no expressiveness
whatsoever. On the other hand, recoding each variable into a high number of
levels will result in a highly “expressive” model with little to no forecasting
power. We decided to code each of these variables into three levels: “low,”
“medium,” and “high.”

How should the interval boundaries be chosen? It seems intuitively most
appealing to request each “class” (range) to contain approximately the same
number of “members” (samples). This can best be achieved by sorting each
output variable separately (using the standard CTRL-C sort-function), there-
after split the resulting vector into three subvectors of equal size, and de-
termine appropriate elements for the from-matrix used in the recoding by
looking at the first and last elements of each subvector. A SAPS-II procedure
implementing this algorithm was presented in [12]. However, for our simple
demonstration problem, we got very good results with a much simpler algo-
rithm, namely, by subdividing the interval between the lowest ever recorded
value and the highest ever recorded value of each variable into three sub-
intervals of equal size. '

One last parameter still needs to be decided on, namely, the number of
- recordings that we need for our GSPS analysis. From classical statistical
techniques, we know that each “class” (i.e., each possible state) should contain
at least five “members” (ie., should be recorded at least five times) [8].



3. General System Problem Solving Paradigm for Qualitative Modeling 65

Therefore, if n,,. denotes the number of variables, and if n,., denotes the
number of levels assigned to the variable v, after recoding, we can write down
the following (optimistic) equation for the minimum necessary number of
recordings (7.}

Myar

nrec = 5 1—! nlev,-;
i=

that is, in our case,

n..=5%«2%x3x3x3 = 270.

TEC

Thus, the number of recordings needed depends strongly on the number of
levels chosen for each variable. On the other hand, if the number of available
data points is given, this will decide on the maximum number of levels that
each continuous variable can be recoded into. For our little demonstration
problem, we got good answers with a considerably smaller number of record-
ings, namely, 100.

12. The Optimal Mask Analysis

Given a Data Model, any topologically compatible mask associated with it
is “valid” since it denotes a representation of a relationship among the sam-
pling variables it contains. The questions now are, “How good is the mask?”
and “How valid is the translation rule it represents?” There are numerous
possible masks that can be written for one set of variables, and it is desirable
to determine among all possible masks the one that shows the least un-
certainty in its generating capability, that is, the one that maximizes the
forecasting power. This is exactly what the optmask-function of SAPS-II
evaluates. The measure of uncertainty that is currently employed by this
function i1s the Shannon entropy.

SAPS-II requests the user to specify a mask candidate matrix that contains
the element — 1 for potential generating elements (potential input), the element
0 for neutral elements (do not care variables), and + 1 for generated elements
(outputs) of the optimal mask.

In our example, the data model contains four variables, namely, the input
u and the three outputs y,, y,, and y,. Consequently, any valid mask must
have exactly four columns, one for each variable. We want to assume the depth
d of the mask to be 2, and therefore, all masks that we consider have exactly
three rows.

We want to assume that concurrent states of the outputs do not affect each
other, whereas the input variable may affect any of the outputs instanta-
neously. It seems intuitively evident that more information can be extracted
from the measured trajectories if each output variable is treated indepen-
dently, that is, if a separate optimal mask is generated for each of the output
variables. The following set of mask candidate matrices was therefore used for
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the optimal mask evaluation:

\ -1 -1 -1 —1
Mend, =1 -1 -1 —1 -1},
-1 +1 0 0

-1 -1 -1 -1
Mcend, =1 -1 -1 —1 -1},
-1 0 +1 0
-1 -1 -1 -1
Mend;=| -1 —1 —1 —1}.

-1 0 0 +1

The Mcnd, matrix determines that y,(¢) may be a function of up to nine
different variables, namely, u(t — 2At), y (t — 2At), y,(t — 2A8), yi(t — 2A0),
u(t — Ar), y,(t — At), y,(t — A1), y5(t — At), and finally u(t). The other two
mask candidate matrices can be interpreted accordingly. It is the task of the
optimal mask analysis to determine which of these potential influencing
variables are relevant; that is, it will identify the simplest models that allow
one to forecast the behavior of the outputs in a reasonably accurate fashion
from any set of given data.

The optimal mask analysis performs an exhaustive search on all masks that
are structurally compatible with the mask candidate matrix. The search starts
with the simplest masks, that is, with masks that contain as few nonzero
elements as the mask candidate matrix permits. In our example, the simplest
masks are those of complexity two, that is, masks that have exactly one input
and one output. For each of the three mask candidate matrices, there exist
exactly nine structurally compatible masks of complexity two.

Each of the possible masks is compared to the others with respect to its
potential merit. The optimality of the mask is evaluated with respect to the
maximization of its forecasting power. The Shannon entropy measure is used
to determine the uncertainty associated with the forecasting of a particular
output state given any feasible input state.

The Shannon entropy relative to one input is calculated from the equation

H; = —§ p(oli)-log,(p(oli)),

where p(o]i) is the conditional probability of a certain output state o to occur,
given that the input state i has already occurred. The term probability is meant
in a statistical rather than in a probabilistic sense. It denotes the quotient of
the observed frequency of a particular state divided by the highest possible
frequency of that state. _

The overall entropy of a mask is then calculated as the sum

Hm = ; piHi9

where p; is the probability of that input to occur. The highest possible entropy
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H.ax 1 obtained when all probabilities are equal, and a zero entropy is
encountered for relationships that are totally deterministic.
A normalized overall entropy reduction H, is then defined as
H
H =10-—"".

max

H, is obviously a real number in the range between 0.0 and 1.0, where higher
values usually indicate an improved forecasting power. The optimal mask
among a set of mask candidates is defined as the one with the highest entropy
- reduction. ,

The algorithm then proceeds to higher levels of complexity. In our example,
there exist exactly 36 masks of complexity three (i.e., masks with two inputs
and one output) for each of the three mask candidate matrices. These can be
compared with each other for the determination of the optimal mask of
complexity three. Thereafter, we can proceed to even higher degrees of com-
plexity. In our example, the highest possible degree of complexity is 10, and
there exists exactly one mask of complexity 10 for each of the three mask
candidate matrices.

Masks at different complexity levels are somewhat more difficult to com-
pare to each other. Obviously, with increasing complexity, the masks tend to
give the impression of a more and more deterministic behavior. Since, with
increasing mask complexity, the number of possible input states (the possible
input state set) grows larger and larger, chances are that more and more input
states in the data model are observed exactly once, which makes them look
completely deterministic, whereas many other possible input states are never
observed at all, a fact that does not show up in the entropy reduction measure.
In the case of the ultimately complex mask, that is, a mask of depth n,_,, — 1
and complexity n,.. X n,,., the observed input state set consists of exactly one
sample, whereas the possible input state set is extremely large. Thus, the
entropy reduction measure will have a value of 1.0, and yet, the forecasting
power of this mask is negligibly small.

For this reason, Uyttenhove proposed [10] the following complexity weight-
ing factor C,,

C _ Nyar” dact ) ncompl

m d F

max

where n,,, is the number of variables in the source model, d,_, is the actual
depth of the mask plus one, n,,y,; is the number of nonzero entries in the
mask, and d,,,, is the maximum possible depth the mask could have (the depth
of the chosen mask candidate) plus one.

For example, the complexity weighting factor of the mask

00 0 0
mask=[—1 0 -2 0
—3 0 0 1
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can be evaluated to

4x2x4
C, =272 10667,
3
Finally, the mask quality measure Q is defined as
H,
Q - _C'_m,

and that is how masks of different complexity are being compared to each
other. Clearly, the above formula is strictly heuristic, and we are currently
experimenting with improved formulae. We now believe that what should be
punished is not the complexity of a mask, but its inability to make the observed
input state set decently represent the possible input state set. We therefore
experiment with the following completeness weighting factor F,

F =n1 +2'n2+3'n3+4'n4+5'n5

¢
5 nposs

where n; is the number of input states that have been observed exactly once,
n, is the number of input states that have been observed exactly twice, n5 is
the number of input states that have been observed exactly thrice, n, is the
number of input states that have been observed exactly four times, ng is the
number of input states that have been observed five times or more, and n,,,
is the possible input state set. This formula is based on the statistical rule that,
in a subinterval or class analysis, each class member should be observed at
least five times [8]. '

Using the completeness weighting factor, we redefine the mask quality
measure as

Q = FL"HI"

If every possible input state is observed at least five times, F, assumes a value
of 1.0.

We applied this algorithm to our example problem. By repeating the
optimal mask analysis several times using different random number streams
for the input, it was determined that the set of optimal masks for this problem
is

0 0 0 0
Mask, = | —1 0 0 =21,
0 +1 0 0,
0 0 0 0
Mask, =|—-1 =2 0 0],
-3 0 +1 0
0 0 0 0
Mask; = | —1 0 0 0];
-2 0 0 +1
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that is,
y1(8) = fi{u(t — AD), y5(t — At)),
ya(t) = fr(ult — A1), y, (¢ — At} u(t)),
y3(t) = fa(u(t — At), u(z)).

The details of the experiments performed to verify the validity of these optimal
-masks are described in [2].

13. Qualitative Inference Through Inductive Reasoning

These optimal masks can now be used to generate state-transition matrices
that show the dependence of the generated elements (outputs) on the gen-
erating elements (inputs). Notice that the meaning of the words input and
output is now different from before. In earlier paragraphs, these words referred
to the one “input” and the three “outputs” of the physical model. Now, we
talk about the “inputs” and the “outputs” of the Behavior Models. For
example, the second Behavior Model has three “inputs,” namely, u(t — Ag),
y.(t — At), and u(t), and one “output,” namely, y,().

Using these state-transition matrices, we can forecast the system behavior
by simply looping through state transitions for any physical input sequence.

We performed the following experiment: We actually simulated the quan-
tiative model over 200 communication intervals, that is, over a duration of
300 time units. We recoded the three continuous output variables over the
entire time span. However, we thereafter used only the first 150 time units for
the generation of the optimal masks. Now, we used the optimal masks found
on the basis of the first 150 time units to qualitatively predict (forecast) the
behavior of the system over the next 15 time units (corresponding to 10 steps)
using the same input sequence as for the quantitative simulation. The follow-
ing matrices compare the “measured” (i.e., quantitatively simulated) time-
history to the “predicted” (i.e., qualitatively simulated) time-history:

p - -

Meas =

1

| T e N N T O T = T T S T N T N

NN O R N EFE OO
et D D ke N O N DO

1
1
0
1
0
, Pred =| 1
1
0
1
1
1

[ T S N R e T = T - T ' T S T 6
N N O N = OO =
bk ek B O = RO N DO
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These two matrices contain excerpts of the data model. As before, the four
columns represent the input u and the three outputs y,, y,, and y;. The
rows are recordings of these variables at various instances of time:
t = [150,151.5,153,...,173.5,175]. The Meas matrix contains the (recoded)
data found during the quantitative simulation, while the Pred matrix contains
the forecast outputs using qualitative simulation given the same past history
and the same input data stream as in the quantitative case.

As can be seen, there was not a single forecasting error in this sequence. We
repeated the experiment for other input sequerces and found that, on the
average, the forecasting would exhibit about two incorrect entries per 10 time
steps, that is, the probability of correct forecasting of a value was roughly 28
out of 30, or 93%. The details of these experiments can be found in [2].

These results encouraged us to try our methodology on a much more
involved system, namely, a B747 airplane in high-altitude horizontal flight.
The results of that analysis were presented in [11] and [12].

14. Discussion of Results

Similar to the discussion of the “naive physics” approach, we want to analyze
the conditions that must be satisfied for the “inductive reasoning” approach
to be successful. Here are our findings:

1. Contrary to the naive physics approach, inductive reasoning can operate
on systems, the structure of which is not completely known.

2. Inductive reasoning therefore works well .in application areas, such as
biomedical or social systems, where the physical laws have not been well
established. :

3. Contrary to the naive physics approach, with inductive reasoning, it is
difficult to improve the results by incorporating more a priori knowledge
of the system structure. This is one of the major drawbacks of the sheer
generality of the technique.

4. Similar to the naive physics approach, also inductive reasoning mimics the
way how humans (and dogs) think about the behavior of physical systems.
However, while the naive physics approach tries to utilize preconceived
knowledge about basic principles of operation of a physical system, induc-
tive reasoning mimics the process of learning by observation.

. Inductive reasoning works well for quite complex systems.

6. Feedback loops do not pose any difficulty. On the contrary, the more tightly

coupled a system is, the better will be the results that we expect from the
inductive reasoning process. '

Lh

15. Conclusions

In this chapter we have discussed several quite different approaches to qualita-
tive modeling and simulation. In particular, the approaches of “naive physics™
and of “inductive reasoning” were discussed in more detail. It was found that
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all of these techniques have their particular virtues and shortcomings. The
techniques presented in this chapter are not really in competition with each
other. On the contrary, they complement each other rather well. It would seem
worthwhile to study properties of neural networks as an alternative to the
inductive reasoning approach to qualitative modeling. To our knowledge, this
has not yet been tried.
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