Systematic Design of Fuzzy Controllers Using Inductive Reasoning
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Abstract

In this paper, a new systematic design methodology for fuzzy
controller design is presented. For any desired plant output, it is
possible to find the optimal plant input that will produce a plant
output that is as close as possible to the desired plant output.
However, this constitutes an open—loop design. In this paper, a
new methodology is introduced that allows to compute a signal
that is close to the optimal plant input as a function of system
inputs and plant outputs. To this end, an inductive reasoning
model is created that estimates the optimal plant input from
given system inputs and plant outputs. The inductive reason-
ing model can be interpreted and realized as a fuzzy controller.
Thereby, a large portion of the controller is realized through
feedback, and the previous open—loop design is converted to an
equivalent and more robust closed-loop design.

Introduction

Fuzzy controllers have become quite popular over the past years,
particularly in Japan. At least four reasons can be mentioned
that make fuzzy controllers attractive:

1. Price: A fuzzy controller can be realized cheaply. Special
chips have been designed that can be used to implement
fuzzy controllers for a large variety of different industrial
processes.

2. Flezibility: A fuzzy controller can be designed with very
little knowledge of the plant it is supposed to control. Con-
sequently, one and the same fuzzy controller can be used to
control different types of processes. Only the classical PID-
controller can compete with the fuzzy controller in flexibility.

3. Robustness: Contrary to the optimal state{feedback con-
troller that is very sensitive to parameter variations, a fuzzy
controller can deal much more reliably with a plant whose
parameters are time—varying. While a human aircraft pilot
is unable to compute an optimal flight path in his or her head
by solving a matrix Riccati equation, he or she is able to con-
trol the aircraft successfully and reliably in situations where
any one of today’s autopilots would fail miserably. When an
anomaly has occurred, the first thing that the human pilot
will do is to switch off the autopilot. However, under normal
circumstances, the autopilot can fly the aircraft more eco-
nomically (consume less kerosene) than a human pilot could
do. In some sense, optimality can be traded for robustness.
The same holds true for fuzzy controllers. A fuzzy controller
can never compete with an optimal controller in terms of
efficiency, but it can be built to be considerably more robust
than any optimal controller.

4. Adaptability: Since a fuzzy controller requires less knowledge
of the environment it operates in, it is easier to make it adapt
itself to a changing situation than any optimal controller.
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Except for point #1 above, which is purely economically founded,
all other points are closely related to each other. They all deal
with questions of efficiency versus flexibility, of specialization
versus generality.

If humanity is ever to outgrow its cradle by colonizing other
planets, it will have to rely on an army of fairly autonomously op-
erating robots that will be needed to prepare these other planets
for human arrival. These robots are not manufacturing robots.
It is not essential that they produce as much merchandise per
time unit as possible. It is much more important that they are
robust, i.e., can operate on their own without running into any
sort of trouble, that they are adaptive, i.e., can reliably accom-
modate to a changing environment, and that they are flezible,
i.e., can be used for various different tasks. Fuzzy control may
be an answer to some of these demands. -

Fuzzy controllers are essentially rule-based controllers where-
by continuous variables are discretized (recoded) into classes. A
recoded fuzzy variable preserves its quantitative information in
a fuzzy membership function that it carries along with its class
value. Operations performed on fuzzy variables are performed
separately on their class values (using finite state automata tech-
niques, so—called “rules”) and on their fuzzy membership func-
tions (using fuzzy logic).

The rules and fuzzy membership functions employed in a
fuzzy controller are usually determined heuristically, i.e., they
are manually coded on the basis of an intuitive understanding
of the functioning of the underlying process to be controlled.

A systematic design of the rules and/or their accompanying
fuzzy membership functions has been attempted in the past. For
example, a type of genetic algorithm [5] has been successfully
employed to optimize the behavior of a fuzzy controller used
in an autonomous spacecraft rendezvous maneuver [6]. More
recently, a neural network of the associative memory type was
employed to initially train (off-line) and then adapt (on-line)
the parameters of a fuzzy controller for an inverted pendulum
(9.

This paper presents a new systematic design of fuzzy con-
trollers that can be used to control any plant for which the in-
verse dynamics problem can be solved. The methodology em-
ployed in the design is centered around fuzzy inductive reason-
ing [1,10], a technique geared at the qualitative simulation of
dynamical continuous—time processes [2].

The underlying inverse dynamics problem is a well-known
control problem that has been studied extensively, particularly
in the context of robot control. Given the desired path of the
end-effector (the result of solving the path planning problem),
find the optimal position of each joint (inverse kinematics prob-
lem), then find the optimal forces and torques in each joint (in-
verse dynamics problem) [4]. It is not the purpose of this paper
to reiterate on inverse dynamics. Instead, an example will be
used where the solution of the inverse dynamics problem is triv-

ial.
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This is a proof-of—concept paper. The application chosen
to demonstrate the approach is simple and generic. It is simple
enough to be described in full, yet complex enough to prove the
practicality of the approach. More realistic applications, such as
fuzzy control of a double inverted pendulum, and fuzzy control
of a large robot arm, are currently under development. Upon
completion, these applications will be reported elsewhere.

Fuzzy Recoding
Fuzzy recoding denotes the process of converting a crisp variable

to a fuzzy variable. Figure 1 shows the fuzzy recoding of a
variable called “systolic blood pressure.”

Membership Functions
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Figure 1. Fuzzy recoding.

It was decided to use bell-shaped fuzzy membership functions
rather than the more commonly used triangular membership
functions. This membership function can be easily calculated
using the equation:

Memb; = exp(—k; - (z — p;)?) (1)

where z is the continuous variable that needs to be recoded, and
ki is determined such that the membership function Memb; de-
grades to a value of 0.5 at the neighboring landmarks. In the
above example, a crisp systolic blood pressure of 135.0 is recoded
into a fuzzy variable with a class value of ‘normal’, a fuzzy mem-
bership function of 0.895, and a side function of ‘right.” Thus,
a single crisp value is recoded into a fuzazy triple. Any systolic
blood pressure with a crisp value between 100.0 and 150.0 will
be recoded into a fuzzy variable with the class value ‘normal.’
The fuzzy membership function denotes the numerical value of
the bell-shaped curve shown on Fig.1, always a value between
0.5 and 1.0, and the side function indicates whether the crisp
value is to the left or to the right of the maximum of the fuzzy
membership function. Obviously, the fuzzy variable contains the
same information as the original crisp variable. The crisp value
can be regenerated accurately from the fuzzy triple, i.e., without
any loss of information.

Due to space limitations, details of how crisp variables are
optimally recoded into fuzzy variables will not be given in this
paper. These details are provided in [1,10].

Fuzzy Optimal Masks

A mask denotes relationship between different variables. For
example, given the following raw data model consisting of five
variables, namely the inputs u; and u; and the outputs Y1, Y2,
and y; that are recorded at different values of time.

time u u Y
0.0
8t
2.6t
3.6t e e e 2

Y2 s

(Nrec — 1) - 6t

Each column of the raw data model contains the class values of
one fuzzy variable recorded at different values of time, and each
row contains the recordings of the class values of all fuzzy vari-
ables at one point in time. The raw data matrix is accompanied
by a fuzzy membership matrix and a side matrix of the same
dimensions.

A mask denotes a relationship between fuzzy variables. For
example, the mask

1\* ur U2 Y1 Y2 Y3
t— 26t 0 0 0 0 -1
t— 6t 0 -2 -3 0 0

t —4

)
0 +1 0 o

denotes the following relationship pertaining to the five variable
system:

vi(t) = Hys(t — 28¢),uz(t — 6¢),31(¢ — 81),w1(t))  (4)

Negative elements in the mask matrix denote inputs of the qual-
itative functional relationship. The example mask has four in-
puts. The sequence in which they are enumerated is immaterial.
They are usually enumerated from left to right and top to bot-
tom. A positive element in the mask matrix denotes the output.
Thus, Eq.(3) is simply a matrix representation of Eq.(4). The
mask must have the same number of columns as the raw data
matrix. The number of rows of the mask matrix is called the
depth of the mask. The mask can be used to flatten a dynamic re-
lationship out into a static relationship. The mask can be shifted
over the episodical behavior. Selected inputs and outputs can
be read out from the raw data matrix and can be written on one
row next to each other. Figure 2 illustrates this process.
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Figure 2. Flattening relationships through masking,.

After the mask has been applied to the raw data, the formerly
dynamic episodical behavior has become static, i.e., the relation-
ship is now contained within a single row

o1(t) = 1(ir(£),42(2), 13(t), ia(2)) (5)

The resulting matrix is called input/output matriz.

How is the mask selected? A mask candidate matriz is con-
structed in which negative elements denote potential inputs, and
the single positive element denotes the true output of the mask.
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A good mask candidate matrix for the previously mentioned five
variable system might be

\* 1 w2 Y1 Yz Y3
t—28t /-1 -1 -1 -1 -1
t—6t (-1 -1 -1 -1 -1 (6)
t -1 -1 +1 0 0

A mask candidate matrix is an ensemble of all acceptable
masks. The optimal mask selection algorithm determines the
best among all masks that are compatible with the mask candi-
date matrix. The mask of Eq.(3) is one such mask. The optimal
mask is the one mask that maximizes the forecasting power of
the inductive reasoning process, i.e., the mask that results in the
most deterministic input/output matrix.

Due to space limitations, the details of how the optimal
mask selection algorithm works are omitted from this paper.
These details are also provided in [1,10].

Fuzzy Forecasting

Once the optimal mask has been determined, it can be applied to
the given raw data matrix resulting in a particular input /output
matrix. Since the input/output matrix contains functional rela-
tionships within single rows, the rows of the input /output matrix
can now be sorted in alphanumerical order. The result of this
operation is called the bekavior matriz of this system. The be-
havior matrix is a finite state machine. For each combination of
input values, it shows which output is most likely to be observed.
Forecasting is now a straightforward procedure. The mask
is simply shifted further down beyond the end of the raw data
matrix, future inputs are read out from the mask, and the be-
havior matrix is used to determine the future output, which can
then be copied back into the raw data matrix. In fuzzy fore-
casting, it is essential that, together with the class value of the
output, also a fuzzy membership value and a side value are fore-
cast. Thus, fuzzy forecasting predicts an entire fuzzy triple from
which a crisp variable can be regenerated whenever needed.

In fuzzy forecasting, the membership and side functions of
the new input are compared with those of all previous recordings
of the same input class value contained in the behavior matrix.
The one input with the most similar membership and side func-
tions is identified. For this purpose, a cheap approximation of

-the regenerated quantitative signal

d =1+ sidex (1 — Memb) )

is computed for every input variable of the new input set, and the
regenerated d; values are stored in a vector. This reconstruction
is then repeated for all previous recordings of the same input
set. Finally, the £; norms of the difference between the d vector
of the new input and the d vectors of all previous recordings of
the same input are computed, and the previous recording with
the smallest £, norm is identified. Its output and side values
are then used as forecasts for the output and side values of the
current state.

Forecasting of the new membership function is done a little
differently. Here, the five previous recordings with the smallest
L3 norms are used (if at least five such recordings are found in
the behavior matrix), and a distance-weighted average of their
fuzzy membership functions is computed and used as the forecast
for the fuzzy membership function of the current state.

Absolute weights are computed as follows:

dmaz — di

Webs; = 4
maz

(8)

The absolute weights are numbers between 0.0 and 1.0. Using
the sum of the five absolute weights:

Sy = Z Wabs; (9)
Vi

it is possible to compute relative weights:

Wabs;

(10)

Wrel; =
Sw

Also the relative weights are numbers between 0.0 and 1.0. How-
ever, there sum is always equal to 1.0. It is therefore possible
to interpret the relative weights as percentages. Using this idea,
the membership function of the new output can be computed as
a weighted sum of the membership functions of the outputs of
the previously observed five nearest neighbors:

Membgys,,, = Z Wyel; - Memboy,
Vi

(11)

More details on fuzzy forecasting are provided in [1].

An Example
Given a linear SISO plant with the transfer function:

2 4+3.547

G(s):sz+5-s+10

(12)
The plant was chosen as a proper but not strictly proper transfer
function since, in this case, computation of the inverse dynamics
is trivial. The goal is to design a fuzzy feedback controller around
this plant such that the overall system behaves similarly to a
linear system with the transfer function:

1
Guot(s) = Py
Obviously, this task can be accurately accomplished by the clas-
sical controller shown on Fig.3

(13)

L 3 2 Guompl(®) F2B G() 1
Figure 3. Classical controller design.
where
2+5.5+10
Geompl(s) = — (19)

s-(s2+4+3-3+7)

In this paper, a fuzzy controller will be used instead. The control
system with the fuzzy controller is shown on Fig.4

. r* 4
Recoding * uzzy y
Fuzzy | U gignal Yyl G(s) =
* For Ri ation
Fuzzy y
Recoding

Figure 4. Fuzzy controller design.
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The crisp system input, 7, is converted into a fuzzy variable,
r*, by means of fuzzy recoding. Similarly, also the system out-
put, y, is converted into a fuzzy variable, y*. A fuzzy controller
computes a fuzzy control input, u*, by means of fuzzy forecast-
ing. The fuzzy control signal is then converted back to the crisp
control signal, , by means of fuzzy signal regeneration.

The fuzzy controller is designed using the following proce-
dure. In a first experiment, a simulation program is written that
simulates the system shown on Fig.5

ydes Wopt

Gy (s) Gl

save for later reuse

Figure 5. Data extraction.

A binary random input, r, is applied to a model of the desired to-
tal transfer function. Such an input excites the system optimally
well at all frequencies. At the output of the closed—loop transfer
function, Gy(s), the desired output signal, yg.,, is measured.
This signal is fed into the inverse transfer function, G~1(s), of
the plant. As a result, the optimal control input, Uopt, is found.

All three variables, r, yg,, and Uopt are stored in the mea-
surement matriz from which the raw data matriz is obtained by
means of (off-line) fuzzy recoding.

The raw data matrix can then be used to determine an opti-
mal mask. Since the optimal mask should approximately cover
the slowest time constant of the closed-loop system (1.0 sec-
onds), a mask depth of 3 would suggest the use of a communica-
tion interval of 0.5 seconds, i.e., the measurement matrix (and

the raw data matrix) should contain entries (rows) that are 0.5
seconds apart.

Unfortunately, fuzzy inductive forecasting will predict only
one value of » per sampling interval. Thus, the overall control
system of Fig.4 will react like a sampled-data control system
with a sampling rate of 0.5 seconds. From a control system
perspective, the variables should be sampled considerably faster,
namely once every 0.05 seconds.

Therefore, it was decided to choose the following mask can-
didate matrix:

\* r Yy u
t—206t /-1 -1 -1
t— 196t 0 0 0
t— 116t 0 0 0
t—106¢| -1 -1 -1
t—96t 0 0 0

(15)

t— 6t 0 o o0
t -1 -1 +1

of depth 21. As mandated by control theory, the sampling in-
terval 6t is chosen to be 0.05 seconds. Yet, as dictated by the
inductive reasoning technique, the control input, u, at time ¢
will depend on past values of 7, y, and u at times ¢ — 0.5 and
t—1.0.

The optimal mask found with this mask candidate matrix
is:

\® r y u
£—206t/ 0 0 0
t—195t[ 0 0 o
t—1stl 0o 0 o
t—106t] 0 0 o (16)
t—ost | 0 o o
t—6t | 0o o o
y 0 -1 +1

In other words:

u(t) =1(y(1)) a7

Unfortunately, this “optimal” mask won’t work. Due to the
direct coupling between the plant input, u, and the plant output,
y, the optimal mask suggests that knowledge of the current value
of the plant output, y, is sufficient to predict the optimal value of

the plant input, u. In an open-loop situation, this is correct. If
y(2) is given, u(t) can be estimated accurately with this optimal
mask. However, this is a chicken-and—egg problem. If y(¢) is
given, u(t) can be computed, and once u(t) is known, y(¢) can
be computed also. There exists an algebraic loop between these
two variables.

The fact that the plant was chosen as a proper but not
strictly proper transfer function made the solution of the inverse
dynamics problem easy, but, at the same time, made the fuzzy
control problem considerably more difficult. The optimal mask
algorithm optimizes the mask for open-loop. If the plant has
low pass characteristics, the optimal mask will also work in a
closed-loop setting. However, in the given example, some of the
trivial masks (such as the above “optimal” mask) exhibit poor
tracking behavior, others show stability problems.

In our case, it was necessary to search through the mask
history, i.e., through the set of suboptimal masks. It was found
that the second best mask of complexity four (containing four
non-zero elements) exhibits both good tracking behavior and
good stability behavior. The mask is as follows:

\* Ty u
t — 206t 0 0 -1
t— 196t 0 0 0
t— 116t 0 0

t — 106t
t — 96t 0 0

(18)

o
=}
Tooo

t— 6t 0 0 o0
t -2 -3 +1

The first 1800 rows (90 seconds) of the raw data matrix were
used as past history data to compute the optimal mask. Fuzzy
forecasting was used to predict new fuzzy triples of u for the
last 200 rows (10 seconds) of the raw data matrix. From the
predicted fuzzy triples, crisp values were then regenerated.

Figure 6 compares the true “measured” values of u ob-
tained from the original simulation (solid line) with the forecast
and regenerated values obtained from fuzzy inductive reasoning
(dashed line) in open loop, i.e., the “measured” time trajecto-
ries v(t) and y(t) were optimally recoded into the fuzzy signals
7*(t) and y*(¢). Fuzzy forecasting was then used to estimate the
fuzzy signal u*(t). Fuzzy signal regeneration was used to recon-
struct the crisp signal u(t), which was then compared with the
previously “measured” trajectory uop(t).
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Simulated and Forecast Behavior Compared

Ucontrol
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Figure 6. Simulated and forecast control input compared.

Figure 7 shows the configuration used in this experiment.

r ,Fuzzy. r¥
— i ;:::3asting u*r EZEZ:ZI ti s
Vies Fuzzy y* generation
Recoding =
U, Uopt >
from

earlier comparison

experiment
Figure 7. Qualitative simulation experiment in open-loop:

The results are encouraging. There is hardly any difference be-
tween the optimal trajectory, uop:, and the output of the fuzzy
controller, u, in open-loop. Quite obviously, the optimal mask
contains sufficient information to be used as a valid replacement
of the true inverse dynamics. Notice that the fuzzy inductive
reasoning model was constructed solely on the basis of measure-
ment data.

In the next experiment, the fuzzy controller was inserted
into the overall system as previously shown on Fig.4. The crisp
control input, =, is converted to a qualitative triple, r*, using
fuzzy recoding. Also the crisp plant output, y, is converted to
a qualitative triple, y*. From these two qualitative signals, a
qualitative triple of the plant input u*, is computed by means of
fuzzy forecasting. This qualitative signal is then converted back
to a crisp signal, u using fuzzy signal regeneration. The plant
itself is described by means of a differential equation model.

Forecasting was restricted to the last 200 sampling intervals,
i.e., to the time span from 90.0 seconds to 100.0 seconds. Figure
8 compares the desired plant output, yu..(¢), from the purely
quantitative simulation (solid line) with the output, y, of the
model containing the fuzzy controller (dashed line).

Fuzzy Control

.0
0.5 /\
-
=3
=3
ERY)
o ° R
.
g \
£ o5 . ;
10 H ‘ . i A . H R
0. 81. 92. @3. @4 ©5. @6. gr. @8,  99.  100.

Time [sec]

Figure 8. Validation of fuzzy controller.
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As can be seen, the plant with the fuzzy controller behaves in-
deed almost exactly like 1/(s + 1) as desired. The new design
approach worked beautifully although the direct input/output
coupling in the plant made the design task considerably more
difficult. It has been shown that fuzzy inductive reasoning can
indeed be used to systematically design fuzzy controllers for sys-
tems with multiple controller inputs. If the plant contains mul-
tiple plant inputs (controller outputs), each controller output is
computed separately by a different optimal mask.

Summary and Conclusions

The example demonstrates the validity of the chosen approach.
Control systems containing a fuzzy controller designed using in-
ductive reasoning are similar in effect to sampled—data control
systems. Fuzzy recoding takes the place of analog-to—digital con-
verters, and fuzzy signal regeneration takes the place of digital—
to—analog converters. However, this is where the similarity ends.
Sampled-data systems operate on a fairly accurate representa-
tion of the digital signals. Typical converters are 12-bit con-
verters, corresponding to discretized signals with 4096 discrete
levels. In contrast, the fuzzy inductive reasoning model em-
ployed in the above example recoded all three variables into
fuzzy variables with the three classes ‘small,’ ‘medium,’ and
‘large.” The quantitative information is retained in the fuzzy
membership functions that accompany the qualitative signals.
Due to the small number of discrete states, the resulting finite
state machine is extremely simple. Fuzzy membership forecast-
ing has been shown to be very effective in inferring quantitative
information about the system under investigation in qualitative
terms.

Due to the space limitations inherent in a publication in
conference proceedings it was not possible to provide, in this
paper, any details of the programs used for simulation. Fuzzy in-
ductive reasoning is accomplished using SAPS-II [3], a software
that evolved from the General System Problem Solving (GSPS)
framework (7,8,13]. SAPS-II is implemented as a (FORTRAN-
coded) function library of CTRL-C [12]. A subset of the SAPS-
II modules, namely the recoding, forecasting, and regeneration
modules have also beer made available as an application library
of ACSL [11], which is the software used in the mixed quan-
titative and qualitative simulation runs. More details will be
provided in an enhanced version of this paper that is currently
being prepared for submission to a journal.
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