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Abstract—The paper describes a new approach to multi- gaps with predicted values, predicting simultaneously the low-
resolution prediction of time series using Fuzzy Inductive Reason- frequency component and the high-frequency component of
ing (FIR). The time series is decomposed into a trend series and g geries, The first four of the gaps represent an interpolation

another series describing the deviation from the trend. The two bl h the final ¢ t lati
time series are then predicted independently of each other, and PfOP!eM, whereas the hinal gap represents an extrapolation

the two predictions are superposed in the end. The trend series Problem.
is obtained by means of a moving average, whereas the deviation
series is obtained by a process of de-trending using “daily return” [I. THE PREDICTION PROBLEM
calculations. The paper deals both with interpolation and with Most of the more advanced prediction techniques can be
extrapolation problems. subdivided into two separate tasks. In a first stepntioeeling
step the algorithm uses a set of training data to identify
a model of a process, from which the training data could
Multi-resolution time series are series that contain both lowmye been obtained. In a second step, shreulation step
frequency and high-frequency components. They are difficge algorithm uses the previously identified model to make
to predict, because the high-frequency component of tBPedictions outside the training data set.
series forces the prediction algorithm to use small time steps;The modeling algorithm can either attempt to identify the
whereas the low-frequency component of the series calls fofrge structure of the system, from which the training data were
large time horizon. Thus, the prediction must be carried acrasstained, or it can content itself with identifying any process
many steps, in which prediction errors may be accumulate@ple to explain the training data set. In the former case, we
The CATS time series used in this paper is shown in Fig.falk about adeep modelwhereas models in the latter category
are referred to ashallow models
200 CATS Time Sefies The identified model can be eithemaantitativeor a qual-
600 | itative model. A quantitative model operates on the measure-

aoof 41 ment data directly, whereas a qualitative model first discretizes
200 W q the measurement data, and then reasons about the discrete
O/\W v classes only.

200 The model can be either parametric modelor a non-
o0 ‘ ‘ ‘ ‘ ‘ ‘ parametric model A parametric model maps the knowledge
0 %00 1000 1500 2000 2800 3000 3500 4000 4300 5000 contained in the training data set onto a set of model pa-
rameters. During the simulation phase, the training data are
Fig. 1. CATS time series no longer needed, since the information contained in them is
now stored in the parameter values. A non-parametric model
The CATS time series is a synthetic time series, consistiogly classifies the training data during the modeling phase,
of 5000 data records containing five gaps of 20 recordsd refers back to these classified training data during the
each. The data values from 981-1000, 1981-2000, 2981-30€§iqulation phase.
3981-4000, and 4981-5000 are missing. The CATS time series
was proposed as a prediction contest for the 2004 IJCNN 1. Fuzzy INDUCTIVE REASONING
Conference. The Fuzzy Inductive Reasoning (FIR) methodology offers a
The series is a multi-resolution series as it exhibits a vemodel-based approach to predicting either univariate or multi-
irregular high-frequency oscillation superposed over a fairkariate time series [1], [2]. A FIR model is a qualitative, non-
irregular low-frequency oscillation. The aim is to fill the fiveparametric, shallow model based on fuzzy logic.

I. INTRODUCTION

Data

—400




In a first step, the available measurement data are fuzzifietghere thet-1 element denotes the position of the output within
Thereby, the real-valued quantitative data values are mapypleel time series, whereas the negative values in the mask denote
onto qualitative triples, consisting of a class value, a fuzahe relative positions of the three inputs. In the above example,
membership value, and a side value. The process is illustrated 15 input is six time steps in the past relative to the output.
in Fig.2 by means of a variable, called ambient temperature. The FIR modeling engine searches through all possible
masks up to a given mask depth, creating for each mask
an input/output table of class values. The optimal mask is
the one that makes the map from the set of input classes to
1 the single output class as deterministic as possible. The FIR
modeling engine optimizes the information content of the map
by minimizing the Shannon entropy measure.

The FIR modeling engine allows the specification of miss-
ing data values, as required for the application at hand [3].
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Fig. 2. Fuzzification in FIR consisting of an alpha-numerically sorted list of input/output

data, whereby each quantitative input/output data record is
The ambient temperature is mapped onto five discratenverted into a record of qualitative triples.
classes, calleatold, fresh normal warm and hot Each of The FIR simulation engine predicts values of the output
these classes is associated with its own fuzzy membershipiable beyond the end of an episode of recorded data values.
function, a function with values in the rande.0,1.0]. The It uses the previously found optimal mask. The inputs to the
fuzzy membership functions can either be Gaussian distribnask are inside the known episode, i.e., have known values.
tions or triangular distributions. The side function can assunidey are fuzzified, and a qualitative input record is created that
values of eitheteft, center or right. Within each fuzzy class, can be compared with the records in the experience data base.
values to the left of the maximum of the fuzzy membershiphe five nearest neighbors are retrieved, and the output value
function have associated a side valueleft, etc. Hence, an is predicted as a qualitative triple representing a weighted
ambient temperature of 23 degrees Centigrade is classifiechggrage of the output values of the five nearest neighbors in
normal, with a fuzzy membership value of 0.8, and a sidthe experience data base.
value ofright. If multiple steps are to be predicted, the newly found value
Most dialects of fuzzy logic associate qualitative doubld§ added to the episode of known values, the mask is shifted
rather than triples with each quantitative value. They ignofe data point to the right, and the process is repeated, until
the side value, yet allow multiple doubles to represent tfiee gap has been filled.
same quantitative value. Hence an ambient temperature of 23 IV. L OW-FREQUENCYPREDICTION
degrees Centigrade would be classified asrmal, 0.8) and
as (warm, 0.05). The FIR dialect of fuzzy logic uses fuzzyof

triples, yet only records the most likely triple, i.e., the ongnd' a moving average was computed for ev@ data point

as;oc!a;ed W't,h the Lar_geslt fuz.zy kr]nembershlp fvslue_.f. _consisting of the mean value of the data point itself and its
o information is being lost in the process of fuzzification,;,a nearest neighbors to the left and to the right.

The qualitative triple can be mapped unambiguously onto atpge |oy-frequency time series consists of 500 data points.
single quantitative value by means of de-fuzzification. It still contains five gaps, but each gap is now only three

The FIR modeling engine reasons only about the clagga points wide. The low-frequency time series is depicted
values. In the case of a univariate time series, the next VaﬁHeFig.&

of the variable,z(t + At), must be a function of previous

recordings of that same variable: w0 Low~frequency CATS Time Series

z(t+ At) = f(a(t),z(t — At),z(t — 2At),...) (1) a00- 1
The FIR modeling engine does not try to identify theg |, W |
function, f. It only determines, which subset of previou: ° ' \

In order to produce a low-frequency prediction, a process
smoothing was applied to the original time series. To this

recordings is most useful in determining the next value « -2°f
the variable, e.g. ~400

50 100 150 200 250 300 350 400 450 500
Time

z(t+ At) = f(z(t — 5AL), z(t — 2A8),2(t))  (2)
Fig. 3. Low-frequency CATS time series

which would be represented as a so-caltgdimal mask
A FIR model was identified for the low-frequency CATS

mask = [—1,0,0,—2,0, -3, +1] (3) time series, and the missing values in the five gaps were



predicted using time steps of 1 unit in the low-frequency time The high-frequency time series contains six gaps. The first

series, corresponding to time steps of 10 units in the originddta point of the series is missing, then there are four gaps

time series. with a width of 21 points each, and a final gap with a width
The interpolation problem was handled a little differentlpf 20 points.

from the extrapolation problem. Rather than predicting only We created the optimal FIR model. It was a model of depth

three values for each gap, we predicted four values. The foulth with 6 inputs in different locations. We then used that model

value ought to coincide with the first measurement value tf predict the first 10 values of each gap, e.g. from point 981—

the next episode. If it wasn't, we applied a linear correctio®90. We then undid the transformations:

to the predicted values in the gap to make that value coincide £(t)

with the next measurement data point. Of course, in the case gt +At) = 10—yt +Ab) ®6)

of the last gap, we could not apply this correction, since wWe .

were dealing with an extrapolation problem. 2(t) = (£(t) = 3.0) - 0 + 1 )

V. HIGH-FREQUENCYPREDICTION This provided a forecast of the points 981-990 of the original

We could have applied the same technique to the originghe series. We then treated the value at point 990 from the

data set, thereby producing directly the high-frequency pmew-frequency prediction as a measurement data point, and

diction. We tried this, but the results were not very good. Thgyplied a linear correction to get the predicted value from the

trend of the curve seemed to be in the way. There were nggh-frequency prediction to coincide with that of the low-

enough nearest neighbors in the experience data base to ce@guency prediction. We repeated this for all five gaps.

up with good high-frequency predictions. We then de-trended the augmented time series once more,
Thus, we used a de-trending technique, called the “daéyhd calculated another high-frequency prediction, using the

return” method. The name comes from the stock market, Wh@'@ne model and even the same experience data bage, but a

this technique is frequently used. The daily return of a timgifferent immediate past to predict another 10 data points for

series is another time series, defined as: each of the five gaps. Since we already had a predicted value
x(t) — x(t — At) for time 5000, each of the sub-gaps could now be treated as
(t) = z(t) (4) " an interpolation problem.
The new time seriesy(t), is quasi-stationary. Since the VI. RESULTS

original time series had both positive and negative values, weThe next three figures show the vicinity of the five gaps,
first normalized the original time series to a mean value after the predicted values have been filled in.
3.0, and a standard deviation of 1.0, using the formula:

¢y = =0

DUl 30 )
g
wherey denotes the mean value of the original time series, a
o denotes its standard deviation. The new mean value of : &
was chosen such that the normalized time series should h
values in the rangfl.0, 5.0]. We then applied the daily return
formula to the normalized time serie§t). Fig.4 depicts the 2 ‘ ‘ ‘
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Fig. 5. Predictions of gaps 1 and 2

Fig. 4. High-frequency CATS time series
It seems that the high-frequency prediction worked in so

Unfortunately, the high-frequency time series looks almogdr as getting the frequency of the high-frequency oscillation
like white noise. It doesn’t contain much information, thus wabout right. The amplitudes may be a bit flat. Interesting is
shouldn’'t expect to get too much out of it, as white noise the last prediction. It looks like the curve corrected itself
exceedingly hard to predict! Yet, we should hopefully at leaspward between points 4970-4980. Yet, the low-frequency
be able to get the frequency right. model predicted another decline thereafter.



CATS Forecast

140 ‘ Yet, the more irregular the data are, the better will simple

techniques fare by comparison. For the given time series,
straight-line approximations are almost as good as predictions
using sophisticated models.

Data

VIIl. CONCLUSIONS
In this paper, we have presented a new two-layered approach

260 2970 2980 g‘eo 3000 3010 w0 to forecasting multi-resolution time series by decomposing
the time series into a smooth low-frequency series and a de-
350 trended high-frequency series that are then predicted indepen-

dently of each other.

The individual predictions were made using two separate
FIR models. However, the two-layered approach to multi-
resolution forecasting is essentially independent of the under-
lying forecasting algorithm. The same approach could also be
combined with any other forecasting technique.
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Time Why did we choose FIR as the underlying forecasting
algorithm? The reason was not that FIR is necessarily the best
Fig. 6. Predictions of gaps 3 and 4 technique to predict the time series at hand. The time series is
S so irregular that a simpler prediction algorithm may work just
20 ; as well. Our reason for using FIR was simply to be able to

compare FIR, which is a methodology that we developed over
the past 20 years, with other approaches that other researchers
may have come up with, in particular with neural network-
based approaches.

Our experience has been that FIR works well, when feed-
forward neural networks work well, and vice-versa. FIR has
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Time some advantages and some disadvantages over feed-forward
_ o neural networks. On the one hand, its predictions are a bit
Fig. 7. Prediction of gap 5 more reliable, because it refers back to the training data during

simulation. Thus, FIR is incapable of making wild predictions.
On the other hand, FIR may not be able to generalize as well

VIIl. VALIDATION .
_ _ as a neural network could, and for precisely the same reasons.
To validate the models, we created other gaps of width 20,

for which we already knew the correct values, and applied our REFERENCES

methodology to make predictions. Evidently, the predictions] F. E. Cellier, A. Nebot, F. Mugica, and A. de Albornoz, “Combined Qual-

should be better than the trivial prediction of connecting the itative/Quantitative Simulation Models of Continuous-Time Processes

. . Using Fuzzy Inductive Reasoning Techniquésfl. J. General Systems

last known value before the gap with the first known value 24(1-2), pp. 95-116, 1996.

after the gap by a straight line. On average, our predictiof®s J. Lopez, Time Series Prediction Using Inductive Reasoning Technjques

were Sllghtly better but unfortunately not by much Ph.D. DiSSertatiOn, Universitat Pdalitnica de Catalunya, Barcelona,
! . ! ) . Spain, 1999.

The prObIem_S are formidable. T_he IOW'frequenC.y mOdel_ [§] A. Nebot and F. E. Cellier, “Dealing With Incomplete Data Records
too irregular with too few data points to create high-quality in Qualitative Modeling and Simulation of Biomedical SystenBoc.
predictions and the high-frequency model is essentially look- CI1SS'94, 1st Joint Conf. of Intl. Simulation Societigsrich, Switzerland,

: N pp. 605-610, 1994.
ing at white noise.

For this reason, we are doubtful that any model can do much
better than ours, except possibly by an accidental hit. Highly
sophisticated prediction techniques, such as FIR, work very
well if the data are fairly regular. They can effectively and
efficiently identify nonlinearities, and produce high-quality
predictions that a simpler technique could not even dream to
produce.



