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Two previous papers [Mirats et al. (2002a) “On the selection of variables for Qualitative Modelling of Dynamical
Systems”, International Journal of General Systems 31(5) pp. 435–467; Mirats et al. (2002b) “Variable selection
procedures and efficient suboptimal mask search algorithms in Fuzzy Inductive Reasoning”, International Journal of
General Systems 31(5), pp. 469–498] were devoted to the selection of a set of variables that can best be used to
model (reconstruct) a given output variable, whereby only static relations were analysed. Yet even after reducing the
set of variables in this fashion, the number of remaining variables may still be formidable for large-scale systems.
The present paper aims at tackling this problem by discovering substructures within the whole set of the system
variables. Hence whereas previous research dealt with the problem of model reduction by means of reducing the set
of variables to be considered for modelling, the present paper focuses on model structuring as a means to subdivide
the overall modelling task into subtasks that are hopefully easier to handle. The second and third sections analyse this
problem from a system-theoretic perspective, presenting the reconstruction analysis (RA) methodology, an
informational approach to the problem of decomposing a large-scale system into subsystems. The fourth section uses
the fuzzy inductive reasoning (FIR) methodology to find a possible structure of a system. The study performed in this
paper only considers static relations.

Keywords: Model structuring, variable selection, behavioural modelling, model reduction, inductive modelling,
fuzzy inductive reasoning

1. INTRODUCTION

Given a set of observations of the input/output behaviour of a physical system, it is

desirable to obtain a behavioural model. Such models are needed for fault monitoring as

well as intelligent control. A well-suited technique for qualitative behavioural modelling

and simulation of physical systems is fuzzy inductive reasoning (FIR) (Cellier, 1991),

a methodology based on general systems theory. Yet the FIR modelling methodology is of
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exponential computational complexity, and therefore it may be useful to consider other

approaches as booster techniques for FIR.

Two previous papers (Mirats et al., 2000a,b) describing the last results on the FIR method-

ology looked at different variable selection techniques with the aim of identifying a subset of

variables that are best suited for reconstructing (modelling) a given output variable. The

different developed algorithms were applied to two different real systems, a steam generator

and a garbage incinerator process. These methods can be classified as model reduction

techniques and can be used as a precursor to the FIR modelling engine. Their aim is to reduce

the FIR search space to make the FIR methodology better suited for dealing with large-scale

systems. Yet even if the number of variables can be reduced dramatically by variable selection

techniques, the set of remaining variables to be considered by the FIR modelling engine may

still be far too large to allow the engine to converge within reasonable computation time.

Therefore, a second precursor to FIR modelling should be performed: using those variables

that are retained in the previously performed variable selection step for modelling the system,

subsets of variables need to be found that are maximally related among each other.

These subsets can then be used to determine sub-models of the overall model. These kinds of

techniques can be classified as model structuring techniques. The corresponding algorithms

are often referred to in the literature as structure identification algorithms (Klir, 1985).

A question arises here: why is it desirable to represent a complex system by means of a

collection of subsystems?

Several arguments may be stated. First, it may be either impractical or impossible to

measure all the variables relevant to the modelling task at equal frequencies. Some variables

may change over time much more slowly than others, and consequently should be sampled

less frequently. If the data are collected in groups of related variables forming part of the

same subsystem,‡ it is only necessary to measure each of those groups consistently and

coherently. Second, even if all of the data were sampled at equal frequencies, storing all of

them in a single table is impractical, because all combinations of states would then need to be

recorded, even for variables that are almost uncorrelated with one another. The superset of all

legal states of the overall system is much larger than the concatenation of sets of all legal

states of all subsystems. Another important reason is related to the easiness of the process

design when a subsystem decomposition of the complex system is available. This is a very

common feature used in engineering design. The subdivision of the overall system into parts

enables the designer to find solutions for each of these parts separately then connect the

individual designs to obtain a (usually sub-optimal) design for the overall system. Another

important issue to take into account is the number of sensors the system needs to be observed.

Sensors may be expensive, and difficult to integrate within the system to observe, and it may

be impossible to provide the system with sensors for all the variables. If a structure for such a

system is derived, the number of sensors can be reduced only providing sensing devices for

input variables, whereas the internal variables can be estimated using FIR models.

In the context of FIR, the primary motivation for subdividing a system into parts is similar

to the last argument mentioned above. Let us assume that data are available to capture the

dynamics of the entire system to be modelled. A subdivision of the system into parts

(a subdivision of the set of variables into subsets) simplifies the FIR modelling task, and often

makes an otherwise intractable problem tractable. Once the FIR models of the subsystems

have been found, the behaviour of the overall system can be reconstructed from the

individual behaviours of its parts.

‡The reader may notice that, in general, the subsystems obtained by means of a decomposition method do not
necessarily coincide with the physical subsystems of the complex system being investigated.
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This idea has its roots in the fact that, given a k-variables system, the cost of computing a

unique k-variable model is much higher than computing a set of p models of jp , k variables.

Different authors have tackled this problem in the past from an information systems point

of view. In Ashby (1965), it is stated that complex systems are unmanageable and should

be decomposed into subsystems. Also in this work, some of the formulae measuring the

information exchange between variables are presented. In Conant (1972, 1976), the measure

T of energy transference between variables is used to determine a probable subsystem

decomposition. In Broekstra (1976, 1977), the information theory introduced previously by

Ashby is used to decompose systems using modified procedures coined “constraint analysis”

by the author. In Madden and Ashby (1972), relations between variables are offered that

define the representation of an N-variable system in terms of a set of P-variables subsystems,

where P , N: In fact, it is that study which lays the foundations of what later would be

introduced by Cavallo and Klir as the Reconstructability Analysis (Cavallo and Klir,

1979a,b; 1981a,b). Gaines (1977) offers a different yet parallel point of view to that of Klir’s

general system problem solving (GSPS) approach. The problem of structure identification,

i.e. identification of subsystems, is tackled in Broekstra (1978). In Kengerlinsky (1978),

an approach for decomposing a system into subsystems based on the Shannon entropy

measure is provided. In Krippendorff (1981, 1986), yet another technique for determining

the structure of a system is given. He also provides a comparison of his approach to those of

Klir, Conant, and Broekstra.

In this paper, two different methods for obtaining subsets (subsystems) of variables are

given. A third method based on a combination of linear and non-linear statistical techniques

was already given in Mirats and Verde (2000). The FIR methodology is not resumed again, in

order to keep the paper in a readable size. However, a full description of the FIR

methodology can be found in Cellier (1991) and Mirats (2002).

In the second section, the reconstruction analysis (RA) methodology, a GSPS{ level-4

tool, is presented. The basic idea of RA is that of identifying, among all possible

decompositions of a system, the one from which the behaviour of the overall system can best

be reconstructed. The best decomposition is the one that leads to a reconstructed system, the

behaviour of which is most similar to the original system behaviour. One of the requirements

of this methodology is that all system variables are present in the set of obtained subsystems,

classifying RA as a model structuring technique. The third section hands in an RA-based

algorithm that will help us to find a subsystem decomposition of a whole system.

In the fourth section, an FIR-based approach to model structuring is presented. Starting

from the desired output variable, sequences of sub-models are constructed, until all variables

are accounted for as either input variables or internal variables. The fifth section is devoted to

assess the results by means of predicting the output of the studied system with data that were

not used to derive the different structures.

Both methodologies presented in this chapter only deal with models of zero time delay,

i.e. they only consider static relations among variables. The inclusion of time in the analysis,

and the study of dynamic relations among the variables are left for a future research effort.

The functioning of the different algorithms presented is illustrated by means of applying

them to a real system: a garbage incinerator system described in the Appendix. By using the

same example across multiple model structuring methodologies, the functioning of the set of

algorithms becomes more transparent, and the reader is able to acquire a deeper

understanding of the methodological underpinnings of the proposed algorithms.

{A complete description of the epistemological levels in the mark of Klir’s GSPS (general systems problem
solving) framework is provided in Klir (1985).

RECONSTRUCTION ANALYSIS 529



2. RECONSTRUCTION ANALYSIS

RA was developed by Cavallo and Klir in the early eighties. It tackles two complementary

problems associated with the relationship between a global system and the various sets of its

subsystems. The first problem is referred to in the literature as the reconstruction problem.

Given a global system, the aim is to determine which structure systems, each one based on a

set of subsystems of the overall system, are adequate for reconstructing the global system

with an acceptable level of approximation.

The other problem is what has been called in the literature the identification problem.

That is, given a set of subsystems by means of their behaviours, known to form part of a

global system, to find the possible global systems that embrace those subsystems, so

inferences about the unknown global system can be made.

RA originated with the reconstructability analysis proposed in Cavallo and Klir (1979a,b;

1981a,b) and Klir (1981). The methodology was refined in Klir (1991), Cellier (1991),

de Albornoz (1996) and Mirats (2002). RA is closely related to the FIR methodology,§ because

it deals with the system behaviour information expressed in qualitative terms that are either

crisp or fuzzy. It allows identifying temporal causal structures of a system, i.e. it can be

used to determine a subsystem decomposition of a system. Yet in practice it is not useful for

systems with more than say a dozen variables due to its exponential computational complexity.

2.1 The Concepts of Reconstructability

Usually a model of a system is understood as a set of rules mapping a set of variables onto

each other (Klir, 1985). If an input–output model of a system is desired, this set of rules maps

all the related input (and possibly internal) variables to the considered output so that the

behaviour of the system can be obtained from past data and this set of mapping rules. This is

basically what the FIR methodology does.

This kind of reasoning may be impractical in the presence of large numbers of variables.

In this case, it would be better to obtain a description of the internal structure of the system in

the form of rules that are used inside the model to map variables onto each other. To find the

structure of the system, in the most abstract case, means to search for a subsystem

decomposition of this system, then obtain a model for each one of these subsystems

separately, and finally integrate the information of those subsystems in a way that describes

the global system. This is what the RA methodology strives to accomplish.

Reconstructability analysis is conceived as a package of methodological tools that deals with

the problem of defining the relationship between a global system and its various subsystems.

As briefly stated before, two main problems are tackled within this set of tools: the identification

and the reconstruction problem. The tools needed to solve the identification problem are:

– Synthesis of the reconstruction family for a given set of subsystems. A reconstruction

family is defined as the set of global systems that may be represented by the given set of

subsystems in the sense that the behaviour of these subsystems may be obtained as a

projection of the overall behaviour.

– Determination of the reconstruction uncertainty, or identifiability quotient. This metric,

based on the size of the reconstruction family, is used to determine the uncertainty

associated with the reconstruction of the global system from the given set of subsystems.

Such a metric can be derived for either probabilistic or possibilistic systems.

§Reconstruction analysis is fed with the same qualitative data used in the FIR methodology.
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– Identification of the unbiased reconstruction. A unique global system is selected from

the previously generated reconstruction family. The goal is to select a global system that

contains, using Klir’s words, “all, but no more information than is contained in the

structure system.” Unbiased here means that, from the global behaviour, the known set

of subsystem behaviours should be obtained when projecting the global behaviour onto

the set of variables forming each of the subsystems.

In the case of the reconstruction problem, the tools needed are:

– Generation of reconstruction hypotheses for a given global system. By reconstruction

hypothesis is meant a possible set of subsystems from which the behaviour of the global

system can be reconstructed.

– A computation of the desirable projections of the given behaviour system.

– Computation of the distances between the given behaviour and those reconstructed from

each of the reconstruction hypotheses. This distance computation will allow establishing

a rank order among the different considered reconstruction hypotheses.

2.2 Structure Systems in Reconstruction Analysis

Consider, for example, a model, M, of a six variables system that is formed from two sub-

models, M1 and M2. Figure 1 shows the topological structure of this system.

In the given example, the model is formed by six variables: two input variables, x1 and x2,

being inputs of both the model M and the first submodel M1; three internal variables, named

v1, v2, and v3, being the outputs of the first submodel M1 as well as the inputs to the second

submodel M2; and one output variable, y1, that is the output of the second submodel M2 as

well as of the model M.

The structure can be abstracted in RA by means of a so-called composite structure.

A composite structure is a row vector, in which each element enumerates a variable of a

subsystem, and different substructures are separated by 0 elements.

CST1 ¼ 1 2 3 4 5 0 3 4 5 6
� �

:

CST1 is the composite structure of the example in Fig. 1, where the variables have been

labelled from 1 to 6, beginning with x1 and finishing with y1 (x1 ¼ 1; x2 ¼ 2; v1 ¼ 3; v2 ¼ 4;
v3 ¼ 4; y1 ¼ 6).

The reader may notice that, at this level of the methodology, no distinction is made any

longer between inputs and outputs, thus no causality is expressed by the composite structure.k

FIGURE 1 A model with two possible subsystems.

kThe causality of a mathematical model of a physical system is an artifact of the way in which models are commonly
used by simulation code, rather than being a property of the physical system itself. Hence it is meaningful to offer
a mathematical description of the system structure that reflects physical reality by not forcing the user to provide
causality information.

RECONSTRUCTION ANALYSIS 531



Variables are simply labelled with an integer number and enumerated one by one as they are

encountered in a submodel. The abstraction of a topological structure into a composite structure

is unique and straightforward. The opposite is not true. A single composite structure may be

representative of zero, one, or multiple topological structures.

Another way of expressing these kinds of structures, also used in RA, is by means of the

so-called binary structure. It consists of an ordered enumeration of all the possible binary

relations or connections among variables inside all subsystems. BST1 expresses the

corresponding binary structure in the example given in Fig. 1. Notice that, of all possible

connections among the six system variables, only two relations are missing, namely the

connections (1,6) and (2,6), indicating that there do not exist direct connections between

variables 1, 2 (the input variables of the system) on the one hand, and variable 6 (the output

variable of the system) on the other.

There exist two special cases, the totally unconnected model and the totally connected

model. The former is a model that contains a set of unrelated variables. Since there are no

connections among variables, its binary structure is empty. The latter is a model without any

internal structure. Every variable is related to every other variable. Consequently, its binary

structure is complete.

BST1 ¼

1 2

1 3

1 4

1 5

2 3

2 4

2 5

3 4

3 5

3 6

4 5

4 6

5 6

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

2.3 Tools available in Reconstruction Analysis

Given an observed behaviour, the first step on the way to solving the structure identification

problem is the generation of reconstruction hypotheses. In RA, the behaviour is defined in

exactly the same fashion as it was done for the FIR methodology.# A reconstruction

hypothesis is simply a proposed composite structure over the set of variables contained

in the behaviour. Once a reconstruction hypothesis has been formulated, the behaviour of

the global system is projected onto each of the subsystems obtaining the subsystem

behaviours. The behaviours of the individual subsystems are then recombined, leading to a

reconstructed overall behaviour. The quality of the reconstruction is evaluated by

#The behaviour is expressed by means of a matrix that contains the ordered set of all observed states of the system
together with a confidence vector expressing the likelihood of each state to occur.
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measuring the distance between the original system behaviour and the reconstructed one.

Figure 2 shows this process. A full description of how this process is performed can be

found in Mirats (2002).

2.3.1 Algorithms to Generate Reconstruction Hypotheses

In order to find the optimal subsystem decomposition using FRA, all possible sets of subsystems

of a given global system should be computed. This is a formidable task, feasible only for

small-scale systems comprised of few variables. The number of possible subsystem

decompositions grows exponentially with the number of variables. Three sub-optimal search

algorithms have been reported in the open literature (Uyttenhove, 1978; Klir and Uyttenhove,

1979; Cavallo and Klir, 1979b; 1981b) that usually generate satisfactory system decompositions.

The first of these algorithms has been called structure refinement. It starts out with the totally

connected binary structure, i.e. all possible binary relations between the system variables are

considered. For the given example, the totally connected composite structure is defined as:

CST2 ¼ ð 1 2 3 4 5 6 Þ:

The totally connected structure has no reconstruction error, since no reconstruction

needs to be done. Then, at each step, one binary connection is severed at a time, and the

reconstruction error for the resulting subsystem decomposition is computed. When for

the present level of decomposition all binary connections have been severed one at a time, the

one that results in the structure with the smallest reconstruction error is permanently

removed. At the first step of the algorithm, the number of reconstructions that is to be

computed in a k-variable system is given by:

kðk 2 1Þ

2
:

Then a second binary relation is severed. The algorithm follows on severing one binary

relation at a time, until the one with the smallest reconstruction error has been found.

The corresponding binary relation is then deleted permanently. The algorithm continues in

the same fashion, until the reconstruction error of all of the candidate structures at the next

level becomes larger than the limit imposed by the investigator. A quality measure based on

FIGURE 2 Reconstruction evaluation process.
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the reconstruction error is introduced.

Qi ¼ 1 2
rec erri

rec errtot unc

where rec_erri is the reconstruction error associated with the i th reconstruction

hypothesis, and rec_errtot_unc is the reconstruction error of the totally unconnected

structure, which exhibits the largest reconstruction error possible. The quality measure is

a metric normalized to the range [0,1], where higher quality values denote better

reconstruction hypotheses. For the example given in Fig. 1, the totally unconnected

structure is defined as:

CST3 ¼ ð 1 0 2 0 3 0 4 0 5 0 6 Þ:

When the structure refinement algorithm is applied to the example at hand (for the

system given in Fig. 1, an artificial behaviour matrix and a confidence vector are used to

obtain the given results in this section. Those are not reported here; refer to Mirats

(2002)) with a smallest tolerated quality of Qmin ¼ 0:1; the following result is obtained:

RESULTANT STRUCTURE: (1,6) (2) (3) (4) (5).

The second algorithm found in the open literature is the so-called structure aggregation

algorithm. The strategy followed here is just the opposite of the one followed in the previously

described algorithm. In this case, the algorithm starts out with the totally unconnected model,

and at each time step, one binary connection is added. From all possible structure candidates,

the one that most reduces the reconstruction error is considered the best, i.e. the binary relation

that, when added, most reduces the reconstruction error is added permanently. The algorithm

ends when the reconstruction error drops below the largest tolerable error specified by the

modeller. For the given example, this algorithm, with Qmin ¼ 0:1; leads to the following results:

RESULTANT STRUCTURE: (1,3) (1,6) (2) (4) (5).

The structures resulting from the application of the two algorithms are not identical,

but similar. In the given example, the structure aggregation algorithm converged much faster,

because the selected minimum quality was very low. If a higher value of Qmin had

been selected, the structure refinement algorithm would have converged faster, whereas the

structure aggregation algorithm would have required more time to reach the desired goal.

Finally, the third of the known sub-optimal search strategies is the so-called single-step

refinement algorithm. This algorithm, just like the refinement algorithm, starts out with the

totally connected structure. The first step of the single-step refinement algorithm is identical to

that of the refinement algorithm. However, at the end of the first step, all relations are

permanently severed that exhibit a reconstruction error that is smaller than the largest tolerated

one, or in the current implementation, that exhibit a quality that is better than the lowest

permissible one. Only a single step of the algorithm is performed. Whereas the refinement

algorithm and the aggregation algorithm are still of exponential complexity (though much faster

than exhaustive search), the single-step refinement algorithm is of polynomial complexity.

When this algorithm is applied to the given example, allowing a largest reconstruction

error of emax ¼ 0:005 (please refer to Mirats et al. (2002) for a definition of the reconstruction

error) the following results are obtained:

RESULTANT STRUCTURE: (3,5) (4,6) (1) (2).
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3. APPLICATION OF FRA IN CONJUNCTION WITH A VARIABLE SELECTION

TECHNIQUE

In this section, FRA is applied to the garbage incinerator system briefly described in

the Appendix, but only involving the 15 variables remaining from a correlation

analysis performed so as to eliminate redundant variables (Mirats and Verde, 2000).

With this pre-filtering of the system variables, it is possible to reduce the number of

structures that FRA needs to investigate to determine the internal structure of the system.

In this way, the computing time of the FRA engine can be significantly reduced when

searching for a plausible structure within the set of system variables. The discarded

variables were x1, x3, x15, x16, and x17, so 14 input variables and of course the output one

remain for the analysis. Due to the size of the system, only the single-step refinement

algorithm has been used.

Up to 43200 data vectors are available from the incinerator system, 42700 were used

to compute the models and the last 500 were left to assess the results. The single-step

refinement algorithm required roughly 11 h of computing time on a Sun Ultra-Sparc II.

The results from this experiment are listed in Table I.

BINARY RELATIONS WITH AN ERROR LARGER THAN 0.1000 ARE CONSIDERED

RESULTANT STRUCTURE: (2) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (18) (19) (20)

BINARY RELATIONS WITH AN ERROR LARGER THAN 0.0100 ARE CONSIDERED

RESULTANT STRUCTURE: (5,8,20) (5,11,14) (7,8,20) (7,14,18) (8,10,20) (10,14,18) (2,8,9,14)

(4,6,7,8,19) (4,6,7,12,19) (4,9,11,12,13) (2,9,11,12,13,14) (4,6,7,9,12,13)

BINARY RELATIONS WITH AN ERROR LARGER THAN 0.0150 ARE CONSIDERED

RESULTANT STRUCTURE: (4,10) (10,13) (10,18) (14,18) (2,11,13) (2,12,13) (4,6,12) (4,6,19) (5,11,14)

(8,10,20) (9,12,13) (6,7,8,19) (6,8,9,12) (7,8,12,14) (7,12,13,14).

Three different largest reconstruction error values were applied: emax ¼ 0:1; emax ¼ 0:01;
and emax ¼ 0:015: Analysing the results of this experiment, when the largest reconstruction

error of a single binary relation between variables to be omitted is set to emax ¼ 0:1;
the algorithm does not find any binary relation to consider: all of them are omitted, and a

totally unconnected structure is obtained.

In contrast with emax ¼ 0:01; 55 out of the 105 possible binary relations are considered.

The resulting subsystems, labelled S1FRA0.01 to S12FRA0.01, are listed in Table II.

Unfortunately, the result is difficult to interpret. Three different structures contain the system

output, X20. Which of those should be used to compute the output? Do the other two

occurrences introduce feedback loops into the resulting topological structure? How are

algebraic loops among variables avoided?

To avoid this problem, the largest reconstruction error was increased to emax ¼ 0:015:
In this case, 36 of the 105 binary relations are retained, and only one subsystem containing

the output variable is found. The resulting substructures are listed in Table III.

The output is computed using variables X8 and X10. How are those variables evaluated?

Unfortunately, both X8 and X10 appear in three of the remaining substructures. Which of

those should be used to compute them? What about feedback structures? Quite evidently, the

previously mentioned causality problem has not been solved, only delayed.
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3.1 Obtaining a Topological Structure of a System Using a New FRA-based Algorithm

Talking about the internal structure of a system using FRA-based algorithms three different

structure types have been introduced:

. The topological structure, represented by a block diagram showing subsystems with

inputs and outputs as well as interconnections between them.

TABLE I Single step refinement algorithm results

Error Binary relation omitted Error Binary relation omitted

0.000121 2, 4 0.000221 7, 11
0.000031 2, 5 0.022214 7, 12
0.000024 2, 6 0.016339 7, 13
0.000011 2, 7 0.020031 7, 14
0.011050 2, 8 0.013191 7, 18
0.014203 2, 9 0.021365 7, 19
0.000042 2, 10 0.014242 7, 20
0.021082 2, 11 0.023871 8, 9
0.016028 2, 12 0.018399 8, 10
0.027111 2, 13 0.000102 8, 11
0.010561 2, 14 0.000115 8, 12
0.008524 2, 18 0.006032 8, 13
0.000286 2, 19 0.023143 8, 14
0.009398 2, 20 0.000282 8, 18
0.000033 4, 5 0.018324 8, 19
0.028183 4, 6 0.018102 8, 20
0.012103 4, 7 0.000067 9, 10
0.013151 4, 8 0.014634 9, 11
0.012272 4, 9 0.015811 9, 12
0.016134 4, 10 0.018401 9, 13
0.014261 4, 11 0.014753 9, 14
0.025047 4, 12 0.000297 9, 18
0.013029 4, 13 0.000214 9, 19
0.008572 4, 14 0.000216 9, 20
0.006091 4, 18 0.008464 10, 11
0.016835 4, 19 0.015678 10, 12
0.005103 4, 20 0.018031 10, 13
0.000067 5, 6 0.013597 10, 14
0.000026 5, 7 0.023159 10, 18
0.013272 5, 8 0.000157 10, 19
0.000661 5, 9 0.021783 10, 20
0.000017 5, 10 0.014957 11, 12
0.021411 5, 11 0.019011 11, 13
0.000019 5, 12 0.021164 11, 14
0.000011 5, 13 0.008869 11, 18
0.015141 5, 14 0.008357 11, 19
0.004083 5, 18 0.008176 11, 20
0.000075 5, 19 0.024819 12, 13
0.011106 5, 20 0.031104 12, 14
0.024196 6, 7 0.000116 12, 18
0.022142 6, 8 0.011067 12, 19
0.015137 6, 9 0.000258 12, 20
0.000028 6, 10 0.023164 13, 14
0.000001 6, 11 0.000103 13, 18
0.023185 6, 12 0.000037 13, 19
0.014601 6, 13 0.000135 13, 20
0.000084 6, 14 0.021305 14, 18
0.000079 6, 18 0.000109 14, 19
0.031102 6, 19 0.000099 14, 20
0.000174 6, 20 0.002862 18, 19
0.021566 7, 8 0.004012 18, 20
0.012323 7, 9 0.002243 19, 20
0.000367 7, 10
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. The composite structure, obtained from the topological structure by enumerating the

variables of each subsystem, ignoring whether they are input or output, and ignoring

the topology of connections between the subsystems.

. The binary structure, obtained from the composite structure by expanding the variables

of each subsystem into a set of binary relations and then merging all these sets into one in

order to eliminate the redundant binary relations.

The conversion from the topological structure via the composite structure to the binary

structure is unique. Unfortunately the conversion from the binary to the composite structure

is not unique, and we need additional rules to decide which of the possible composite

structures is to be selected. The conversion from the composite structure to the topological

structure is not unique either. There may exist 0, 1, or multiple topological structures

representing the same composite structure.

Whereas the binary structure is most useful for searching through a structure

space and for comparing different structures with each other, what we ultimately

need for a practical realisation is the topological structure. The single-step refinement

algorithm of FRA will give us the relative strengths of all binary relations. It can be

used to derive different binary structures, which then in turn can be converted to a

composite structure. Unfortunately, there is no known way to obtain a topological

structure from that.

Since we need a topological structure, a different FRA-based algorithm is now proposed

that can be used to derive the topological structure directly. It is based on the observation that

the complete connectedness of a substructure only remains important as long as no causality

is attached to it. Once it has been decided which variable needs to be computed from the

substructure, it is only important that the binary relations between the inputs and that output

are strong. The binary relations among the different inputs are no longer of any major

concern. In fact, it might be preferable that they are weak so that the model does not operate

on unnecessary redundant information. The algorithm works as follows.

. We look at the relative strengths of all binary relations with the output variable. Those

relations with strength larger than x are identified, where x may assume a value such as

0.01. For the example at hand, i.e. the incinerator system, we find the following

TABLE II Incinerator subsystem decomposition obtained with FRA using emax ¼ 0:01

S1FRA0.01 X5 X8 X20 S7FRA0.01 X2 X8 X9 X14

S2FRA0.01 X5 X11 X14 S8FRA0.01 X4 X6 X7 X8 X19

S3FRA0.01 X7 X8 X20 S9FRA0.01 X4 X6 X7 X12 X19

S4FRA0.01 X7 X14 X18 S10FRA0.01 X4 X9 X11 X12 X13

S5FRA0.01 X8 X10 X20 S11FRA0.01 X2 X9 X11 X12 X13 X14

S6FRA0.01 X10 X14 X18 S12FRA0.01 X4 X6 X7 X9 X12 X13

TABLE III Incinerator subsystem decomposition obtained with FRA using emax ¼ 0:015

S1FRA0.015 X4 X10 S9FRA0.015 X5 X11 X14

S2FRA0.015 X10 X13 S10FRA0.015 X8 X10 X20

S3FRA0.015 X10 X18 S11FRA0.015 X9 X12 X13

S4FRA0.015 X14 X18 S12FRA0.015 X6 X7 X8 X19

S5FRA0.015 X2 X11 X13 S13FRA0.015 X6 X8 X9 X12

S6FRA0.015 X2 X12 X13 S14FRA0.015 X7 X8 X12 X14

S7FRA0.015 X4 X6 X12 S15FRA0.015 X7 X12 X13 X14

S8FRA0.015 X4 X6 X19
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significantly large binary relations with the output (the binary relations are listed using

the indices of the variables only):

. Since individual submodels that are too complex are not desired, the four most

important inputs are selected, if there are at least four inputs with strengths greater

than x, otherwise all inputs with strengths greater than x are selected. For the case

of the incinerator system, exactly four binary relations with the output variable are

found that comply with these requirements. Consequently, the first substructure is

found to be:

. The algorithm is repeated for every one of these inputs, excluding

relations with those variables that had previously been used as outputs

of subsystems. In the current situation, this only applies to X20. The following

substructures are found:

5, 20 err=0.011106
7, 20 err=0.014242
8, 20 err=0.018102
10, 20 err=0.021783

5, 8 err=0.013272
5, 11 err=0.021411
5, 14 err=0.015141

4, 7 err=0.012103
6, 7 err=0.024196
7, 8 err=0.021566

7, 9 err=0.012323
7, 12 err=0.022214
7, 13 err=0.016339
7, 14 err=0.020031
7, 18 err=0.013191
7, 19 err=0.021365
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. Now it is necessary to eliminate algebraic loops. There is one algebraic loop in this example,

because X8 ¼ f(X7) and X7 ¼ f(X8). The largest not selected relation among those of the

two substructures is identified under the constraint to be different from the one that provokes

the algebraic loop. For our example, we find the relation (7, 14). The algebraic loop relation

is substituted by the new one, thus the ST3 substructure is replaced by:

. Now, the variables that have not been used in any of the found substructures need to

be studied. For the given example all variables except X2 have been used. Thus, the strengths

of all variables that have not yet been used as outputs can be checked with that variable:

. The strongest relation is with variable X13, thus we make a model of that variable:

2, 8 err=0.011050
4, 8 err=0.013151
5, 8 err=0.013272
6, 8 err=0.022142
7, 8 err=0.021566
8, 9 err=0.023871
8, 10 err=0.018399
8, 14 err=0.023143
8, 19 err=0.018324

4, 10 err=0.016134
8, 10 err=0.018399
10, 12 err=0.015678
10, 13 err=0.018031
10, 14 err=0.013597
10, 18 err=0.023159

4, 7 err=0.012103
7, 8 err=0.021566
7, 9 err=0.012323
7, 13 err=0.016339
7, 14 err=0.020031
7, 18 err=0.013191

2, 9 err=0.014203
2, 11 err=0.021082
2, 12 err=0.016028
2, 13 err=0.027111
2, 14 err=0.010561

2, 13 err=0.027111
4, 13 err=0.013029
6, 13 err=0.014601
9, 13 err=0.018401
11, 13 err=0.019011
12, 13 err=0.024819
13, 14 err=0.023164
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By now a complete topological structure has been extracted from the single-refinement

information of FRA. Before we had 15 variables, thus in order to model the output (X20) from

the full set of inputs, we would have needed to use 14 sensors within the system. By now, we

have six submodels. Each of them computes one variable, thus we only need nine sensors

now. We could easily continue adding more substructures, until the number of sensors has

been reduced to the desired level. Of course, these additional models will be poorer and

poorer in quality, because there may be strong relations with previously used outputs that

cannot be used again. Thus, there is a compromise to be made. Figure 3 shows the resulting

structure of applying this algorithm to the incinerator system.

The proposed methodology offers a comprehensive approach to determining the

substructure of a model, assuming that all variables need to be used (which makes sense,

because these are the variables left over after the elimination step of Mirats and Verde

(2000)). Once a structure has been found that accounts for all the variables, additional

substructures can be added to reduce the number of true system inputs, i.e. the number of

sensors that need to be used in the system. However, additional substructures should be added

sparingly and after serious contemplation only, as these substructures will inevitably exhibit

poorer tracking capabilities.

The single-step refinement algorithm found 55 important binary relations. The structure

resulting from the proposed algorithm contains 46 binary relations, 37 of which are

important, and nine are unimportant.

4. USING FIR TO FIND THE STRUCTURE OF A SYSTEM

Up to this point, FRA has been proposed as a technique for identifying the internal structure

of a system. It was shown that its single-step refinement algorithm could indeed provide the

information needed to determine a meaningful internal structure of a system. Unfortunately,

the algorithm, at least in its current Matlab implementation, is far too slow to be used on a

truly large-scale system.

An alternative algorithm based on FIR is proposed to derive the internal structure of a

system. FIR is more efficient than FRA, and therefore it is hoped that similarly good results

can be obtained considerably faster using this methodology. The algorithm follows

similar paths of reasoning as the previously introduced FRA-based algorithm. As before,

with the data of the garbage incinerator system, the algorithm is applied to the subset of

variables remaining after the variable elimination step reported in Mirats and Verde (2000).

FIGURE 3 Topological structure obtained by means of an FRA-based algorithm.
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In the sequel, the FIR-based structure identification algorithm is presented.

. With the considered variables, a flat (static) FIR model of the output variable is

constructed. Due to the complexity issue, FIR will select only a subset of the possible

inputs, probably not more than four or five of them. For the example at hand input

variables X2, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X18, X19, and the output

variable X20 are being considered. When an optimal mask search is performed for this 15

variables system, FIR chooses the following model:

X20 ¼ f 1ðX4;X5;X6;X12;X19Þ Q ¼ 0:2089:

Although we already know that X20 depends on all of the remaining 14 inputs, FIR only

selects a subset of those variables, namely the ones that are most useful in interpreting

the observations made about the output. The reader may notice that the set of variables

selected by FIR is dramatically different from the one chosen by FRA. The two models

have only one variable, X5, in common. The variable with the strongest binary relation to

the output, X10, was not selected at all by FIR.

. Now it is necessary to determine the relative importance of each of the inputs used by the

model that was previously found. In the given example, there are five inputs. The relative

importance of the five inputs could, of course, be determined using FRA, but the same

can also be accomplished using FIR in the following manner. One at a time, each of the

five inputs is severed, and the quality of the resulting FIR model without the severed

input is computed. Thus, in the case at hand, the fuzzy quality of the five following

models is computed:

X20 ¼ f 2ðX4;X5;X6;X19Þ! Q ¼ 0:1752

X20 ¼ f 3ðX4;X5;X12;X19Þ! Q ¼ 0:1735

X20 ¼ f 4ðX5;X6;X12;X19Þ! Q ¼ 0:1521

X20 ¼ f 5ðX4;X6;X12;X19Þ! Q ¼ 0:1339

X20 ¼ f 6ðX4;X5;X6;X12Þ! Q ¼ 0:1165:

Now, we have a measure of the importance of each of the inputs that model the output

variable of the system. Since f6 reduces the quality most, X19 was the most important

input. Similarly X12 is the least important one.

. In this next step, an FIR model is generated for each of the inputs, starting with the least

important one, excluding those variables as possible inputs that had previously been

used as outputs. In the current situation, only X20 needs to be excluded. The least

important input for the incinerator system is X12, and the FIR model found for this

variable is:

X12 ¼ f 7ðX4;X6;X7;X9;X13Þ with Q ¼ 0:4690:

Thus, we just found the next substructure.

. Now, we proceed with the next least important input of f1, which happens to be X6. Thus

we make an FIR model, excluding all of those variables that were already outputs,

namely X12 and obviously X20. In this way, we find the next substructure. The procedure

continues in the same fashion until all physical inputs of the system, in this case 14,
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appear among the inputs of the model. This gives us a complete structure. For the

incinerator system, the following models are found for each of the inputs of the f1 model:

X6 ¼ f 8ðX4;X7;X8;X13Þ with Q ¼ 0:4922

X4 ¼ f 9ðX2;X9;X13;X14;X19Þ with Q ¼ 0:2765

X5 ¼ f 10ðX8;X10;X11;X14;X18Þ with Q ¼ 0:4696

X19 ¼ f 11ðX7;X8;X11;X14Þ with Q ¼ 0:1375:

The given algorithm is based on the idea that it may not be economical to provide the

system with sensors for all of the inputs (in this case, fourteen input variables). Instead, by

providing an internal structure, sensors need only be provided for the true inputs, whereas the

internal variables (such as X12 in Fig. 4) can be estimated using FIR models. The least

important inputs were modelled first, in order to reserve sensors for the more important ones.

The resulting structure of applying this algorithm to the incinerator system is given in Fig. 5.

The proposed methodology offers an alternative approach to determine the substructure of

a model, assuming again that all variables need to be used. Just as in the previous case, once a

structure has been found that accounts for all the variables, additional substructures can

be added to reduce the number of true system inputs, i.e. the number of sensors that need to be

used in the system. However, additional substructures should be added sparingly and after

serious contemplation only, as these substructures will inevitably exhibit poorer tracking

capabilities.

FIGURE 4 Second substructure found for the incinerator system using FIR.

FIGURE 5 Possible structure for the incinerator system found with FIR.
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The structure resulting from the proposed FIR-based algorithm contains 62 binary

relations, 39 of which are important, whereas 23 are unimportant.

5. ASSESSMENT OF RESULTS

In section 3 a possible structure for the system under study was derived using an FRA-based

algorithm as shown in Fig. 3. In section 4, the FIR methodology was used with the same

objective (refer to Fig. 5). Up to now results have only been compared on how well those

obtained structures encompass the strong binary relations. Both structure systems were

derived using 42700 out of 43200 available data points. In this section the last 500 points will

be used to validate the output variable from the obtained structures, i.e. models will be

assessed with data that were not used to derive them.

First, the topological structure obtained by means of an FRA-based algorithm is used to

model the output variable of the incinerator system. FIR models of complexity 5 are found

for the ST6, ST7, ST4, ST2, ST5 and ST1 subsystems so obtaining the behaviour models for

the elements of the structure system. In this case, the output variable is modelled

from variables x5, x7, x8 and x10. The FIR optimal model for the ST1 subsystem is given

by X20ðtÞ ¼ f {x5ðt 2 7Þ; X8(t 2 7), X20(t 2 3), X20(t 2 1)} with a quality of the model

Q ¼ 0:6054: The real output variable trajectory (depicted by the continuous line) versus the

predicted output trajectory (dotted line) are drawn together in Fig. 6. The percent average

error for this predicted signal is 10.64%, which is greater than the error reported in Mirats

et al. (2002b), which turned to be between 1.25 and 3.64%, depending on the used FIR

FIGURE 6 Incinerator output variable when using the FRA-obtained structure. Real (continuous line) vs. predicted
(dotted line).
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model, but still quite acceptable. A structure of a system from its pure data has been obtained,

helping to understand the process being analyzed, that pays for the little loss of accuracy

when predicting the output variable from the derived structure.

Then, the topological structure obtained by means of the FIR-based algorithm was used to

model the output variable of the incinerator system. Again, FIR models of complexity 5 are

found for the f11, f10, f9, f8, f7 and f1 subsystems in Fig. 5. Now, the output variable is modelled

from variables x4, x5, x6, x12 and x19. The FIR optimal model for the f1 subsystem is given

by the qualitative relation x20ðtÞ ¼ f {x19ðt 2 7Þ; x5(t 2 6), x20(t 2 3), x20(t 2 1)} with

a quality of the model Q ¼ 0:6077: Figure 7 shows the real versus the predicted output

trajectory for this particular model. The percent average error for this predicted signal is

9.31%, again greater than the error reported in Mirats et al. (2002b), but slightly less than the

error found using the FRA structure.

6. CONCLUSIONS

This paper deals with the difficult problem of structure identification in large-scale systems.

Two different algorithms are proposed, each of which has the potential of discovering the

internal topological structure of a system:

. an algorithm based on fuzzy reconstruction analysis (FRA),

. an algorithm based on FIR.

Let us discuss briefly the pros and cons of these two algorithms.

The FRA-based algorithm is clearly the best from the point of view that FRA, when

executed in an exhaustive fashion, looks at every possible projection of every variable onto

FIGURE 7 Incinerator output variable when using the FIR-obtained structure. Real (continuous line) vs. predicted
(dotted line).
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every subspace formed by any subset of the other variables. Unfortunately, the number of

variations to be considered grows so rapidly with the number of variables in the system that

this approach is at best of academic interest. Only one highly suboptimal FRA-based

algorithm has any chance of terminating within a reasonable time span: the single-step

refinement algorithm. Unfortunately, even this algorithm becomes highly inefficient for an

even modestly large number of variables. Hence FRA-based techniques can only be applied

to small- to medium-scale systems.

FRA-based algorithms operate on the binary structure of the system. Whereas the

composite structure can be derived from the binary structure, it is not possible to derive

the topological structure (which is our aim) from the composite structure. A heuristic

algorithm was proposed that derives a topological structure directly from the relative

strengths of the binary relations found by the single-step refinement algorithm of FRA.

The algorithm has two major drawbacks.

1. The number of inputs of each subsystem was limited to four. Why four? Why not three

of five? Shouldn’t the number of possible inputs depend on the quantity and quality of

available observational data? FIR clearly does a better job at selecting inputs in a

dynamical and rational fashion.

2. The algorithm only considers the strengths of binary relations between the individual

inputs and the output of each subsystem. The relative strengths of the binary relations

among the inputs are not considered. Hence FRA chooses those variables with the

largest strengths of binary relations to the output, but maybe two of those input variables

have strong binary relations between them so that another input variable might offer

more additional information in spite of exhibiting a smaller strength of its binary

relation with the output.

The FIR-based algorithm makes use of all the variables to select an optimal mask for

the output variable. It then works its way back towards the inputs, treating each of the inputs of

this submodel in turn as an internal variable, proposing an FIR-model for it. The algorithm

continues until all variables are accounted for. The FIR-based approach has the advantage

that it makes use of a methodology that was designed as a tool for the generation of simulation

models with optimal prediction power. Hence the resulting FIR-model decomposition

should offer excellent prediction capabilities. The FIR-based algorithm also has its drawbacks.

1. The algorithm, as proposed, considers the weaker inputs first as internal variables. This

makes sense, because it allows sensors to be reserved for the stronger variables. Yet in the

given example, all inputs of the last stage turned out to be made into internal variables.

Wouldn’t it then have made more sense to model the stronger inputs first? Doesn’t FIR try

to make a compromise in each model between completeness of available information

(many inputs) and complexity of the model (few inputs), in order to optimise the usage of

the available observational data? Isn’t there a “conflict of interest” between choosing

stronger versus weaker variables first?

2. The main goal of this research effort is to find techniques that reduce the workload for FIR

by reducing the number of potential input variables to be considered. Yet already in the first

step of this algorithm, a complete FIR problem is being solved, i.e. the main purpose of the

investigation is defeated. Clearly, FIR is not suitable as a tool for dealing with large-scale

systems directly.

It may be interesting to compare the two different approaches from the point of view of their

coverage of the important binary relations. To this end, the binary relations of the incinerator
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system were reordered in terms of decreasing relative strengths, and next to each binary relation it

was marked whether or not it was captured by any or all of the two proposed algorithms in Table IV.

Both algorithms do a good job at capturing the majority of the important binary relations.

Let us look at the most important binary relation relating variables X12 and X14 with each other.

TABLE IV Capturing of binary relations by the three proposed structure identification algorithms

Importance of binary relation Binary relation FRA-based method FIR-based method

0.031104 12, 14
p

A
0.031102 6, 19

p p

0.028183 4, 6 A
p

0.027111 2, 13
p p

0.025047 4, 12 A
p

0.024819 12, 13
p p

0.024196 6, 7
p p

0.023871 8, 9
p

A
0.023185 6, 12

p p

0.023164 13, 14
p p

0.023159 10, 18
p p

0.023143 8, 14
p p

0.022214 7, 12
p p

0.022142 6, 8
p p

0.021783 10, 20
p

A
0.021566 7, 8

p p

0.021411 5, 11
p p

0.021365 7, 19
p p

0.021305 14, 18 A
p

0.021164 11, 14
p p

0.021082 2, 11
p

A
0.020031 7, 14

p p

0.019011 11, 13
p

A
0.018401 9, 13 A

p

0.018399 8, 10
p p

0.018324 8, 19 A
p

0.018102 8, 20
p

A
0.018031 10, 13

p
A

0.016835 4, 19 A
p

0.016339 7, 13 A
p

0.016134 4, 10
p

A
0.016028 2, 12

p
A

0.015811 9, 12 A
p

0.015678 10, 12 A A
0.015141 5, 14

p p

0.015137 6, 9
p p

0.014957 11, 12
p

A
0.014753 9, 14

p p

0.014634 9, 11 A A
0.014601 6, 13 A

p

0.014261 4, 11 A A
0.014242 7, 20

p
A

0.014203 2, 9 A
p

0.013597 10, 14 A
p

0.013272 5, 8
p p

0.013191 7, 18 A A
0.013151 4, 8

p p

0.013029 4, 13
p p

0.012323 7, 9
p p

0.012272 4, 9 A
p

0.012103 4, 7 A
p

0.011106 5, 20
p p

0.011067 12, 19
p p

0.01105 2, 8 A A
0.010561 2, 14

p p

0.009398 2, 20 A A
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This binary relation is captured by the FRA-based algorithm only. The way both algorithms

operate, by working their way back from the output to the inputs, a strong binary relation

between inputs may be missed if neither of these inputs exhibits a strong binary relation with

the output, as is the case in the given example. Yet, and this is interesting indeed, the FIR-based

algorithm made use of X12 as an internal variable, but did not include X14 among the inputs to be

used by the optimal mask. Evidently, it found that X12 is better predictable from a combination

of other variables. The FIR-based approach also employs a variety of less important variables

as part of its inputs, because they still contain useful information that can be exploited.

TABLE IV – continued

Importance of binary relation Binary relation FRA-based method FIR-based method

0.008869 11, 18 A
p

0.008572 4, 14 A
p

0.008524 2, 18 A A
0.008464 10, 11 A

p

0.008357 11, 19 A
p

0.008176 11, 20 A A
0.006091 4, 18

p
A

0.006032 8, 13
p p

0.005103 4, 20 A
p

0.004083 5, 18 A
p

0.004012 18, 20 A A
0.002862 18, 19 A A
0.002243 19, 20 A

p

0.000661 5, 9 A A
0.000367 7, 10

p
A

0.000297 9, 18 A A
0.000286 2, 19 A

p

0.000282 8, 18
p p

0.000258 12, 20 A
p

0.000221 7, 11 A
p

0.000216 9, 20 A A
0.000214 9, 19 A

p

0.000174 6, 20 A
p

0.000157 10, 19 A A
0.000135 13, 20 A A
0.000121 2, 4 A

p

0.000116 12, 18 A A
0.000115 8, 12 A A
0.000109 14, 19 A

p

0.000103 13, 18
p

A
0.000102 8, 11

p p

0.000099 14, 20 A A
0.000084 6, 14

p
A

0.000079 6, 18 A A
0.000075 5, 19 A

p

0.000067 5, 6 A
p

0.000067 9, 10 A A
0.000042 2, 10 A A
0.000037 13, 19 A

p

0.000033 4, 5 A
p

0.000031 2, 5 A A
0.000028 6, 10 A A
0.000026 5, 7

p
A

0.000024 2, 6 A A
0.000019 5, 12 A

p

0.000017 5, 10
p p

0.000011 2, 7 A A
0.000011 5, 13 A A
0.000001 6, 11 A A
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The reader is reminded that FIR is truly a simulation tool, whereas FRA and the statistical

technique are structuring tools. It is very promising to recognize that techniques as different as

FRA and the correlation method indeed come up with a relatively similar set of important

binary relations.

References

de Albornoz, A. (1996) “Inductive reasoning and reconstruction analysis: two complementary tools for qualitative
fault monitoring of large-scale systems”, Ph.D. thesis (Department Llenguatges i sistemes informàtics,
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APPENDIX

The process analysed in this work is a thermal incinerator. The description given here is a

general description of the functioning of these kinds of systems (Valle et al., 1999). In this

unit, high temperature and chemical reactions burn up process fumes, and change them into

harmless carbon dioxide and water vapours, which are then released through a stack into the

atmosphere. The fumes processed in the incinerator are commonly called NOx fumes, and

mainly consist of nitric oxide (NO), nitrogen dioxide (NO2), and nitrous oxide (N2O).

Hydrogen cyanide (HCN) is also present. The gases are converted into nitrogen and water

vapour in a three-stage combustion process. The first stage is reduction, the second is

re-oxidation, and the third is catalytic oxidation. A de-mineralised water (DMW) heat

exchanger is located between the second and third combustion stages (Fig. A1).

Data were gathered up from the system at a sampling rate of 1 min and 43200 data points

were recorded. The considered output variable for this study is the emission of NOx gas.

Table A1 gives a short description of the variables in the system that this paper deals with.

Figure A1 shows a general diagram describing the layout of the system.

The reduction section is a large natural gas (methane) furnace. The air for the combustion

is provided by the vent header (DNT), or stripper vent header (DNA). The burning of natural

gas provides all the heat required for the reduction stage. There are four major chemical

reactions that occur in the reduction section furnace.

1. Burning of natural gas CH4 þ 2O2 ) 2H2O þ CO2

2. NOx gas is destroyed by CH4 þ 2NO2 ) N2 þ 2H2O þ CO2

3. Additional fuel is added without air to increase the reaction between natural

gas and the NOx, and to remove any trace of oxygen in the system CH4 þ 4NO ) 2N2

þ 2H2O þ CO2

4. CO2 gas is destroyed by CH4 þ CO2 ) 2CO þ 2H2.

The hot gases leaving the reduction furnace thus consist of carbon monoxide, nitrogen,

hydrogen, water vapour, carbon dioxide, NOx (below 200 ppm), and HCN

FIGURE A1 Incineration process scheme.
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(below 500 ppm). After the reduction furnace hot gases are quenched by mixing them with

cooler recycled stack gas. The quenched gas then flows into the stage section called the

re-oxidation stage. This section is not used for NOx abatement, but to convert CO and H2,

the combustibles from the reduction furnace, into CO2 and water vapour. In this section

fuel gas is not used, and a blower ads ambient air to the section. Two additional reactions

occur:

2CO þ 2O2 ) O2 þ 2CO2 2H2 þ O2 ) 2H2O:

The hot gases from the re-oxidation section then flow through an economiser where they

are cooled by de-mineralising water. The hot DMW is then routed to the plant. Gases exiting

the economiser flow through a honeycomb grid of platinum catalyst, where the CO and the

organics are converted to inert flue gases before their discharge from the stack to the

atmosphere:

CO þ 2HCN þ C6H5CH3 þ O2 ) CO2 þ H2O þ N2:

Analyser probes in the stack monitor the oxygen, CO, CO2, and NOx levels.
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TABLE A1 Variable description in the garbage incinerator plant

Variable Physical meaning Variable Physical meaning

1 (input) DNT unit one vent (SCFM) 11 (input) Column B top pressure (inch W)
2 (input) DNT unit two vent (SCFM) 12 (input) Column C top pressure (inch W)
3 (input) A column overhead (F) 13 (input) Column D top pressure (inch W)
4 (input) C column overhead (F) 14 (input) DP on A column (PSIG)
5 (input) DNT vent rate (SCFM) 15 (input) DP on B column (PSIG)
6 (input) Stack gas recycle (ACFM) 16 (input) DP on C column (PSIG)
7 (input) Stack gas recycle (F) 17 (input) DP on D column (PSIG)
8 (input) Strip vent rate (SCFM) 18 (input) Excess O2 in stack (%)
9 (input) DNT vent head VA (WC) 19 (input) Reduction furnace (F)
10 (input) Column A top pressure (inch W) 20 (output) NOx, (PPM)

J.M. MIRATS TUR et al.550



Rafael M. Huber received his Ingeniero Industral (Electrical Engineering

branch) and his Ph.D. in Ingenierı́a Industrial in 1976, both from the
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