Int. J. General Systems, Vol. 13, pp. 307-322 © 1987 Gordor and Breach, Science Publishers, Inc.
Photocopying permitted by license only Printed in Great Britain

SAPS-II: A NEW IMPLEMENTATION OF THE
SYSTEMS APPROACH PROBLEM SOLVER

FRANCOIS E. CELLIER and DAVID W. YANDELL

Department of Electrical and Computer Engineering, University of Arizona, Tucson,
Arizona 85721, U.S.A.

(Received 21 January 1987, in final form 13 April 1987)

In this paper, we describe a reimplementation of the Systems Approach Problem Solver that was
originally designed and implemented by H. I J. Uyttenhove.!'? In this reimplementation, emphasis was
put on a clean and flexible user interface that allows the user to conveniently combine several of the
SAPS basic operations for solving more complex problems. SAPS-II? was implemented as a toolbox
(function library) within the framework of the CTRL-C program,* an interactive matrix manipulation
language developed originally for computer-aided control system design, and enhanced later for other
purposes such as signal analysis and statistical operations.>'® From the point of view of the CTRL-C
software, the SAPS-II library can be viewed as yet another enhancement for the purpose of systems
analysis and synthesis. From the point of view of the SAPS-II software, CTRL-C can be viewed as a
software shell for convenient embedding of the SAPS algerithms.

INDEX TERMS: General System Problem Solving framework, optimal mask analysis, forecasting,
reconstruction analysis, computer software, data flow.

INTRODUCTION

The SAPS software was developed as an additional tool for the analysis and
synthesis of systems using the general system solving framework proposed by G. J.
Klir,” where a system is viewed as a potential source of data. Data from and
about this system are then gathered under a given observational mode which can
also be called the experiment that is applied to the system. The SAPS algorithms
perform operations on these system observations which we call the raw data
describing the system.

At a first glance, SAPS can be viewed as a system 1identification tool comparable
to others such as regression analysis, nonlinear programming, etc. To some extent,
this notion is correct. However, SAPS exhibits a couple of specific characteristics
that make this approach different from other well established system identification
mechanisms:

1) Most identification tools require an assumed mode! structure to start with.
This structure given, they identify the (yet unknown) parameters of the structure.
In this way, errors inherent in the chosen structure remain unnoticed, and the user
is led to believe in the results of an identification process on the basis of a match
between the observed data and the identified model. Several disasters have already
taken place because of (unjustified) confidence in a chosen model structure that
did not portray essential properties of the given system. Typical examples of such
disasters are in ecological system modeling where e€.g, a new species was
introduced into a given ecosystem with the goal of controlling the population of
some sort of pest. In the simulation model, this approach did work well whercas,

307

308 F. E. CELLIER AND D. W. YANDELL

in practice, it failed drastically because additional interactions between the new
species and other species of the existing ecosystem remained unnoticed. SAPS tries
to avoid this pitfall by not presupposmg any structure. The SAPS model contains
no information that was not present in the observed data itself. This is one of
the greatest strengths of the SAPS analysis. Unfortunately, the aforementioned
pitfall cannot be totally avoided as the observational mode (experiment) must
be preselected even in SAPS. As shall be demonstrated in a related paper,® an
unlucky choice of the observational mode may easily hide some essential properties
of the underlying system in the same way as the presupposed structure did.

2) Most identification procedures generate a system model that is disassociated
from its own confidence information. Once a model identification has been
completed, it i1s all too easy to forget the limitations (experimental frame) under
which the model was derived, simply because the generated model will not hesitate
to forecast system behavior over a ridiculously long time horizon, and display
resuits with a double precision 14 digits out of which not a single one is zero (!)
As a typical example of the shortcomings of such an identification procedure, we
may mention the world model by Forrester,” The SAPS forecasting mechanism
draws simultaneously from both the model pattern and the confidence infor-
mation, and will decline a request to forecast behavior that cannot be justified on
the basis of the observed data. In SAPS, time horizon and experimental frame of a
model are identified together with the model pattern itself, and cannot be
disassociated from the derived model.

In a SAPS analysis, the greatest care must be taken in the determination of the
appropriate observational mode. To this date, SAPS does not provide the user
with any information of whether or not the observational mode chosen is
appropriate for his purpose. In particular, the recoding facility of SAPS (which is
intimately linked to the determination of the observational mode) does not
provide the user with any inside of whether essential data are lost in the recoding
or not. More research is still needed in order to provide the user with a maximum
amount of information and guidance during the recoding process. Once the raw
data model is determined (that is: after the recoding step has been completed), the
various SAPS analysis and synthesis procedures are performed in a fairly
automatic manner, and they work in general quite well. More guidance is still
needed in order to tell the user how significant his collected data are. E.g., an
optimal mask analysis can determine a powerful forecasting model if and only if the
underlying raw data are sufficiently many, and sufficiently expressive. However, the
currently implemented algorithm does not tell the user whether or not this is the
case.

The current implementation of SAPS-II simply duplicates the algorithms
available in the original SAPS software while providing a largely improved user
interface. Several of the remarks made above suggest improvements and enhance-
ments of the existing algorithms. These form the basis of an ongoing research
effort, and will be reported at a later stage.

DATA ENTITIES IN SAPS-II

Like most of the first generation CAD tools, the original SAPS software
concentrated on the algorithms to be implemented. These algorithms were im-

SAPS-II 309

plemented as independent program modules that read input data from punched
cards in a fixed format, and produce output on a listing file. The data fed into
these algorithms that is the information about the system to be analyzed, was
considered of much less concern, and little effort was spent on a convenient and
flexible management of this data. In the original SAPS software, it was e.g.
impossible to combine several of the available algorithms to form larger entities,
or add new algorithms to the program without modifying the source code itself.

In SAPS-II, major emphasis was put on data flow. Here, the SAPS algorithms
are viewed as operators mapping one data structure into another data structure.
Data are maintained in a flexible data base, and can be manipulated at will.

The raw data model consists of one or several trajectory vectors where each
column denotes one trajectory, ie. the time history of one particular variable,
while each row specifies one recording (that is: measurement at one time instant)
of all variables contained in the trajectory vector. The time instants, at which
recordings (measurements) are taken, form a domain variable which can also be
represented as a vector, and e.g. be stored as the first column of the trajectory
vector when needed. However in SAPS, these time values are rarely used, and are
therefore often omitted. In data base management, this type of data structure is
often referred to as a relation, and the domain variable is called the key variable of
the relation. However, the data structure can also be viewed as a matrix of either
integer or real arguments.

When a basic behavior analysis is performed on the raw data, another data
structure results which we call a behavior relation. This data structure consists of
an alphabetically reordered and reduced set of recordings together with a vector of
probabilities denoting the frequency of occurrence of these individual recordings
(states). In other words, the “BEHAVIOR” operator is a unary operator that
operates on a data structure of type trajectory vector, and produces another data
structure of type behavior relation. Both trajectory vectors and behavior relations
can be represented by series of matrices and vectors.

Looking through the list of SAPS operators, one notices that all SAPS data can
be conveniently represented by matrices and vectors some of which are of type
integer (such as the recoded raw data matrix), while others are of type real (such
as the behavior probability vector). A flexible user interface can be created by
providing a tool for general purpose matrix manipulations where each SAPS
algorithm is represented by an operator (that is: a function) mapping one set of
such matrices into another set of matrices.

CTRL-C: A SHELL FOR IMPLEMENTING SAPS ALGORITHMS

A very convenient matrix manipulation environment (MATLAB) was created in
1980 by Cleve Moler.'® In MATLAB, the only data structure supported is a
double precision complex matrix. The basic MATLAB operators implement a
large subset of the standard algorithms used in linear algebra such as linear system
solutions, eigenvalue computations, etc. MATLAB offers a very convenient user
interface that is so natural and intuitive that even beginners can learn how to use
MATLAB within a couple of minutes just as they learn how to use a simple
pocket calculator. In MATLAB, matrices are entered as follows:

A=[1’ 2, 3; 4’ 5’ 6; 77 87 9]

310 F. E. CELLIER AND D. W. YANDELL

or alternatively:

A=[1 2 3
456
7 8 9]

that is: elements in different columns are separated by either a comma or a space,
while elements in different rows are separated by either a semicolon or a carriage
return. Each element of a matrix can be an arbitrary expression including
submatrices, thus: '

B=[[0; 0; 0], EYE(3); [2, 3, 4, 51]

dehotes the matrix:

N OO O
WO O =
b O - O
wn - O O

where EYE(3) denotes a unity matrix of dimension 3 x3. Standard matrix
operators are defined in a very natural way:

F=(C+D)*E

where C, D and E are matrices, creates a new matrix F as the product of the sum
of C and the transpose of D with E. Expressions can be nested to any depth.

Stochastic variables are generated by a built in random number generator. E.g.
does

X=RAND(4,1)
create a random column vector with 4 rows, the elements of which are uniformly
distributed between 0 and 1.
The problem Bxy=x can now be solved either by inverting the matrix B:

Y=INV(B) * X

or alternatively (by extending the usual definition of the division operator) through
the exression:

Y=B\X
(X from left divided by B) which, of course, is equivalent to:
Y =(X'/BY

However, these expressions result in a Gaussian elimination being performed in
place of the explicit computation of the inverse of B if the matrix B is square. For

SAPS-II 311

B being rectangular, the either over- or underspecified set of linear equations will
be solved in a least square’s sense.

Unfortunately, the original MATLAB system does not lend itself conveniently to
user extensions. For this reason, we chose for our task the program CTRL-C*
which is a superset of MATLAB.!? In CTRL-C, user functions may be coded that
automatically extend the set of system functions, and which thereafter can be
called just like any system defined CTRL-C function (such as the EYE(),
RAND(), and INV() functions demonstrated above). All SAPS functions are
stored in a CTRL-C function library which can be activated by the command:

DO SAPS:SAPS
Thereafter, a basic behavior analysis can e.g. be performed by writing:
[B, P]=BEHAVIOR(RAW)

where BEHAVIOR() is a SAPS-II function with one input argument (RAW) and
two output arguments (B and P).

OPTIMAL MASK ANALYSIS IN SAPS-II

One of the standard problems in signal analysis is to determine how different
signals are correlated with each other. In terms of the SAPS methodology, this
problem is solved by an optimal mask analysis. A mask is a pattern of relations
between different variables at different instants of time. E.g. does the following
mask:

~1 o0 0

Mask= | > 2 O
0 —4

0 0 1

indicate that in a three variable system the third variable (v;) is related to the first
variable (v,) three time steps back, the same variable two time steps back, the
second variable two time steps back, and the third variable one time step back.
Thus, the above mask can be read as follows:

v3(8) = f{v;(t —3A1),0;(t—2A8), v,(t — 2A1), v3(t — A1)}

In an optimal mask analysis, all possible mask candidates are evaluated, and
among those, the one is chosen which exhibits the most deterministic input/output
behavior, that is: which minimizes the Shannon entropy. In SAPS-II, mask
candidates are denoted as follows:

—~1 -1 -1
Mcan= |7+ P
Tol=1 -1 —1

0o 0 1

312 F. E. CELLIER AND D. W. YANDELL

where elements marked as —1 are potential inputs, elements marked by positive
integers are outputs, and elements marked by 0 are to be ignored.

The optimal mask analysis function operates on a raw data model and a mask
candidate, and evaluates the optimal mask:

MASK =OPTMASK(RAW, MCAN)

As an example, let us consider the haunted house problem proposed by H. J. J.
Uyttenhove.!? It consists of a three variable model with the three components
radio (v,), light (v,), and ghosts (v5):

vy=0: radio is off
=1: radio is on
v,=0: light is off
=1: light is on
v3=0: ghosts keep quiet
=1: ghosts are laughing
=2: ghosts are walking around
=3: ghosts walk and laugh

Measurements were taken that provided the following raw data model:

0 0 3
1 0 1
1 0 0
1 0 3
0 1 3
0 0 2
01 0
0 0 2
RAW= |1 1 0O
1 1 1
1 10
1 0 3
1 1 3
i 01
0 1 3.
1 01
10 1

It was decided that the behavior of the ghosts is strongly correlated with the use
of the lights and the radio in the house. Therefore, an optimal mask is to be
determined that allows the development of a strategy that will keep the ghosts
quiet during the night.

‘The CTRL-C macro given in Figure 1 can be used to perform an optimal mask "
analysis of this three variable model. This macro should hopefully be almost self
explanatory. The use of SAPS-II functions is freely intermixed with that of
standard CTRL-C functions. This is feasible because both operate on the same
data structures. In our example, the OPTMASK() function is used with secondary

SAPS-II _ 313

//Example SAPS Book 7.4.1

I

/!

DISPLAY(‘The Haunted House’)

DISPLAY (“soxsmsokskskhte ke kohk k')

DISPLAY(")

DO saps:saps

repo=1;

DISPLAY(‘Raw Data.)

LOAD {demo:haunted

Taw

DISPLAY('Selection of INPUT/OUTPUT Mask Candidates’)
mean={—1 —-10; -1 —10; —1 —11]
[mask,hm,hr,q,mhis] = OPTMASK(raw,mcan),
DISPLAY(Optlmal Mask?)

mask

DISPLAY(‘Hit {CR) to continue’)

PAUSE

DISPLAY{(‘Plot of Entropy and Quality versus Complexity’)
PAGE

PLOT([hm,5%q])

TITLE(‘Optimal Mask Evaluatlon)
XLABEL(*Complexity’)

YLABEL(‘Entropy and Quality’)

REPLOT

PAUSE

ERASE

DISPLAY(‘Calculate Input/Qutput Behavior’)
i0 =IOMODEL(raw,mask)
DISPLAY(‘Input/Output Behavior’)
[b,p]=BEHAVIOR(io);
DISPLAY(‘Input/Output Matrix’)
[s,p2]=IOMATRIX(i0,3);

RETURN

Figure 1 Optimal mask analysis of the haunted house example.

output parameters providing additional information about the history of mask
evaluations. The IOMODEL() function is another SAPS-II function that
evaluates an input/output model out of the raw data model and the previously
evaluated optimal mask. The IOMATRIX() function generates the state transition
matrix for the previously computed input/output model. Its second parameter (3)
indicates that the first three columns of the input/output model denote inputs
while the remaining column denotes an output. REPO is a global (SAPS-II)
variable that determines the amount of intermediary output to be displayed. The
resulting optimal mask in this case is:

—1 00
MASK = 0 -2 0
0 -3 1

Evidently, this example is somewhat artificial, but it is also sufficiently simple to
allow a demonstration of the properties of the SAPS-II software without obfuscating
the desired message through details of an involved and more realistic problem.

In this example, the mode of observation was chosen by deciding that there
existed a correlation between the behavior of the ghosts on the one hand, and the

314 . F. E. CELLIER AND D. W. YANDELL

setting of radio and light on the other. The SAPS software was not able to help us
in this matter. However, there was no need for any recoding of data as all three
variables assumed discrete values from the beginning.

RECONSTRUCTION ANALYSIS IN SAPS-II

Once an input/output model has been determined by an optimal mask analysis,
the SAPS methodology allows to identify structure by grouping subsets of
variables together that seem to be more closely related to each other than to the
remaining variables. Each potential structure is analysed by decomposing it into
its subsystems, recombining the subsystems to a whole, and evaluating the
resulting reconstruction error. In an optimal structure analysis, all possible
structures are evaluated in this manner, and the most refined structure is chosen
that exhibits an acceptably small reconstruction error.

SAPS-II distinguishes between three different types of structure representation.
A causal structure lists the variables that form the subsystems as a row vector
whereby subsequent subsystems are separated by a zero. Below this row vector,
masks are coded that show the causal relation between the variables of the
subsystems. For example, the structure specified in Figure 2 can be coded as:

1460 23 450 5 67
1000 00 000 0 00
ISTC="1 90120 -1 0 =200 0 —1 0
0000 01 020 -2 01

By eliminating the mask, we obtain a composite structure. Obviously, the
composite structure contains less information than the causal structure. The
direction information is lost, and also the timing information is gone. In SAPS-II,
the composite structure is represented by the first row of the causal structure:.

ISTR=[146023450567]

which can mean e.g. the structure shown in Figure 3, but also the very different
structure exhibited by Figure 4. It can be easily verified that both systems contain
the same three subsystems, and are thus identified by the same composite
structure. The composite structure no longer contains information about which
variables are inputs and which are outputs.

The third structure representation in SAPS-II is the binary structure. A binary
structure is an ordered list of all binary relations between variables belonging to
the same subsystem. The operator:

vo(1-At)
(- 2At
W29 SST |y (-A1) v, (1) SS3 ——=w()
v, (t-At) SS2 -

Figure 2 Graphical representation of a causal structure.

315

VG
v1
— SS1 Vi v,
V, SS2

SS3 ——> v

> Vi

3

Figure 3 Graphical representation of the same structure without causality information.

SST

SS3

_% V7

]

L

rd

SS2

.

3V2

Figure 4 Graphical representation of a different structure being indistinguishable from the previous

one if the causality information is not provided.

ISTB=BINARY(ISTR)

generates the binary structure out of the composite structure. For our example, the

resulting binary structure is:

ISTB=

[;\M(J\-P-P-U)UJ[\)]\)NHHI

N1 U LR R WO

Again, the binary structure contains less information than the composite structure.
For instance, the system in Figure 5, with the composite structure:

ISTR=[1460234505670456],

possesses the same binary structure as our previous system, even though it
contains an additional subsystem (SS4), and thus a different composite structure.

In SAPS-II, the command:

ISTR =COMPOSE(ISTB)

316 F. E. CELLIER AND D. W. YANDELL

Ve

h

v SS1 | v, v, | SS4

v, SS82 >

Figure 5 Graphical representation of yet another structure which is indistinguishable from the
previous ones if only its binary representation is given.

will always produce the minimal composite structure among all possible composite
structures.

Causal structures are currently planned, but they have not yet been
implemented.

The evaluation of the reconstruction error of a proposed system bases on its
compostite structure and its behavior relation:

ERR =STRUCTURE(ISTR, B, P)

computes the reconstruction error of the system represented by its behavior
relation ([B, P]) and the suggested composite structure (ISTR).

However, optimal structure analysis bases on the binary structure represen-
tation. Three different structure optimization algorithms have currently been
implemented. The structure refinement algorithm starts with a totally interlinked
composite structure in which all possible binary relations are present. This
structure, of course, shows no reconstruction error at all as there is nothing to be
reconstructed. Binary relations are cancelled one at a time, and at each level (that
is: number of binary relations), the structure is chosen to continue which exhibits
the smallest reconstruction error. The iteration goes on until the reconstruction
error becomes too large.

The structure aggregation algorithm starts with a system in which each variable
forms a substructure of its own that is not linked to any other variable. No binary
relations are thus initially present, and the reconstruction error of this structure is
very large. Binary relations are added one at a time, and at each level the structure
is chosen to continue that shows the largest reduction of the reconstruction error.
The iteration goes on until the reconstruction error becomes sufficiently small.

The single refinement algorithm starts similar to the structure refinement

> Vs SSB —

N
.

algorithm. However, instead of cancelling one binary relation only, all binary -

relations that exhibit a sufficiently small reconstruction error are cancelled at once,
and only one step of refinement is performed.

All three algorithms are suboptimal algorithms, since neither of them investi-
gates all possible structures. Therefore in a sufficiently complex system, the three
algorithms may well suggest three different structures, and it often pays off to try
them all. The single refinement algorithm is much cheaper than the other two, and
yet it performs amazingly well. Thus, in a real time {on-line) structure identifi-
cation, this will probably be the best algorithm to use.

In SAPS-II, optimal structure analysis is performed by the following function:

ISTR=0PTSTRUC(B, P, ERRMAX, GROUP, ALGOR)

where [B, P] is the behavior relation of the system to be analyzed, and ERRMAX

SAPS-I 317

is the largest reconstruction error to be tolerated. The GROUP parameter allows
to aid the optimal structure algorithm by providing a priori knowiedge about the
structure to be analyzed. E.g. would the grouping information:

GROUP=[123104]

tell the optimization algorithm that, in a six variable system, the first and the
fourth variable appear always together whereas the fifth variable is certainly
disassociated. Thus, the six variable system is effectively reduced to a four variable
system. If no a priori knowledge about the structure exists, the grouping
information must be coded as:

GROUP=[123456]
which, in CTRL-C, can be simplified to:
GROUP=1:6

The ALGOR parameter finally tells the analysis which of the three algorithms to
use. Possible values are:

~ ALGOR =‘REFINF’
ALGOR=‘AGGREGATF’
ALGOR =‘SINGLEREF’.

ISTR is the resulting composite structure of the system.

One more possibility was built into SAPS-II. After an optimization has taken
place, the resulting structure can be postoptimized by applying the single
refinement algorithm once more to each of its substructures. This algorithm is
executed by the command:

ISTP=SINGLEREF(ISTR, B, P, ERRMAX)

As an example, let us consider the open heart surgery problem proposed by H.
J. J. Uyttenhove.!’? This problem consists of a six variable model with the
following variables:

VAR ,—Systolic Blood Pressure

1= 00to 750
2= 75.0 to 100.0
3=100.0 to 150.0
4=150.0 to 180.0
5=180.0 to highest

VAR ,—Mean Blood Pressure

1= 00to 500
2= 500to 650
3= 65.0 to 100.0
4-=100.0 to 110.0
5=110.0 to highest

318 F. E. CELLIER AND D. W. YANDELL

VAR ;—Central Venous Pressure
= 0.0to 4.0
3= 4.0t0 200
4=20.0 to highest

VAR ,,—Cardiac Output

1=00to0 2.0
2=201t030
3=30t0 70

4=7.0 to highest

VAR s—Heart Rate

1= 00to 500
2= 50.0to 60.0
3= 60.0 to 100.0
4=100.0 to 110.0
5=110.0 to highest

VAR ,—Left Atrial Pressure

1= 0.0to 10
2= 10to 40
3= 4.0to0 200

4 =20.0 to highest

As can be seen, all variables in this example are of type real. Thus, the first step in
the SAPS analysis must consist of a recoding step. In this example, the following
methodology was used: Each variable is digitized using five different levels where:

1: =much too low
2:=too0 low

3: =normal
4:=to0 high
5:=much too high

Expert knowledge was used to determine the breakpoints between the five different
levels for each variable. An inappropriate choice of these breakpoints may easily
jeopardize the success of the entire analysis. However, SAPS currently does net
support the user in this decision yet.

In SAPS-II, the recoding of the measurement data can be performed by the
command sequence shown in Figure 6. Measurements are assumed to be stored in
the matrix MEAS. One column after the other is recoded into a vector R which is
then concatenated from the right to the previous vectors. The raw data mode] is
finally contained in the matrix RAW. The second parameter of the RECODE()
function tells the system which type of recoding is to be performed. In our
example, the DOMAIN’ algorithm was used. Several other types of recoding are
available in SAPS-II as well.

The recoded raw data model was then stored as a data file by use of the CTRL-
C function:

SAVE RAW>DEMO:HEART

SAPS-II 319

from=[0.0 750 100.0 150.0 180.0

75.0 100.0 150.0 180.0 999.97;
to=1:5;
raw = RECODE(meas(:,1), DOMAIN’ from,to);
from== 0.0 50.0 6350 100.0 1100

50.0 65.0 100.0 110.0 999.97;
r=RECODE(meas):,2), DOMAIN’.from,t0);
raw=[raw,r];
from==[00 40 200

4.0 20.0 999.97;
to=2:4; :
r=RECODE(meas(:,3),DOMAIN’,from,to);
raw =[raw,r|;
from=[0.0 20 30 7.0

20 3.0 7.0 999.9];
to=1:4;
r=RECODE(meas(:,4), DOMAIN’ from,to);
raw=[raw,r];
from=[0.0 50.0 60.0 100.0 110.0

50.0 60.0 100.0 110.0 999.9%;
to=1:5;
r=RECODE(meas(:,5), DOMAIN’ from,to};
raw=[rawr];
from=[0.0 1.0 40 200

1.0 4.0 20.0 999.9];
to=1:4;
r=RECODE(meas(:,6), DOMAIN’ from,t0);
raw=[raw,r];

Figure 6 Recoding the data for the open heart surgery example.

The CTRL-C macro given in Figure 7 performs an optimal structure analysis on
the previously saved raw data model.

The analysis starts by applying the structure refinement algorithm to the
behavior relation of the system. No a priori knowledge about the structure is yet
available. The resulting composite structure is:

IS1=(1,2,4)(1,3,4)2,4. 5)(2,4,6)

A postoptimization of this structure leads to:
ISR1=(1,2,4)(1,3,4)(2,4,6)(5)
Obviously, the fifth variable (heart rate) is only weakly related to the other
variables in the system.
Next, the structure aggregation algorithm is applied. This algorithm suggests the

composite structure:

IS2=(2,4,6)(1,2,3,4)(5)

Postoptimization leads to:

ISR2=(3,4)(1,2,4)(2,4,6)(5)

320

Finally, we try the single refinement algorithm. This time, the following

F. E. CELLIER AND D. W. YANDELL

// SAPS Book Example 8.3.1.2

1

//

DO saps:saps

DISPLAY(*Surgery patient structure’)
DISPLAY(*# ek stssrtokstimrnsr s’)
DISPLAY(")

repo=1;

LOAD{demo:heart

DISPLAY(‘Basic behavior:Probability and States’)
[b,p]=BEHAVIOR(raw);

DISPLAY(“Selecting a grouping mask’)

igr=1:6

DISPLAY(‘Selecting the maximum tolerated error’)
ermax =.016

DISPLAY(‘Calculate the optimal structure by refinement’)
isl=0PTSTRUC(b,p,ermax,igr, refine’)
DISPLAY(‘Try to refine this result once’)
ist1=SINGLEREF(isLb,p,ermax)
DISPLAY{*Calculate the optimal structure by aggregation’)
is2=0PTSTRUC(b,p,ermax,igr,'aggregate’)

DISPLAY(“Try to refine this result once’)

isr2 = SINGLEREF(is2,b,p,ermax)

DISPLAY(‘Calculate the suboptimal structure by single-step method’)
is3=0PSTRUC(b,p,ermax.igr, singleref’)

DISPLAY{(“Try to refine this result once more’)
ist3=SINGLEREF(is3,b,p,ermax)

DISPLAY(‘Results are different, but indicate that (1,4) are always’)
DISPLAY(‘together, while (5) seems pretty unimportant’}

DISPLAY(Select grouping mask accordingly, and retry’)
igr=[123104]

DISPLAY(‘Calculate the optimal structure by refinement’)

isl = OPSTRUC(b,p,ermax,igr, refine’)

DISPLAY(‘Calculate the optimal structure by aggregation’)
182=0PTSTRUC(b,p,ermax,igr,'aggregate’)

DISPLAY(*Calculate the suboptimal structure by single-step method’)
is3=0OPTSTRUC(b,p,ermax.igr, ‘singleref”)

DISPLAY(*Now, the results are the same’)

DISPLAY(*TIry a final refinement step’)
is=SINGLEREF(is3,b,p,ermax)

DISPLAY(‘*Comparing the results, we may come to the conclusion’)
DISPLAY(‘that the correct structure is indeed: [1,2,41[1,3,4][1,4,61[5]
RETURN

Figure 7 Reconstruction analysis of the open heart surgery example.

composite structure is found:

IS3=(3,4)(4,6)(1,2,4)(5)

and postoptimization does not change the structure.

Analyzing the different suggested structures, it becomes obvious that the heart
rate does not need to be considered at all. It also shows that there exists a very
strong link among variables one and four. Thus, those two variables can easily be
grouped together. The analysis is now repeated applying the appropriate grouping
information. This time, all three algorithms suggest the same composite structure:

ISTR =(1,2,4)(1,3,4)(1, 4, 6)(5)

SAPS-1I 321

which seems to be a good working hypothesis for continuation of the system
analysis.

CONCLUSIONS

SAPS-II is a new tool for the analysis and synthesis of raw data models using the
methodology of general system theory. As compared to the original SAPS system,
SAPS-IT exhibits much more flexibility, and allows the user to easily combine
different algorithms into new hierarchically higher components. All features of the
original SAPS system have been reproduced in SAPS-II with the exception of the
meta analysis module for the identification of variable structure systems. Imple-
mentation of this algorithm would be straight forward, but we decided against an
implementation of the proposed algorithm, as we have not yet seen examples of
meta analysis that proved the proposed methodology to be sound. More research
is still needed to come up with an appealing and robust mechanism for the
identification of variable structure systems.

REFERENCES

1. H. J. J. Uyttenhove, Systems Approach Problem Solver (SAPS): An Introduction and Guide.
Computing and Systems Consultants, Inc., P.O. Box 1551, Binghamton, NY 13902, 1979,

2. H. J. J. Uyttenhove, “SAPS—A software system for inductive modelling.” In: Sindation and
Model-Based Methodologies: An integrative View, edited by T. 1. Oren, B. P. Zeigler and M. S.
Elzas, Springer-Verlag, Series F: Computer & System Sciences, 10, 1984, pp. 427-449.

3. D. W. Yandell, SAPS-H, Raw Data Analysis in CTRL-C, User’s Manual and Progress Report
Senior Project, Department of Electrical and Computer Engineering, The University of Arizona,
Report: CERL 85-07, 1985.

4. Systems Control Technclogy, Inc., CTRL-C A Language for the Computer-Aided Design of
Multivariable Control Systems. Systems Control Technology, Inc., Palo Alto, CA 94304, 1984.

5. A. Alali, Random Number Generation and Distribution Fitting with an Interface to the CTRL-C
System. Senior Project, Department of Electrical and Computer Engineering, The University of
Arizona, Report: CERL 86-03, 1986.

6. Aptech Systems, Inc., GAUSS, Programming Language Manual Aptech Systems, Inc., P.O. Box
6487, Kent, WA 98064 1986.

7. G. J. Klir, Architecture of Systems Problem Solving, Plenum Press, New York, 1985.

8. F. E. Cellier, “Quaiitative simulation of technical systems using the general system problem solving
framework.” Inter, J. General Systems, 13, 4, 1987, pp. 333-344.

9. J. W. Forrester, World Dynamics. Wright-Allen Press, Cambridge Mass., 1971.

10. C. Moler, MATLARB User'’s Guide. Department of Computer Science, University of New Mexico,
Albuquerque, NM, 1980.

GEN. SYS.—B

322 F. E. CELLIER AND D. W. YANDELL

Dr Frangois E. Cellier received his B.S. in Electrical Engineering from the
Swiss Federal Institute of Technology (ETH) Zirich in 1972, his M.S. in
Automatic Contrel in 1973, and his Ph.D. in Technical Sciences in 1979, ali
from the same university. Following his' Ph.D., Dr. Cellier worked as a
Lecturer at ETH Ziirich. He joined the University of Arizona in 1984 as an
Associate Professor. Dr Cellier’s main scientific interests concern modelling and
simulation methodology, and the design of advanced software systems for
simulation, computer-aided modelling, and computer-aided design. He has
designed and implemented the GASP-V simulation package, and he was the
designer of the COSY simulation language which has meanwhile become a
standard by the British Ministry of Defence. Dr Cellier has authored or
co-authored more than thirty technical publications, and he has edited two
books. He served as a chairman of the National Organizing Committee (NOC} of the Simulation 75
conference, and as a chairman of the International Program Committee (IPC) of the Simulation 77
and Simulation ’80 conferences, and he has also participated in several other NOC’s and JPC’s. He is
associate editor of several simulation related journals, and he served as vice-chairman of two
committees on standardization of simulation and ‘modelling software. Memberships include SCS and
IMACS.

David W, Yandell is currently a Member of the Technical Staff at Hughes
Aircraft Company in Tucson, Arizona. After six years of service in the U.S.
Navy working with nuclear propulsion systems in submarines, he graduated in
1985 with a bachelor’s degree in electrical engineering from the University of
Airzona. He has completed some graduate level courses at the University of
Arizona. Mr Yandell is also a member of Tau Beta Pi.

