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In this paper,it is discussed how the General System Problem Solving (GSPS) Framework® can be
applied to the identification of technical systems for the purpose of a qualitative simulation of such
systems. Both advantages and severe shortcomings of this identification technique are demonstrated,
and it is discussed under what circumstances this technique may eventually lead to good results. Major
emphasis is devoted to the design of multi-layered hierarchical control systems.
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INTRODUCTION

The design of automatic feedback control systems has truly become a success
story. Automatic devices for the control of conmtinuous-time systems are in use
everywhere. A modern airliner would not be operational without a multitude of
automatic control loops. Controllers for linear single-input/single-output (SISO)
systems are in constant use for roughly 50 years. Their design bases primarily on
frequency domain techniques (Laplace transform, z-transform). Linear multi-
variable (MIMO) systems have been successfully controlled since the sixties of this
century when the state-space representation of linear systems in the time domain
was introduced. Optimal controllers were developed by solving a Riccati equation
to determine optimal coefficients for the state-feedback, and a merge between
frequency .domain techniques and time domain techmiques has been found e.g.
through the use of the so-called pole placement technique. A limited number of
techniques have also been developed for the synthesis of nonlinear control systems,
but these techniques are more specialized, and today’s trend goes more into the
development of techniques that make nonlinear systems behave like linear systems
that we know better how to handle.

While these automatic feedback controllers work far more reliably than any
human operator ever could do, they all lack “intelligence”. They are very bad at
making global assessments, and taking intelligent decisions on the basis of their
findings. Although a certain success can be noticed in the design of decentralized
controllers for particular types of hierarchical control systems (e.g. for power
systems), they all perform properly under well defined and previously foreseen
conditions only. No automatic device of today is able to take care of unforeseen
emergency situations. This is still strictly the domain of the human operator who
is inventive, and who may be able to devise a new control strategy “on-line”, a
strategy able to function properly under the given emergency conditions. That is:
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our automated devices are always very systematic, but rarely ingenious, whereas
the human operator is sometimes ingenious, but not necessarily always very
systematic.

Where are the shortcomings of this division of labor between the human
operator who makes the global decisions, and his auxiliary automatic control
devices for the detail work? The amount of information to be processed depends
on the complexity of the system to be comtrolled. It actually grows overpropor-
tionally (roughly quadratically) with the number of components of the overall
system. As we design more and more complex systems, we are faced with a
situation where the density of information to be processed grows rapidly. This
causes a serious problem. When an automatic controller is not able to deal with
the amount of data to be processed, we simply buy a faster computer. Unfor-
tunately, we cannot “acquire” faster human operators. When the amount of
information to be processed grows, the human operator has to rely more and
more on his ingenuity, and less and less on systematism. Unfortunately, this is
very risky as an essential piece of information may be easily overlooked when
hidden under a wealth of detail data. This is called the human overload problem.

How is the human cverload problem tackled today? One way to increase system
safety is by duplication. This works with human operators equally well as with
hardware components. Let the same data be processed simultaneously by several
operators. If one of them overlooks an essential picce of information, the other
may still find it. However, such a solution can only increase the system safety, not
the capacity of digesting information quickly. If the “speed” of a single operator
does not suffice, duplication will not help. Decentralization looks like an answer to
this problem. The information is distributed among several operators such that the
amount of information to be processed by each individual operator is reduced.
However, this is not really an answer to the problem. We still need a central
coordinator who decides which information is to be sent to whom. If this central
coordinator is a human, then he will be the bottleneck in the system, and we have
not solved our problem at all. On the other hand, if the coordinator is an
automatic device, we are again faced with the previous problem in that this device
will work properly except in an unforeseen emergency situation, that is: when its
proper functioning would be most essential.

Let us repeat what turn out to be the two most common causes of complex
system failure:

1) An important piece of information is not available at the right place at the
right time. The Challenger disaster could probably have been avoided if the
information flow would not have been distributed among some persons with
technical knowledge but without decision power, and some other persons
with decision power but without technical detail knowledge, and a very
imperfect information link between those two groups.

2) An essential piece of information is available, but it is overlooked because 1t
is hidden under an avalanche of secondary information. Several mid-air
collisions have already taken place because there were so many aircrafts to
be processed at the same time, that one of them simply got overlooked even
though it was perfectly visible on the radar screens.

The most frequent causes of complex system failure are thus related to a
breakdown of information flow. What really needs to be done in order to solve
this problem is the construction of an automatic device that simulates the behavior
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of human operators with all their inventiveness and global assessment capabilities,
but without their shortcomings, that is: their speed limitation in information
processing. This, of course, is a very ambitious goal, and we are still far from a
solution. However, without a solution to this essential problem, we cannot
continue to build more and more complex equipment.

The forthcoming U.S. space station is a device that is probably about one order
of magnitude more complex than any single piece of equipment ever constructed
by mankind so far. Yet, it is the declared goal of NASA to make this space station
as autonomously operational as possible. Thus, the control of the space station will
be primarily the duty of a few on-board astronauts rather than that of Mission
Control at the Johnson Space Center (JSC), astronauts that cannot even devote
their full attention to this task as they have other jobs as well. It is our conviction
that this concept carries the seed of disaster, unless it is accompanied by the
development of intelligent automatic controllers (expert systems) for the individual
subsystems, and the development of an intelligent executive expert system as a
central coordinator. Correct distribution of information even under emergency
situations must not be left under the responsibility of a human operator {due to
his inherent speed limitations). While final decisions can still be made by the
astronauts, it is essential that the individual subsystem controllers are able to
identify potential causes of failure reliably and ahead of time, and provide the
human decision makers with informative problem reports. Even worse, these
devices cannot be programmed statically. The programs must be able to learn as
the space station is to be operated over a series of years, and it is certain that
some components will suddenly fail, and will be replaced by improvised patches,
while new components will be added on to the system. Thus, the expert systems
including the coordinator must be able to operate under both system degradation
and system upgrading.

CONCEPTS OF INTELLIGENT CONTROLLER DESIGN

Controllers of complex systems are always multi-layered. The innermost control
loops require the fastest rate of updating, but the least intelligence. The outermost
control loops are sampled at the slowest rate, but they operate on the largest
amount of data, and they require the most “insight”, that is: intelligence.

This concept works quite well, and there is little reason to deviate from this
route. The innermost control loops are either classical PID controllers (lead/lag
compensators), or state-feedback controllers. Nonlinearities are often controlled by
on-line linearization (system parameter identification) and optimization of the
controller parameters of the innermost control loop in an encompassing adaptive
control loop. These two loops together are able to take care of mild nonlinearities,
and can handle diverse modes of system operation, as long as all possible
operational modes have been foreseen. The adaptive control loop can be updated
(that is: sampled) at a slower rate than the underlying innermost control loop, but
it exhibits a higher degree of complexity. At the next higher level, a central
coordinator can be used to coordinate the behavior of several subsystems
consisting of individual (eventually adaptive) controllers. At this level, performance
optimization can be already quite difficult, and today’s control engineers are
usually quite happy if they can guarantee the overall stability of the system, that is:
while the performance of the individual subsystem controllers is optimized, the
overall system performance is not.
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That is where we currently stand with respect to the design and practical
implementation of automatic feedback control circuitry. All these controllers
operate under carefully planned operating conditions, and while the innermost
control loops are those least likely to change their behavior, the employed control
algorithms are ironically the most robust ones. The hierarchically higher con-
trollers deal with a multitude of system components that can either change
their behavior or fail entirely. Thus, they should be made extremely robust in
order to be able to perform their duties under varying system conditions.
Unfortunately, they are not. Hierarchical controllers (central coordinators) are
designed in such a way that overall system stability (but not optimal performance)
is guaranteed under precisely defined conditions with respect to how many and
which components may fail before overall stability is lost.

In particular, it becomes evident that none of the controllers is able to truly
learn from modified system behavior. Adaptive control loops are able to “learn”
new system parameters, but only under very well defined circumstances, and these
parameters are strictly local parameters of a particular subsystem. No one even
dreams of on-line optimization of the central cocrdinators, less the outermost
control loop that determines the global strategies (set points), a loop which today
always involves the human operator. That is: the one loop that requires screening
of the largest amount of individual data points is controlled by the human
operator who is great in recognizing global patterns, and who is truly able to learn
from varying situations, but who is least capable of reliably viewing data in a
systematic manner.

The question thus raises whether it is feasible to at least second the human
decision maker by providing an automatic device that simulates the human
decision making process, but without the severe capacrcy limitations of the human
operator.

A SYSTEM THEORETIC APPROACH TO QUALITATIVE SIMULATION

Let us try to identify how a human operator handles unforeseen emergency
situations. For that purpose, let us envisage the pilot who, after a non-destructive
mid-air collision had lost most of the controls except for the thrust that went into
the engines of his aircraft. He soon learned that he actually was able to control
both the altitude of the aircraft and the pitch angle by the amount of thrust that
be used. By carefully controlling this one input variable left to him, he was able to
successfully execute an emergency landing, and therecby save the life of his
passengers. How did the pilot manage this situation? The sequence of operations
can be described as follows:

1) Identification of the problem, and determination of the controls (inputs) that
were still at his disposal. For that purpose, he used a mental model of the
effects of the different controls, and varied the controls carefully one at a
time to see whether the predicted effects would still take place.

2) Identification of a subset of characteristics (state variables) that were related
to his problem.

3) Determination of the manner in which the available controls did influence
the related characteristics. For that purpose, a careful experimentation with
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the available controls was now executed. On the basis of this experimen-
tation, the pilot was able to identify a more global behavioral pattern of the
related characteristics under the influence of the available controls (on-line
identification of a forecasting model).

4) Determination of an appropriate strategy to use the available controls in an
optimal manner to achieve the desired characteristics (that is: state
trajectories).

It turns out that this “recipe” is much more general. It is not at all restricted to
the above scenario. Thus, our automated device should actually follow the.same
pattern, that is: the overall task can be subdivided into the four individual
subtasks outlined above.

The first subtask is not difficult. Detailed flight simulators can be built that
simulate the behavior of the aircraft under correct operation very accurately. With
today’s technology, such simulators can easily be carried on board, in particular,
as the accuracy is not essential for our task, and as there is no necessity for visual

-feedback. A technological data.base can provide information about the tolerable
range of experimentation. The flight simulator can be used to:

1) determine that something went wrong (by comparing predicted system
behavior with observed system behavior), and thereafter to;

2) project the expected influence of exerting individual controls for comparison
with the actually experienced system responses.

Thus, the flight simulator can be used to duplicate the pilot’s mental model, and it
can perform this task even better than the mental model would ever be able to.

The second subtask is not too difficult either as it contains primarily static

information. The technological data base can provide us with the necessary
- information at all times.

The third subtask is a difficult one. We are meanwhile confronted with an
unknown system. The flight simulator is hardly of any use to provide us with much
information about its behavior. In order to “learn” the behavioral pattern of this
unknown device, we need to extract data from it. For that purpose, we probably
need to “shake” it (unless it shakes all on its own!), that is: voluntarily exert the
available controls in order to retrieve information about the altered system’s
behavior. To optimally excite all frequencies, we will probably use a random
exertion pattern for the available controls. This process is, of course, very risky as
the tolerable exertions were determined for the original (that is: correctly func-
tional and thus known) system, and not for the meanwhile deteriorated (that is:
erratically functional and thus unknown) system. Moreover, once we have deter-
mined appropriate data, we still cannot rely on the structural information
available in the flight simulator. Thus, a parameter identification will not suffice.
We must identify the structure of the unknown process together with its
parameters. The aim of the model is to provide us with an as accurate forecasting
capability as possible. We suggest that an optimal mask analysis* might just be the
right tool for that purpose.

The fourth subtask is again a little simpler. Once, we have gained confidence in
a forecasting model, we can parameterize the available controls, e.g. by slicing the
time axis into segments, and by requesting that each control be kept constant (at a
yet unknown level) during each time slice. These unknown levels (there are nc*ns
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such unknown levels where nc equals the number of available controls, and ns
equals the number of time slices) determine the unknown parameters to be
optimized in order to obtain an optimal fit between the desired flight trajectory,
and the flight trajectory obtained by the forecasting model.

OPTIMAL MASK ANALYSIS AS A TOOL FOR THE IDENTIFICATION
OF UNKNOWN TECHNICAL SYSTEMS

As we have discussed, the third subtask is the most difficult among the four. It was
suggested that a technique (optimal mask analysis?) originating from the GSPS!
framework might be the most appropriate handle for this task. In the remainder of
this paper, we are going to analyse this approach in greater detail.

For that purpose, let us consider the simple state-space model:

0 1 0 0
X= o 0 I|x+ |Of u
-2 -3 —4 1

We are going to simulate this system in CTRL-C® using a random number
generator for the input signal. Thereafter, we shall use SAPS-II? to recode the
simulation results (which represent our “measurement data”). Then, we want to
use an optimal mask analysis to determine a forecasting model. Finally, we shall
use this forecasting model to predict the behavior of the system under various
input conditions. We can easily verify whether our forecasts are “correct” by
simply comparing the results from the qualitative simulation obtained by use of the
SAPS-II forecasting module with the (recoded) results from the quantitative
simulation performed by use of the CTRL-C simulation module.
Thus, we start by executing the following CTRL-C code:

A= [0:1505(),0317 - 29 - 3a - 4];

B=[0;0;1};

C=EYE(3);

D =[0;0,0];

- T=0:01:10;

U =ROUND(RAND(T));

Y =SIMU(A4,B,C,D,U,T);
A, B, C, and D are the four system matrices of the linear continuous-time system:

X=Ax+ Bu
y=Cx+Du

which, in our example, has one input and three outputs. Tis the time base. It is a
row vector of length 101 containing the values [0.0.0.10.2...9.910.0]. RAND (T)
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generates a random vector of same dimensions as T where each element is
uniformly distributed between 0 and 1. ROUND( ) rounds the values of the
argument to the next integer, making U a stochastic binary trajectory over the
time base T with values arbitrating between 0 and 1. The SIMU( ) operator
finally simulates the linear system over the time base T using U as an input, and
sampling Y over the same time base. Y is a matrix with 3 rows (representing the
three output variables), and 101 columns (representing the sampling points).

Y looks almost like a raw data matrix. However, according to our SAPS-II?
methodology, trajectories are columns rather than rows, thus:

DATA=[U'Y'}

will give us exactly what we need. There was no need to store the time base itself,
but we decided to store the input stream as the first column of the raw data
matrix.

Next, the data need to be recoded in order to obtain a finite state space. We
decided to use three levels for each of the variables which are to be equidistantly
spaced between minimum and maximum of each variable. This can be coded as:

RAW =RECODE(DATA,’EQUT’,0,0:2);

Now, we can perform an optimal mask analysis on the recoded raw data matrix.
Let us start by using the first state variable as output, and allow all state variables
one time step back and two time steps back to be potential inputs together with
the physical input variable at all three time instants. Thus, the mask candidate
matris can be coded as:

-1 -1 -1 -1
MCNl= | -1 —1 —1 =1}
—1 1 0 0

The optimal mask analysis is performed by the command:
- MSK1=0OPTMASK(RAW,MCNT1);

and reveals the following pattern:

0 0 0 O
MSK1={0 —-1 0 Oj};
0 1 00

Thus, the first variable seems only to depend on its own past. Exactly the same
results can be found for the second and the third variable. Why this result?
Looking at the eigenvalues of the system matrix 4, we find that they are located at
—3.2695 and at —0.3652+0.6916i. Thus, the slowest time constant of this system
is at 2.7380. However, the depth of the mask was chosen to be 0.2 only. Conse-
quently over such a short time span, the variables can all be represented by
straight lines, and thus, depend on their own past only.
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Had we chosen the following time base instead:
T =0:20:2000;

we would have determined that:

MSK1 =

= o o
- o O
oo O
o O O

Thus, the first variable would have depended on the physical input only (and the
same would have been true for the second and the third variable). Again, this
result is quite obvious. In this case, the depth of the mask is 40, and even during
the next recording, the system has almost reached its new steady state. (Remember
that the stochastic input changes its value at sampling times only.) Obviously, the
steady state values of our state variables depend on the physical input only.

What can be learned from these experiments? The optimal mask contains
information not only about the system alone, but also about the input stream, that
is: the experiment performed on our system. It is our experience that the best
results are obtained if the depth of the mask is chosen to roughly cover the
slowest time constant of the system that is to be captured. In our example we
chose a depth of 3, thus:

T =0:1.5:150;

We ran the optimal mask analysis with the following three mask candidates:

1 -1 —1 —1 ~1 -1 -1 -1
MCNl= |—-1 —1 —1 —1]|; MCN2= | -1 —1 -1 —1|;
-1 1 0 o0 -1 0 1 0

-1 -1 -1 -1
MCN3= | -1 -1 -1 =1];
—1 0. O 1

- and found the following three optimal masks to forecast the three state variables:

000 O] 0 0 0 0
MSKi=|0 0 0 —1]; MSK2=|—-1 —2 0 0]:
01 0 0 -3 010

0 000

MSK3= |[—1 0 0 0];

—2 0 0 1

Still, we do not know how large the influence of the particular input stream really
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is. For that reason, we repeated the experiment with a second random stream.
Thereby, we obtained the following optimal masks:

000 O "0 0 0 0
MSK=1 |-1 0 0 —2|; MSK2= |[-1 -2 0 ol ;
0 0 -3 0 1 0

0 0 0 0]

MSK3= |-1 0 0 0] ;

-2 0 0 1

Only the first mask is slightly different. However, looking into the mask history,
we found that, also using the first random stream, the newly found mask has a
quality just slightly smaller than the optimal mask chosen during that analysis.
Thus, we chose to have more confidence in the new mask.

However, we still don’t know whether the same masks would also work when
totally different input streams were chosen. Therefore, we repeated the experiment
again, this time with:

U =ROUND(2*RAND(T) — ONES(T));

which creates a trinary random input pattern that arbitrates between —1, 0, and
+1. With this input sequence, we obtained the following optimal masks:

000 O 0 00 O
MSKI= |-1 0 0 —2|: MSK=o0o 0 o —1|;
010 0 001 0
0000
MSK3= |[-1 0 0 of;
~2 0 0 1

This time, the second mask is different, but again, the formerly found mask
appears in the mask history with a quality just slightly inferior to the optimal
mask chosen. Thus, we decided to stick to the formerly found mask.

Finally, we repeated the experiment a fourth time with the following non-

random input pattern:
U =SIN(T/5);

This time, the following optimal masks were found:

0 0 0O 00 0
MSKi= }-1 0 0 0}; MSK2= {0 0 —1 0| ;
01 00 0 0 1 0

GEN. SYS.—E
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MSK3=[-1 0 o0 O

Now, all three masks are different. With respect to the first mask, we again found
the previously determined optimal mask in the mask history matrix. The other two
masks are probably not good at all. Our explanation for this discrepancy is that
the sine wave signal chosen simply did not “shake” the system sufficiently well to
extract appropriate information for the mask identification process. The random
patterns chosen before were much better suited to excite the system at various
frequencies. '

FORECASTING BEHAVIOR WITH THE OPTIMAL MASK

After we had gained sufficient confidence in the quality of the obtained optimal
masks, we decided to use them on all four data streams for forecasting purposes.
To this end, we extracted the first 90 recordings of each data stream to be our new
“raw data” streams, and used the optimal mask to forecast the behavior over 11
additional steps. In this way, we were able to compare the predicted (that is:
qualitatively simulated) results with the previously obtained “measured” (that .is
quantitatively simulated) results.

/ [Urest] =FRC(raw,input,m! m2,m3);
/!

/ /Forecast behavior of linear four variable system

r=raw;

[row,col] =SIZE{raw);

{n,m]=SIZE(input);

FOR i=1:n,...
in=input(i;...
fc=[in,0,0,01;...
fec=[r;fc];...
ff1 =FORECAST(fcc,m1,row +1—1,0);...
ff2=FORECAST(fccm2,row+i—1,0)...
ff3=FORECAST(fcc,m3,row +1— 1,0); ...
ff=[in,f1(row +1,2),f2(row +1,3),f3(row + 1,4} ;. . .
r=[r;ff ;...

END
frest=r;

RETURN

Figure 1 SAPS-II function to forecast the linear system’s behavior.

The CTRL-C function, shown in Figure 1, performs the forecasting process for
one data stream. Applying this procedure to the first set of data, we obtained the
following comparison between “measured” and predicted state variables:
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MEAS = PRED=

oo™ o R oY
l\))—k)-—ll\)‘)-—kl—‘)—-‘b—h[\)l\)l\)
NN OR NP OO -
RO =N ONO R~y
B = = D e e = RO DD DO

Moo OO N
PRNOR RN I =R OO -
PR RNORNONC— —

It turns out that not a single prediction was incorrect. Obviously, the recoding
process had not destroyed too much of the vital information about the system,
and the random pattern chosen to “shake” the system, was a very good idea
indeed.

Applying the same masks to the second data stream, we found a few differences,
that is: “incorrect” predictions. In the following table, these forecasts have been
underlined:

2 1 1 2 2 11 2
2 1 2 1 212 1
0210 021 0
2 1.0 2 210 2
2 1 21 21 2 1
MEAS= |2 2 2 1| PRED= |2 2 2 1
0200 020 0
2 1 0 2 210 2
01 1 1 01 10
00 0 1 0101
2 0 1 2 2 0 1 2

The third data stream was the one that worked least satisfactorily. So far, we
did not find any convincing reason why this has happened:

MEAS= PRED =

O O MM N bt i e =
NHEFOORNNERNNO
l)—ki\)b—ior—db—kb—l[\)ol\)b—k!
=1 S SN N T
SOOI I N =IO N IDOID

DO bk Ot bk N DD = DD B I
— D = D e ek b RO O = DD
i |

mFrcomoNN O -
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Finally, we tried our optimal mask on the sine wave input, and obtained:

2 2 1 0 2 2 1 0
2 210 2210
2 200 2 210
2 2 00 2 210
1 200 1 200
MEAS= [1 1 0 1 PRED= |1 1 0 1
01 0 1 0t 0 1
0 0 0 1 0.0 0 1
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
0 012 0 00 1

that is, although the sine wave was not good for identification purposes, this does
not mean that the previously identified optimal mask cannot be used to predict
the behavior of the system when a sine wave is used as the input signal.

We consider these results rather convincing. They show that the methodology of
optimal mask identification is a sound procedure to predict the behavior of
technical systems. No a priori knowledge about the system structure was needed
for that purpose. The identification and forecasting processes based solely upon
the available measured data.

CONCLUSIONS

In this paper, it was shown that the GSPS framework provides us with a
technique to identify unknown technical processes successfully for the purpose of
behavior forecasting. This identification process requires no a priori knowledge
about the system structure, and can thus fairly well be automated. Unfortunately,
we must be able to shake the system up in order to obtain appropriate data for
the identification. This is done best by applying a random pattern to all inputs.
For systems that do not stand “shaking”, the proposed methodology may not
work equally well.
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