Iar. J. General Sysives, Vol T4 123, pp. 95118 10 1596 OFA (Oversess Publishen Association)

Beeprints weaslabic darecily frun: the printer Amsierdam BV, Published i The Neihertands
Patocogying permitied by license anly wsder ||csese Iy Gandos and Bresch Science Publishers 54
Printed i Wialaysia

COMBINED QUALITATIVE/QUANTITATIVE
SIMULATION MODELS OF CONTINUOUS-TIME
PROCESSES USING FUZZY INDUCTIVE
REASONING TECHNIQUES*

FRANCOIS E. CELLIER'

tDepartment of Electrical and Computer Engineering, The University of Arizona,
Tucson, Arizona 85721, USA.;

ANGELA NEBOT*

Institut de Cibernética, Universitat Politécnica de Catalunya, Diagonal 647, Plania 2,
Barcelona (8028, Spain;

FRANCISCO MUGICA! and ALVARO DE ALBORNOZ!

EDepartment d 'ESAH, Universitat Politécnica de Catalunya, Diagonal 647, Planta 2,
Barcelona 08028, Spain

(Received Auguss 24, 1993, in final form Auguss 24, [994)

A new mived quantitative and qualitative simulation methodology based on fuzzy inductive reasoning is pre-
sented, The feasibility of this methodology is demonstrated by means of a simple hydraulic control system. The
mechanical and electrical pans of the control system are modeled using differential equations, whereas the hy-
draulic part is modeled using fuzzy inductive reasoning. The technique is described in detail in the first part of
this paper. The examgple iz shown in the second part of the paper. The mixed quantiiative and qualitative model
is simulated in ACSL. and the simulation resulis are compared with those obtained from a fully quantitative model.
The example was chosen as 2 simple o describe, yet numerically demanding process whose sole purpose is o
prove the concept. Several practical applications of this mixed modeling technique are mentioned in the paper,
bt their realization has not vet been completed.

INDEX TERMS: Modeling, simulation, mixed quantitative and qualitative models, inductive reasoning,
forecasting theory, fuzzy sysiems, lcaming systems, artificial intelligence

*This paper is based on an earlier conference version presented at the IFAC Symposium on Intelligemt
Components and Instruments for Control, Milaga, Spain, 1992

cellier @ ece.anzona.edu
nebot @ ic.upe.es

migjica @ esali.upc.es, albornoz @ esali.upc.es
a5



o6 F.E. CELLIER ET AL.

l. INTRODUCTION

Qualitative simulation has recently become a fashionable branch of research in artificial
intelligence. Human reasoning has been understood as a process of mental simulation, and
qualitative simulation has been introduced as an attempt to replicate, in the computer, facets
of human reasoning.

Qualitative simulation can be defined ac evaluating the behavior of a system in qualita-
tive terms [Cellier, 1991b]. To this end, the states that the system can be in are lumped to-
gether to a finite (discrete) set. For example, instead of dealing with temperature as a
real-valued quantity with values such as 22.0°C, or 71.6°F, or 295.15 K, qualitative tem-
perature values may be characterized as ‘cold,’ ‘warm,’ or *hot.’

Qualitative variables are variables that assume qualitative values. Variables of a dynam-
ical system are functions of time. The behavior of a dynamical system is a description of
the values of it variables over time. The behavior of quantitative variables is usually re-
ferred to as trajectory behavior, whereas the behavior of qualitative variables is commonly
referred to as episodical behavior. Qualitative simulation can thus be defined as a process
of inferring the episodical behavior of a qualitative dynamical system or model.

Qualitative variables are frequently interpreted as an ordered set without distance mea-
sure [Babbie 1989]). Itis correct that *‘warm’ is “larger” (warmer) than “cold,’ and that *hot’
is “larger” (warmer) than ‘warm.’ Yet, it is not true that

‘warm’ — “cold’ = “hot” — *warm’ (1
or, even more absurdly, that
‘hot" =2 # “warm’ — “cold’ (2)

Operators such as ‘~" and "*" are not defined for qualitative variables.

Time, in a qualitative simulation, is also frequently treated as a qualitative variable. It is
then possible to determine whether one event happens before or after another event, but it
is not possible to specify when precisely a particular event takes place.

The most widely advocated among the qualitative simulation techniques are the knowl-
edge-based approaches that were originally derived from the Naive Physics Manifesio
[Hayes 1979]. Several dialects of these types of qualitative models exist [de Kleer and
Brown 1984: Forbus 1984; Kuipers 1986]. They are best summarized in Bobrow [1985].

The purpose of most qualitative simulation altempis is to enumerate, in qualitative terms,
all possible episodical behaviors of a given system under all feasible experimental condi-
tions. This is in direct contrast to quantitative simulations that usually content themselves
with generating one single trajectory behavior of a given system under one single set of ex-
perimental conditions.

2. MIXED MODELS

In the light of what has been explained above, it seems questionable whether mixed quan-
titative and qualitative models are feasible at all. How should a mixed quantitative and qual-
itative simulation deal with the fact that the quantitative subsystems treat the independent
variable, time, a5 a quantitative variable, whereas the qualitative subsystems treat the same
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variable qualitatively? When does a particular qualitative event occur in terms of quantita-
tive time7 How are the explicit experimental conditions that are needed by the quantitative
subsystems accounted for in the qualitative subsystems?

Quite obviously, a number of incompatibility issues exist between quantitative and qual-
itative subsystems that must be setiled before mixed simulations can be attempted. In a
mixed simulation, also the qualitative subsystems must treat time as a quantitative variable.
Furthermore, the purpose of qualitative models in the context of mixed simulations is re-
vised. It is no longer their aim io enumerate episodical behaviors. Instead, also the quali-
tative models are now used to determine a single episodical behavior in response 10 a single
set of qualitative experimental conditions,

Do so revised qualitative models make sense? It is certainly illegitimate to request that,
because human aircraft pilots are unable to solve Riccati equations in their heads to deter-
mine an optimal flight path, autopilots shouldn’t tackle this problem either. It is not suffi-
cient to justify the existence of qualitative models by human inadequacies to deal with
quantitative information.

Two good reasons for dealing with information in qualitative ways are the following:

1. Quantitative details about a (sub)system may not be available. For example, while the
mechanical properties of a human heart are well understood and can easily be de-
scribed by differential equation models, the effects of many chemical substances on
the behavior of the heart are poorly understood and cannot easily be quantified. A
mixed model could be used to describe those portions of the overall system that are
well understood by quantitative differential equation models, while other aspects that
are less well understood may still be representable in qualitative terms.

2. Quantitative details may limit the robustness of a (sub)system to react to previously un-
known experimental conditions. For example, while a human pilot is unable to com-
pute an optimal flight path, he or she can control the airplane in a much more robust
fashion than any of today"s autopilots. Optimality in behavior can be traded for robust-
ness. A fuzzy controller is an example of a qualitative subsystem that is designed to deal
with a larper class of experimental conditions in suboptimal ways. Mixed quantitative
and qualitative models may be used to address either or both of the above applications.
However, in order to do so, it is necessary to devise qualitative modeling and simula-
tion capabilities that are compatible with their quantitative counterparts and that can be
used to represent qualitative subsystems such as those mentioned above appropriately
and in terms of knowledge available to the system designer at the time of modeling.

Itis the purpose of this paper to degcribe one such mixed modeling and simulation method-
ology. In the advocated approach, the qualitative subsystems are represented (modeled) by
a special class of finite state machines called fuzzy optimal masks, and their episodical be-
havior is inferred (simulated) by a technigue called fuzzy forecasting. The overall process
of gualitaiive modeling and simulation is referred to as fuzzy inductive reasoning.

Fuzzy inductive reasoning is accomplished using SAPS-1I [Cellier and Yandell 19871, a
software that evolved from the General System Problem Solving (GSPS) framework [Klir
1985, 1989; Uyttenhove 1979]. SAPS-II is implemented as a function library of CTRL-C
[Systems Control Technology, 1985]. A subset of the SAPS-I1 modules, namely the re-
coding, forecasting, and signal regeneration modules have also been made available as an
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application library of ACSL [Miichell & Gauthier 1991], which is the software used in the
mixed quantitative and qualitative simulation runs.

3. FUZZY INDUCTIVE REASONING

3.1. Fuzzy Recoding

Recoding denotes the process of converting a quantitative variable to a qualitative variable.
In general, some information is lost in the process of recoding. Obviously, a temperature value
of 97°F contains more information than the value ‘*hot.” Fuzzy recoding avoids this problem.

Figure 1 shows the fuzzy recoding of a variable called “systolic blood pressure.” For ex-
ample, a quantitative systolic blood pressure of 135.0 is recoded into a qualitative value of
‘normal’ with a fuzzy membership function of 0.895 and a side function of ‘right.” Thus, a
single quantitative value is recoded into a triple. Any systolic blood pressure with a quan-
titative value between 100.0 and 150.0 will be recoded into the qualitative value ‘normal.’
The fuzzy membership function denotes the value of the bell-shaped curve shown in Figure
1, always a value between 0.5 and 1.0. It was decided to use bell-shaped fuzzy member-
ship functions rather than the more commonly used triangular ones. This membership func-
tion can be easily calculated using the equation:

Memb, = exp(—7, * (x — u,)) (3)

where x is the continuous variable to be recoded, u; is the algebraic mean between two
neighboring landmarks, and 7, is determined such that the membership function, Memb,,
degrades to a value of 0.5 at the landmarks. Contrary to other fuzzy approaches, the tails
of the membership functions (Memb, < 0.5) arc ignored in the method described in this
paper. The decision to ignore the tails of the membership functions is related to the selec-
tion of the fuzzy inferencing technique, and is justified in Mugica and Cellier [1993].
The side function indicates whether the quantitative value is to the left or to the right
of the maximum of the fuzzy membership function. Obviously, the qualitative triple con-
tains the same information as the original quantitative variable. The quantitative value

Membership Funections

H- |

muah teo low

Likelihood of Answer
3

-

=

0. " .
0.0 0. 49, 0O, B0, 00, 130, 140, 190, 180, Fo0. 2320, 3<0.
Svetolic Blood Pressuras

Figure 1 Fuzzy recoding.



SIMULATION MODELS @9

can be regenerated accurately, i.e., without any loss of information, from the gualitative
triple.

At this point, the question can be raised, how many discrete levels should be selected for
each state variable, and where the borderlines (landmarks) that separate two neighboring
regions from each other are to be drawn.

From statistical considerations, it is known that in any class analysis, each legal discrete
state should be recorded at least five times [Law and Kelton 1990]. Thus, a relation exists
between the total number of legal states and the number of data points required to base the
modeling effort upon:

Mo = 5" gy =5 11K (4)

where n,,, denotes the total number of recordings, i.¢., the total number of observed states,

denotes the total number of distinet legal states, i is an index that loops over all vari-
ables in the state, and k, denotes the number of levels that the /* variable can assume. The
number of variables is usually given, and the number of recordings is frequently predeter-
mined. In such a case, the optimum number of levels, n,,, of all variables can be found
from the following equation:

n, = ROUND (*"%/n../5) (5)

assuming that all variables are classified into the same number of levels. For reasons of
symmetry, an odd number of levels is often preferred over an even number of levels.
Abnormal states (‘too low,” *too high,’ and ‘much too low," “much too high) are grouped
symmetrically about the ‘normal’ state.

The number of levels chosen for each variable is very important for several reasons. This
number influences directly the computational complexity of the inference stage. Traditional
fuzzy systems usually require between seven and 13 classes for each variable [Aliev, er al.
1992: Maiers and Sherif 1985]. An exhaustive search in such a high-dimensional discrete
search space would be very expensive, and the number of classes should therefore be rc-
duced, if possible, to help speed up the optimization. It was shown in Mugica and Cellier
(1993] that the selected fuzzy inferencing technique makes it possible to reduce the num-
ber of levels down to usually three or five, a number confirmed by several practical appli-
cations [Albormoz and Cellier 1993a, 1993b; Cellier 1991¢; Vesanteri and Cellier 1989].

Once the number of levels of each variable has been selected, the landmarks must be
chosen to separate neighboring regions from each other. There are several ways to find a
meaningful set of landmarks. The most effective way is based on the idea that the expres-
siveness (or information contents) of the model will be maximized if each level is observed
equally often. In order to distribute the observed trajectory values of each variable equally
among the various levels, they are sorted into ascending order, the sorted vector is then split
into n,,, segments of equal length, and the landmarks are chosen anywhere between the ex-
treme values of neighboring segments, e.g., using the arithmetic mean values of neighbor-
ing observed data points in different segments.

3.2, Fuzzy Opiimal Masks

By now, the quantitative trajectory behavior has been recoded into a qualitative episodical
behavior, In SAPS-IL, the episodical behavior is stored in a raw data matrix. Each column
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of the raw data matrix represents one of the observed variables, and each row of the raw
data matrix represents one time point, i.e., one recording of all variables or one recorded
state. The values of the raw data matrix are in the set of legal levels that the variables can
assume, that means, they are all positive integers, usually in the range from *1"to *5" (SAPS-
Il uses integers in place of symbolic values to represent qualitative levels).

Masks as Qualitative Models. How does the episodical behavior support the identifica-
tion of a model of a given system for the purpose of forecasting the future behavior for any
given input siream?

A continuous trajectory behavior has been recorded and is available for modeling. It is
further assumed that the inputs into the real system and the outputs that can be measured
are known. The trajectory behavior can thus be separated into a set of input trajectories, u,,
concatenated from the right with a set of output trajectories, v, as shown in the following
example containing two inputs and three outputs;

lime by Wy Y% ¥ ¥

0.0 I
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=1l Lo . 00 e )

In order to avoid possible ambiguities, it is defined that the terms “inputs” and “outputs,”
when used in this paper without further qualifier, shall always refer to the input and output
variables of the subsystem to be modeled by the qualitative reasoner.

In the process of modeling, it is desired to discover finile automata relations among the
recoded variables that make the resulting state transition matrices as deterministic as pos-
sible. If such a relationship is found for every output variable, the behavior of the system
can be forecast by iterating through the state transition matrices. The more deterministic
the state transition matrices are, the better the certainty that the future behavior will be pre-
dicted correctly.

A possible relation among the qualitative variables for this example could be of the form:

¥ (0) = £y, (r — 280), wy(t — &), ¥,(t — 8t), w,(t ) M
Equation (7) can be represented as follows:

P B N N X
=28 0 0 0 0 —1
t— &1 0 -2 -30 0

t -4 0 410 0 ®

The negative elements in this matrix are referred to as m-inputs. M-inputs denote inputs
of the qualitative functional relationship. They can be either inputs or outputs of the sub-
system to be modeled, and they can represent different time instants. The above example
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contains four m-inputs. The sequence in which they are enumerated is immaterial. They
are usually enumerated from left to right and top to bottom. The positive value denotes
the m-output. In the above example, the first m-input, {,, corresponds to the output vari-
able y; two sampling intervals back: y,(t — 28r), whereas the second m-input refers to the
input variable u, one sampling interval in the past: u,(r - &), ete.

In inductive reasoning, such a representation is called a mask. A mask denotes a dynamic
relationship among qualitative variables. A mask has the same number of columns as the
episodical behavior to which it should be applied and it has a certain number of rows. The
number of rows of the mask matrix is called the depth of the mask.

The mask can be used to flatten a dynamic relationship out into a static relationship. It
can be shifted over the raw data matrix, the selected m-inputs and m-output can be extracted
from the raw data, and they can be written next to each other in one row of the so-called
input/output mairix. Figure 2 illustrates this process. Afier the mask has been applied to the
raw data, the formerly dynamic episodical behavior has become static, i.e., the relation-
ships are now contained within single rows.

Each row of the input/output matrix is called a state of the system. The state consists of
an inpuf state and an owiput srare. The input state denotes the vector of values of all the m-
inputs belonging to the state, and the output state is the value of the single m-output of the
stale. The set of all possible states is referred to as the set of legal states of the qualitative
model.

It has not been discussed yet how the time distance between two logged entries of the
trajectory behavior, &, is chosen in practice. In a combined quantitative/qualitative simu-
lation (mixed simulation), & must be selected carefully because its value will strangly in-
fluence the mask selection process. Determining a good value for this parameter in a
systematic way is currently the object of intensive research. In general, experience has
shown that the mask should cover the largest time constant that has to be captured in the
mode].

If the trajectory behavior stems from measurement data, a Bode diagram of the system
to be modeled should be made. This enables to determine the eigenfrequencies of the sys-
tem, and in particular, the smallest and largest eigenfrequencies. The smallest eigenfre-
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Figure I Flatiening dynamic relationships through masking.
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quency t,,, is the smallest frequency, at which the tangential behavior of the amplitude of
the Bode diagram changes by —20 dB/decade, and the largest eigenvalue @, 1s the high-
est frequency where this happens. The largest time constant, £, ;.. and the shortest time
constant, fy,, of the system can then be computed as follows:

" 2 iw ©

i Gl o Wyigh

The mask depth should be chosen as an integer approximation of the ratio between the
largest and smallest time constants to be captured in the model plus one:

depth = INT(~22) 4 | (10)
F i
but this ratio should not be much larger than 3 or 4. Otherwise, the inductive reasoner won't
work very well, since the computing effort grows factorially with the size of the mask.
Multiple frequency resolution in inductive reasoning is still an area of open research.
If the chosen mask depth is 3, the mask spans a time interval of 24, thus:

-
= 22N (n

Finding the Optimal Mask How is a mask found that, within the framework of all al-
lowable masks, represents the most deterministic state transition matrix? This mask will
optimize the predictiveness of the model. In SAPS-II, the concept of a mask candidate ma-
trix has been introduced. A mask candidate matrix is an ensemble of all possible masks
from which the best is chosen by a mechanism of exhaustive search. The mask candidate
matrix contains (—1) elements where the mask has a potential m-input, a (1) element
where the mask has its m-output, and (0) elements to denote forbidden connections. Thus,
a good mask candidate matrix for the previously introduced five-variable example might
be:

i o ®m N M N
=281 -1 -1 =1 -1
=8t |-1 =1 =1 =1 =1
t -1 -1 +1 0 O a2

In SAPS-II, the FOPTMASK routine determines the optimal mask from a raw data matrix,
the fuzzy memberships of the variables, a mask candidate matrix, and 4 parameter that lim-
its the maximum tolerated mask complexity, i.e., the largest number of nonzero elements
that the mask may contain. FOPTMASK searches through all legal masks of complexity
two, i.e., all masks with one m-input and finds the best one; it then proceeds by searching
through all legal masks of complexity three, i.e., all masks with two m-inputs and finds the
best of those; and it continues in the same manner until the maximum compexity has been
reached. In all practical examples; the quality of the masks will first grow with increasing
complexity, then reach a maximum, and then decay rapidly. A good value for the maximum
complexity is usually five or six.
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Each of the possible masks is compared to the others with respect to its potential merit.
The optimality of the mask is evaluated with respect (o the maximization of its forecasting
power.

The Shannon entropy measure is used to determine the uncertainty associated with fore-
casling a particular output state given any legal input state. The Shannon entropy relative
1o one input state is calculated from the equation

H = E,p{ah’}-lcg! ple i) (13)

where p{olf) is the conditional probability of a certain output state o to occur, given that the
input state i has already occurred, The term probability is meant in a statistical rather than
in a true probabilistic sense. It denotes the quotient of the observed frequency of a partic-
ular state divided by the highest possible frequency of that state.

The overall entropy of the mask is then calculed as the sum

H, = -E.p{l']‘H! (14)

where pii) is the probability of that input state o occur. The highest possible entropy H_,,
is obtained when all probabilities are equal, and a zero entropy is encountered for rela-
tionships that are totally deterministic.

A normalized overall entropy reduction H, is defined as

H,=10- %— (15)

H_is obviously a real number in the range between 0.0 and 1.0, where higher values usu-
ally indicate an improved forcasting power. The optimal mask among a set of mask candi-
dates is defined as the one with the highest entropy reduction.

The fuzzy membership associated with the value of a qualitative variable is a measure
af confidence. In the computation of the input/output matrix, a confidence value can be as-
signed to each row. The confidence of a row of the inputfoutput matrix is the joint mem-
bership of all the variables associated with that row [Li and Cellier 1990].

The joint membership of i membership functions is defined as the smallest individual
membership:

i
Memb, ., = Q Memb, = ig]f[ﬂfemb‘} - n%iln(Hembi} (16)

The confidence vector indicates how much confidence can be expressed in the individual
rows of the inputfoutput matrix.

The basic behavior of the input/output model can now be computed. It is defined as an or-
dered set of all observed distinct states together with a measure of confidence of each state.
Rather than counting the observation frequencies (as would be done in the case of a proba-
bilistic measure}, the individual confidences of each observed state are accumulated. If a state
has been observed more than once, more and more confidence can be expressed in it. Thus,
the individual confidences of each observation of a given state are simply added together,

In order Lo be able to still use the Shannon entropy, which is a probabilistic measure of
information content, in the computation of the fuzzy optimal mask, the accumulated con-
fidences must first be converied back 1o values that can be interpreted as conditional prob-
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abilities. To this end, the confidences of all states containing the same input state are added
together, and the confidence of each of them is then divided by this sum. The resulting nor-
malized confidences can be interpreted as conditional probabilities,

Application of the Shannon entropy to a confidence measure is a somewhat question-
able undertaking on theoretical grounds, since the Shannon entropy was derived in the con-
text of probabilistic measures only. For this reason, some scientists prefer to replace the
Shannon entropy by other types of performance indices [Klir, 1989; Shafer, 1976], which
have been derived in the context of the particular measure chosen. However, from a prac-
tical point of view, numerous simulation experiments have shown that the Shannon entropy
works satisfactorily also in the context of fuzzy measures.

One problem still remains. The size of the input/output matrix increases as the com-
plexity of the mask grows, and consequently, the number of legal states of the model grows
guickly. Since the total number of observed states remains constant, the frequency of ob-
servation of each state shrinks rapidly, and so does the predictiveness of the model. The en-
tropy reduction measure does not account for this problem. With increasing complexiiy, H,
simply keeps growing. Very soon, a sifuation is encountered where every state that has ever
been observed has been observed precisely once. This obviously leads to a totally deter-
ministic state transilion matrix, and H, assumes a value of 1.0. Yet the predictiveness of the
model will be dismal, since in all likelihood already the next predicted state has never be-
fore been observed, and that means the end of forecasting. Therefore, this consideration
must be included in the overall quality measure.

It was mentioned earlier that, from a statistical point of view, every state should be ob-
served at least five times [Law and Kelton, 1990]. Therefore, an observation ratio, O, is
introduced as an additional contributor to the overall guality measure [Liand Cellier, 1990];

o 5‘"!:+4‘ﬂlx+3'ﬂ3x+2'ﬂ{x+ﬂix

o, (7

5 L™
where:
ny,, = number of legal input states;
n;,. = number of input states observed only once;
n,, = number of input states observed twice;
n,, = number of input states observed thrice;

Ry, = number of input states observed four times;
ny, = number of input states observed five times or more.

If every legal input state has been observed at least five times, O is equal 1o 1.0, If no input
state has been observed at all (no data are available), ©, is equal to 0.0. Thus, @, can also
be used as a quality measure.

The overall qualiry of a mask, Q_, is then defined as the product of its uncertainty re-
duction measure, H_, and its observation ratio, 02

Q. =H, "0, (18)

The optimal mask is the mask with the largest @, value,
In SAPS-I1, the FOPTMASK function returns the overall best mask found in the op-
timization; a row vector that contains the Shannon entropies of the best masks for every
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considered complexity, H,; another row vector containing the corresponding uncertainty
reduction measures, H,; and yet another row vector listing the quality measures, (3, of
these suboptimal masks. Finally, FOPTMASK also returns the mask history matrix, a
matrix that consisis of a horizontal concatenation of all suboptimal masks. One of these
masks is the optimal mask, which, for reasons of convenience, is also returned separately,

3.3. Fuzzy Forecasting

Once the optimal mask has been determined, it can be applied o the piven raw data matrix
resulting in a particular input/output matrix. Since the input/fouiput matrix contains func-
tional relationships within single rows, the rows of the input/output matrix can now be
sorted in alphanumerical order. The resuli of this operation is called the behavior marrix of
the sysiem. The behavior matrix is a finite state machine. For each input state, it shows
which output is most likely (o be observed.

Forecasting has now become a straightforward procedure. The mask is simply shifted
further down beyond the end of the raw data matrix, the values of the m-inputs are read out
from the mask, and the behavior matrix is used to determine the future value of the m-out-
put, which can then be copied back into the raw data matrix. In fuzzy forecasting, it is es-
sential that, together with the qualitative output, also a fuzzy membership value and a side
value are forecast. Thus, fuzzy forecasting predicts an entire qualitative triple from which
a quantitative variable can be regencrated whenever needed.

In fuzzy forecasting, the membership and side functions of the new input state are com-
pared with those of all previous recordings of the same input state contained in the behav-
ior matrix. The one input state with the most similar membership and side functions is
identified, For this purpose, a normalized quantitative signal

d; = class; + side; * (1 — Memb,) (19)

is computed for every element of the new input state, and the regenerated d, values are
stored in a vector. This reconstruction is then repeated for all previous recordings of the
same input state. Finally, the L, norms of the difference between the d vector of the new
input state and the d vectors of all previous recordings of the same input state are computed,
and the previous recording with the smallest L, norm is identified. Its ouspus and side val-
ues are then used as forecasts for the output and side values of the current state.

Forecasting of the new membership function is done a little differently. Here, the five pre-
vious recordings with the smallest L, norms are used (if at least five such recordings are found
in the behavior matrix), and a distance-weighted average of their fuzzy membership func-
tions is computed and used as the forecast for the fuzzy membership function of the current
state.

Absolute weights are computed as follows:

(20)

where the index k loops over the five closest neighbors, and d, = d,, i < j; d,,, = ds. The
absolute weights are numbers between 0.0 and 1.0. Using the sum of the five absolute weights:
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it is possible to compute relative weights:
_— ";ﬁ*— (22)

Also the relative weights are numbers between 0.0 and 1.0. However, their sum is al-
ways equal to 1.0, It is therefore possible to interpret the relative weights as percentages.
Using this idea, the membership function of the new output can be computed as a weighted
sum of the membership functions of the outputs of the previously observed five nearest
neighbors:

Memb,,,, = 2} Woey * Memb,y, (23)

The fuzzy forecasting function will usually give a more accurate forecast than the proba-
bilistic forecasting function. A comparative study of the most commonly used inferencing
methods and the five-nearest-neighbors defuzzification method is presented in [Mugica and
Cellier, 1993]. This method allows to retrieve pseudo-continuous output signals with a high
quality using the REGENERATE function. This means that also a forecast of the continu-
ous-time signals can be obtained [Cellier 1991a]. Notice that the REGENERATE function
is the inverse process of the RECODE function.

4, AN EXAMPLE

In the remainder of this paper, an example will be presented that demonstrates, for the first
time, the process of mixed quantitative and qualitative simulation using fuzzy inductive
reasoning. The example was chosen simple enough to be presented in full, yet complex
enough to demonstrate the generality and validity of the approach. However, it is not sug-
gested that the chosen example represent a meaningful application of mixed quantitative
and qualitative simulation. The example was chosen to prove the concept and to clearly
present the methodology, not as a realistic and meaningful application of the proposed
technique.

Figure 3 shows a hydraulic motor with a four-way servo valve. The flows from the high-
pressure line into the servo valve and from the servo valve back into the low-pressure line
are turbulent. Consequently, the relation between flow and pressure is quadratic

g =kxy + P —p
G =k(xo —xWp — R
g =kixg +xWp — R
gs = kixy —x}qﬁ

The chosen parameter values are P, = 0.137 % 10° N m?, P, = 1.0132 X 1 Nm™, x,
=005 m, and k = 0.248 X 10 kg*® m*,

The change in the chamber pressures is proportional to the effective flows in the two
chambers

(24)
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Pg

Pg Py

I
Servo- JJTL “‘l |T|_
P b B

valve

Figure 3 Hydraulic motor with a four-way servo valve

-t?l =eldy — ¢ =G = Gus) (25)
Py =c(qu +9 — 42 —9u)

with ¢, = 5.857 X 10" kg m™ sec®. The internal leakage flow, g, and the external leakage
flows, q,, and g,,, can be computed as

§=c * p=clp = p:)

qu 5 cu' B FI {'zﬁ}
e Thytily
where ¢, = 0.737 X 10" kg”' m* sec, and ¢, = 0.737 X 10-° kg m* sec.
The induced leakage, g, is proportional to the angular velocity of the hydraulic motor,
w

Qs = 0w, (27)

with = 0.575 % 10~ m*, and the torque produced by the hydraulic motor is proportional
to the load pressure, p,

T.=dp, =dp —p,) (28)

The mechanical side of the motor has an inertia, J,, of 0.08 kg mv’, and a viscous friction,
p.of 1.5 kg m’* sec”.

The hydraulic motor is embedded in the control circuitry shown on Figure 4, In the mixed
quantitative and qualitative simulation, the mechanical and electrical paris of the control
system will be represented by differential equation models, whereas the hydraulic part will
be represented by a fuzzy inductive reasoning model.
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Figure 4 Hydranlic mator position control ciruit.

For this purpose, it was assumed that no knowledge exists that would permit a descrip-
tion of the hydraulic equations by means of a differential equation model. All that is known
is that the mechanical torque, T, of the hydraulic motor somehow depends on the control
signal, u, and the angular velocity, o,_.

For validation purposes, the mixed simulation results will be compared with previously
ohtained purely quantitative simulation results. The purely quantitative simulation of the
overall system (Fig. 4) was implemented by an ACSL program [Mitchell & Gauther 1991]
simulated over 2.5 seconds. A binary random input signal was applied to the input of the
system, @,

The values of the control signal, u, the angular velocity, @, = €, and the torque, T,
from the first 2.25 seconds of the quantitative simulation were recoded to generate the fuzzy
inductive model of the hydraulic motor.

The values of the last 0.25 seconds of quantitative simulation were stored for validation
purposes. Validation is accomplished by comparing the simulation results of the new mixed
model with those of the purely quantitative model, which is being used in place of “mea-
surement data.”

4.1. Building the Fuzzy Inductive Model

As was described in the previous sections, the fuzzy inductive model is constructed in two
steps. In the first step, the quantitative data are recoded, and in the second step, the fuzzy
optimal mask is determined from the recoded data.

Fuzzy Recoding of the Hydraulics  The first question to be addressed in the recoding process
is the selection of the appropriate sampling rate (communication interval) for the continu-
ous variables to be recorded (either from measurements or, as in this example, from a quan-
titative simulation study). In the given cxample, this value can be deduced from the longest
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time constant to be considered (i.e., the inverse of the slowest eigenvalue of the Jacobian).
The eigenvalue is at —20, and therefore, the longest time constant is (.05 seconds. In accor-
dance with equation (10), the three variables v, w,, and T, must thus be sampled once every
0.025 seconds if a mask depth of 3 is chosen [Cellier 1991a; Li and Cellier 1990].

Unfortunately, fuzzy inductive forecasting predicts only one value of T, per sampling in-
terval. Thus, the mixed qualitative and quantitative simulation behaves like a sampled-data
control system with a sampling rate of 0.025. Thereby, the stability of the control system is
lost because the sampling rate is oo slow to keep up with the changes in the system. From
a control system perspective, it is necessary to sample the variables considerably faster. An
ACSL program was coded to study different sampling rates in order to obtain a stable con-
trol performance. This program introduces into the quantitative simulation a delay in the
computation of the torque. The largest delay time that can be introduced without losing sta-
bility of the control system was identified. It was determined that the longest tolerable delay
is 0.0025 seconds. Consequently, the mask depth must be increased from 3 to 21.

The next step is to find the number of discrete levels into which cach of these variables
will be recoded. For the given example, it was decided that all three variables can be suf-
ficiently well characterized by three levels. A discretization of the variables in this manner
implies that the number of legal states is 27 (3 X 3 X 3).

As explained before, it is desirable to record each state at least 5 times, Consequently, a
minimum of 130 recordings, comresponding to a total simulation time of 0.325 seconds, is

/f Recodea the system in an optimal manner

/7 Start by sorting the observed trajectory values into ascending ordaer.

meas = y(l:1001,2:4);

m = mEas;

FOR i=1:3, ...
[indx,ml] = SORT (meas(i,410: ...
miz, i) = mi;

END

// cut the sorted wector into n_lev segments of equal length, and choose
/f the landmarks between tha extremsa valuss of neighboring segmenta.

LM = [ m{l,:}
0.5*(mi{333,:] + m[334,:)])
0.5%(m{666, 2] + m{E&T, :}J
mi{lQ01,:1 ]:

rawl = meas;

Mambl = OMES (meas):

sidel = ZIROW(meas);

/{ BRecode the obasrved trajectory values,

te = 1:d;
FOR i=1:3; ...
from = [ LM{L:3,4) , LM{2:4,4) J'r ...
[z,m;a] = RECODE (meas(:,1i),” " fuzzy’,frem,taly ...
rawl(:,;i) = r; Membl{:,i) = m; aidel{:,i}) = 8; ...
END

Figure § Fuzzy recoding of hydraulic subsystem.
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needed. However, due to the mismatch between the sampling rate required by fuzzy fore-
casting and the actually used sampling rate that is required due to the controller character-
istics, considerably more data are needed. It was decided to choose a total simulation time
of 2.5 seconds with 2.25 seconds being used for model identification, and the last 0.25 sec-
onds being used for validation. This provides the optimal mask module with 900 recordings
used for model identification, while furzy forecasting is carried out over the final 100 steps.
The fuzzy recoding is obtained using a CTRL-C program that invokes calls to the SAPS-
11 library described in subsection 3.1. It uses the previously recorded data from the purely
quantitative simulation program. The CTRL-C program is shown on Figure 3.

Fuzzy Optimal Mask of the Hydraulics With the data recoded as was described above, it is
possible to build the qualitative model of the hydraulics by means of the fuzzy optimal mask
synthesis (subsection 2.2). To combine the qualitative and quantitative simulation models, it
wis necessary 1o solve the dynamic stability problem, while covering the longest time con-
stant to be capiured in the qualitative model. This means that, as mandated by control theory,
the sampling interval & is chosen to be 0.0025 seconds, Consequently, the mask depth must
be chosen equal to 21, Even a search through all possible masks of complexities up o six only
would be painfully slow. Therefore, the following approach was taken. From the point of view
of fuzzy reasoning, a mask depth of three is usually sufficient. Consequently, it was decided
to consider only inputs in the first, the 11th, and the 21st row of the mask, blocking all other
rows out by setting the comesponding elements of the mask candidate matrix to 0. In this way,
the search can proceed quickly, and yet, the resulting “optimal” mask will still be very close
to the truly optimal mask. Thus, the following mask candidate matrix of depth 21 was chosen:

T,

i\l'* u IW' -
r—208:(—1 —1 -0
r— 195¢ o 0 0O
1= 115¢ 0 0 0 “h
t— 108 |—1 =1 =1
r—94r 0 ] ]
t— Ot 0 0 ]
t

Thus, the mechanical torque, T, at time r may depend on the current values of & and w,,
as well as on past values of u, w,, and T,, at times - 0.025 seconds and r — 0.05 seconds.
The fuzzy optimal mask is obtained by another CTRL-C program that also issues a call
to the SAPS-II library. [t makes use of the previously recoded data. This CTRL-C program
is presenied on Figure 6.
The following optimal mask has been found for this example:
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S/ Perform an optimal mask analysis
/4 Extract the Eirst 900 rows for model identificatien.
rraw = rawl{l:900, :):
MMambh = Mambl{1:900,:);
saide = sidel (1:900,:);
f{ Select the mask candidate matrix.
mcan = ZROW(Z21,3);
mean(l:10:21,:) = -ONES(3, 3):
mcan (21,3 = 1;
// Determine the optimal mask.

[mask, HM,HR, 0, mhis] = FOPTMASK{rraw,MMemb,mcan, &)

Figure & Finding the aplimal mask of the hydranlic subsystem.

‘_\‘ oo, T_
t=208:( 0 =1 =) (30)
r—195: o 0 90
e—118: ) 0 0 O
11— 108 0 0 0
t— 98¢ 4] 0 0
i— &t 4] 0 0
£ e S i 55 B

In other words:
T, (t) = flw,(t — 0.05), T (1 — 0.05), u(t)) (31

Fuzzy Forcasting and Signal Regenerarion. Once the optimal mask has been determined
and before it can be integrated into the mixed simulation, its prediction capability must be
checked. For this purpose, another CTRL-C program was written that compares the values
of T obtained from the quantitative simulation with the forecast and regenerated values.
As mentioned before, the first 900 rows of the raw data matrix were used as past history
data to compute the optimal mask. Fuzzy forecasting (subsection 3.3) is being used to pre-
dict new gualitative triples for T, but only for the last 100 rows of the raw data matrix.
From the predicted gualitative triples, quantitative values can then be regenerated. This
CTRL-C program is shown on Figure 7.

Figure 8 compares the true “measured” values of T, obtained from the purely quantita-
tive simulation (solid line) with the forecast and regenerated values obtained from the fuzzy
inductive reasoning (dashed line), The results are encouraging. Quite obviously, the opti-
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/4 Forecast the system over 100 steps
/¢ Copy the guantitative data over.
rraw = rawl{l:1000,:}):
MMemb = Membl{1:1000,:);
salde = sidel{1:1000,:);
/¢ Dastrey the last 100 rows.
reaw (901:1000,3) = ZROW(100,1);
MMamb (901 :1000, 3) = 0.75+0NES{100,1):
33ide(901:1000,3) = OHNES({100,1);
/f Foracast new values for the last 100 rows.
[frest,Mfrest, sfrpat] = FFORECAST (rraw, Mmemb, cside, mask, 900) ;
/4 Extraet the forecast data.
fredat = freat (901:1000, 3) ¢
Mfrcdat = Mfrcst (S01:1000,3);
afredat = afrest (301:1000,3);

/{ Regenerate the continueus signalsa.

from = 1:3;
to = [ LM(1:3,3) , LM{2:4,3} ]1';

rmeas = REGENERATE (frodat,Mfredat, sfrcdat,from,tel s
Figure 7  Qualitative simulation of hydraulic subsystem.
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Figure 8 Simulated and forecast torque trajectories compared.

mal mask contains sufficient information about the behavior of the hydraulic subsystem 1o
be used as a valid replacement of the true quantitative differential equation model, although
the chosen recoding scheme was extremely crude using three levels for each variable only.
Notice that the fuzzy inductive reasoning model was constructed solely on the basis of mea-
surement data No insight into the functioning of the hydraulic subsystem was required
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other than the knowledge that the torque, T, dynamically depends on the control signal,
u, and the angular velocity, w,,.

4.2. Mixed Modeling and Simulation

Once the prediction capability has been demonstrated, the fuzzy inductive reasoning model
can be used to replace the former differential equation model of the hydraulic subsystem
in a mixed simulation, where the electrical and mechanical subsystems are still modeled
using differential equations, whereas the hydraulic subsystem is modeled using a fuzzy op-
timal mask. The mixed model is shown on Figure 9. The quantitative control signal, u, is
converted to a qualitative triple, u®, using fuzzy recoding (subsection 3.1). Also the quan-
titative angular velocity, @, of the hydraulic motor is converted to a qualitative triple, @,
From these two qualitative signals, a qualitative triple of the torque of the hydraulic motor,
T". . is computed by means of fuzzy forecasting (subsection 3.2). This qualitative signal is
then converted back to a quantitative signal, T, using furzy signal regeneration.
Forecasting was restricted to the last 100 sampling intervals, i.e., to the time span from
2.25 to 2.5 seconds. Figure 10 compares the angular position, 8_, of the hydraulic motor
from the purely quantitative simulation (solid line) with that of the mixed guantitative and

@
Fazzy L]
Kecading
w'e
TL T
i1 Pem e Mol Mechanics
B_I e u =S u Ficsaidhn Regeneration =i i B
i - ]
:"@“‘f %] Recuding i
—.| &8
T i Aeasurement -
Diymamies
Figure ® Mixed model of the hydraulic sysiem.
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1 - . . '
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Figure 10 Comparison of guantitative and mixed simulations.
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qualitative simulation (dashed line). As was to be expected, the mixed model behaves like
a sampled-data control system. The mixed simulation exhibits an oscillation amplitude that
is slightly larger and an oscillation frequency that is slightly smaller than those shown by
the purely quantitative simulation. Surprisingly, the damping characteristics of the mixed
model are slightly better than those of the purely quantitative model.

5. CONCLUSIONS

The example demonstrates the validity of the chosen approach. Mixed simulations are sim-
ilar in effect to sampled-data system simulations. Fuzzy recoding takes the place of ana-
log-to-digital converters, and fuzzy signal regeneration takes the place of digital-to-analog
converters. However, this is where the similarity ends. Sampled-data systcms operate on a
fairly accuraie representation of the digital signals. Typical converters are 12-bit convert-
ers, corresponding to discretized signals with 4096 discrete levels. In contrast, the fuzzy
inductive reasoning model employed in the above example recoded all three variables into
qualitative variables with the three levels “small,’ ‘medium,’ and ‘large.’ The quantitative
information is retained in the fuzzy membership functions that accompany the qualitative
signals. Due 1o the small number of discrete levels, the resulting finite state machine is ex-
tremely simple. Fuzzy membership forecasting has been shown to be very effective in in-
ferring quantitative information about the system under investigation in qualitative terms.

However, the practicality of this methodology should be proven in a more profound way
by applying it to more sophisticated examples. Our current rescarch efforts are focused on
applications of this methodology to mixed heart modeling, automated synthesis of fuzzy
controllers [Albornoz and. Cellier 1993a, and intelligent autopilots [Albormoz and Cellier
1993b].

Some of the knowledge used in the construction of the mixed models, such as the se-
lection of the optimal sampling rate, was of a heuristic type. These decisions need to be
studied in more depth to guarantee that they can be fully automated for incorporation in
the design methodology. Also, the application of the proposed methodology to stiff sys-
tems needs to be studied in more depth due to the multiple frequency resolution problem
inherent in such systems. It is not practical to simply request the mask to be made deeper

and deeper.
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