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ABSTRACT

In this article, a new systematic design methodology for
fuzzy controllers is presented. For any desired plant
output, it is possible o find off-line the optimal plant
input that will produce a plan output that is as close as
possible (o the desired one. However, this constituies an
apen-loop design. In this article, a new methodology is
introduced that allows computing a signal on-ling that is
close 1o the optimal plant inpet a5 a funcion of system
inputs and plant cutputs. To this end, an inductive
reasoning model is created that estimates the optimal
planr inpur from given system inputs and plant ouras,
The inductive reasoning model can be interpreted and
realized as a fuzzy controller. Thereby, a large partion
of the controller is realized through feedback, and the
previous apen-loop design is converted to an equivalent
and more robust closed-loop design. The inductive
reasoning technique is described in detail in the first
part of this article. An example is shown in the second
part of the article to demonstrate the validity of the
chosen approach. © 1995 John Wiley and Sons, Inc.

INTRODUCTION

Fuzzy controllers have become quite popular
over the past years, particularly in Japan. At
least four reasons can be mentioned that make
fuzzy controllers potentially attractive:

1. Price: A fuzzy controller can be realized
cheaply. Special chips have been designed
that can be used to implement fuzzy con-
trollers for a large variety of different
industrial processes,

Flexibility: A fuzzy controller can be de-
signed with very little knowledge of the
plant it is supposed to control. Conse-
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INDUCTIVE REASONING
SUPPORTS THE DESIGN OF
Fuzzy CONTROLLERS

quently, the same fuzzy controller can, by
adjusting its performance parameters, be
used to control different types of processes.
Only the classical PID controller can com-
pete with the fuzzy controller in flexibility.

3. Robustness: Contrary to the optimal state
feedback controller, which is very sensitive
to parameter variations, a fuzzy controller
can deal much more reliably with a plant
whose parameters are time varying. While
a human aircraft pilot is unable to compute
an optimal flight path in his or her head by
solving a matrix Riccati equation, he or she
is able to control the aircraft successfully
and reliably in situations where any one of
today's autopilots would fail miserably.
When an anomaly has occurred, the first
thing that the human pilot will do is switch
off the autopilot. However, under normal
circumstances, the autopilot can fly the
aircraft more softly and more economically
(in terms of kerosene consumption) than a
human pilot could do. In some sense,
optimality can be traded for robustness.
The same holds true for fuzzy controllers.
A fuzzy controller can never compete with
an optimal controller in terms of efficiency,
but it can be built to be considerably more
robust than any optimal controller.

4, Adaptability: Because a fuzzy controller
requires less knowledge of the environment
it operates in, it is easier to make it adapt
itself to a changing situation than any
optimal controller.

Except for point 1 above, which is purely econ-
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omically founded, all the other points are closely
related to one another. They all deal with
questions of efficiency  versus flexibility, of
specialization versus generality.

Obwiously, a fuzzy controller is not a cure for
all diseases. Although fuzzy controllers are po-
tentially more adaptable than state feedback
controllers, this does not mean that a fuzzy
controller will automatically adapt itself to arbit-
rarily changing operating conditions, While fuzzy
controllers are usually fairly robust when dealing
with nonlinear plant behavior or unmodeled
plant dynamics (much more so than state feed-
back controllers), they are known to be rather
sensitive to changes in the operating point.
Moreover, fuzzy controllers are still more of an
art than of a science. In particular, there is no
general technique currently available that would
allow the design of a fuzzy controller that is
guaranteed to be stable under all feasible operat-
ing conditions. This is in contrast to the state
feedback controllers, whose stability properties
can be analytically determined, at least when
applied to linear systems. Techniques have also
been developed to analyze the stability prop-
erties of some types of controllers when applied
to some classes of nonlinzar plants. It is this lack
of mathematical capabilities to assess the stabili-
ty and convergence properties of fuzzy control-
lers that makes many good classical control
engineers skeptical of the potentials of this
technology.

However, it is uncontested that fuzzy control-
lers have indeed been successfully applied to
many practical problems that were previously
either not solvable at all or solvable only with
considerably more expensive controllers, and it
is this success story that makes the technology
attractive to the more practically oriented vin-
tage among the control engineers.

If humans are ever going to colomize other
planets, they will have to rely on an army of
fairly autonomously operating robots that will be
needed to prepare these other planets for human
arrival. These robots are not manufacturing
robots. It is not essential that they produce as
much merchandise per time unit as possible. It is
much more important that they arc robust, i.c..
can operate on their own without running into
any sort of trouble, that they arc adaptive, i.e..
can reliably accommodate to a changing environ-
ment, and that they are ffexible, i.¢., can be used
for various different tasks. Fuzzy control may
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provide a partial answer to some of these de-
mands.

Fuzzy controllers are essentially rule-based
controllers whereby continuous variables are
discretized (recoded) into classes. A recoded
fuzzy variable preserves its gquantitative infor-
mation in a fuzzy membership function that it
carries along with its class value. Operations
performed on fuzzy variables are performed
separately on their class values (using finite state
automata techniques, so-called “rules”) and on
their fuzzy membership functions (using fuzzy
logic).

The design of any controller is an optimization
problem. It may be that the optimization prob-
lem can be solved anmalytically (such as in the
case of state feedback controllers for linear
plants), and in this case, the optimization prob-
lem may no longer be directly visible to the user.
However, when a controller is to be built for an
arbitranily nonlinear and/or partially unknown
plant, the tuning of the controller becomes a
formidable task. The more complex the control-
ler, the more tuning parameters it will offer, and
the more difficult it will be to find the optimal
setting of these parameters. In general, the
control engineer must search a continuous k-
dimensional search space (k being the number of
controller parameters) for the optimal setting.

The purpose of recoding both the input and
output variables of the system into fuzey van-
ables is to reduce the effort necessary to find the
optimal controller parameters. The search is
performed only in the much reduced discrete
search space of the (discrete) class values of
these parameters. If necessary, even an exhaus-
tive search of this search space may be afford-
able, which will guarantee that the global op-
timum 1is found (at least in terms of the discrete
scarch space). The fuzzy membership functions
are then used to interpolate in an cfficient
fashion between neighboring class values, i.e.. to
deduce quasi-optimal continuous values of the
controller parameters. The task of the fuzzy
inferencing algorithm (Mugica and Cellier, 1993)
is to ensure that the interpolation between neigh-
boring discrete solution points is smooth and
preserves, on the way, as much information
about the system to be modeled as possible.

The rules and fuzzy membership functions
employed in a fuzzy controller are usually de-
termined heuristically, i.e., they are manually
coded on the basis of an intuitive understanding



of the functioning of the underlying process to be
controlled,

A systematic design of the rules and/or their
accompanying fuzzy membership functions has
been attempted in the past. For example, a type
of genetic algorithm (Goldberg, 1989) has been
successfully employed to optimize the behavior
of a fuzzy controller used in an autonomous
spacecraft rendezvous mancuver (Karr et al.,
1989). More recently, a ncural network of the
associative memory type was emploved to initial-
lv train (off-line) and then adapt (on-line) the
parameters of a fuzzy controller for an inverted
pendulum (Kosko, 1992},

This article presents a new systematic design
of fuzzy controllers that can be used to control
any plant for which the inverse dynamics prob-
lem can be solved. The methodology employed
in the design is centered around fuzzy inductive
reasoning, (Li and Cellier, 1990; Cellier, 1991a)
a technique geared at the qualitative simulation
of dynamical continuous-time processes (Cellier
et al., 1992).

Fuzzv inductive reasoning is accomplished
using SAPS-II (Cellier and Yandell, 1987), a
software that evolved from the General System
Problem Solving (GSPS) framework
(Uyttenhove, 1979; Klir 1985, 1989). SAPS-11 is
implemented as a (FORTRAN-coded) function
library of CTRL-C (Systems Control Technolo-
gv, 1985). A subset of the SAPS-II modules,
namely the recoding, forecasting, and regenera-
tion modules, have also been made available as
an application library of ACSL (Mitchell &
Gauthier Assoc., 1986), which is the software
used in the mixed guantitative and qualitative
simulation runs,

The underlying inverse dynamics problem is a
well-known control problem that has been
studied extensively, particularly in the context of
robot control. Given the desired path of the
end-effector (the result of solving the path plan-
ning problem), find the optimal position of each
joint (inverse kinematics problem), then find the
optimal forces and torques in each joint (inverse
dynamics problem) (Fu et al., 1987). It is not the
purpose of this article 10 reiterate on inverse
dynamics. An example for which the solution of
the inverse dynamics problem is trivial has been
selected to show how to apply the fuzzy induc-
tive reasoning methodology to the design of
fuzzy controllers.

It is important to remark that, although the

example chogen is very simple and linear, neither
the complexity nor the linearity of the chosen ap-
plication are important to the success of applying
the proposed inductive reasoning methodology 1o
qualitatively modeling the dynamics of a system
or controller. Very complex and highly nonlinear
systems have already been successfully modeled
using the proposed methodology (Cellier et al.,
1992: Albornoz and Cellier, 19934, 1993hb),

This is a proof-of-concept article. The applica-
tion chosen to demonstrate the systematic fuzzy
controller design methodology is simple and
generic. It is simple enough to be described in
full, yet complex enough to prove the practicality
of the approach. More extensive applications,
such as fuzzy control applied to cargo ship
steering, fuzzy control of a double inverted
pendulum, and fuzzy control of a large robot
arm are currently under development by the
authors of this article to study the true merits as
well as limitations of the chosen approach.

Fuzzy INDUCTIVE REASONING

Fuzzy REcoDiNG

Recoding denotes the process of converting a
quantitative variable to a qualitative variable. In
general, some information is lost in the process
of recoding. Obviously, a temperature value of
97°F contains more information than the value
“hot.” Fuzzy recoding avoids this problem.

Figure 1 shows the fuzzy recoding of a variable
called “systolic blood pressure.” For example. a
quantitative systolic blood pressure of 135.0 is
recoded into a qualitative value of ‘“normal™
with a fuzzy membership function of 0.895 and a
side function of “right.”” Thus, a single quantita-
tive value is recoded into a triple. Any svstolic
hlood pressure with a quantitative value between
100.0 and 150.0 will be recoded into the quali-
tative value “normal.” The fuzzy membership
function denotes the value of the bell-shaped
curve shown in Figure 1, always a value between
0.5 and 1.0. It was decided to use bell-shaped
fuzzy membership functions rather than the
more commonly used triangular ones. This mem-
bership function can be easily calculated using
the equation

Memb, =exp(—r, (x —,)") - (1)

where x is the continuous variable to be recoded,
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Figure 1. Fuzzy recoding.

, is the algebraic mean between two neigh-
boring landmarks, and 7, is determined such that
the membership function, Memb,, degrades to a
value of 0.5 at the landmarks. Contrary to other
fuzzy approaches, the tails of the membership
functions (Memb, < 1().5) are ignored in the meth-
od described in this article. The decision to
ignore the tails of the membership functions is
related to the selection of the fuzzy inferencing
technique, and is justified in Mugica and Cellier
(1993).

The side function indicates whether the quan-
titative value is to the left or to the right of the
maximum of the fuzzy membership function.
Obviously, the qualitative triple contains the
same information as the original guantitative
variable. The quantitative valuc can be regener-
ated accurately, i.e.. without any loss of in-
formation, from the qualitative triple.

At this point, the question can be raised of
how many discrete levels should be selected for
cach state variable, and where the borderlines
(landmarks) that separate two neighboring re-
gions from each other are to be drawn.

From statistical considerations, it is known
that in any class analysis, each legal discrete state
should be recorded at least five times (Law and
Kelton, 1990). Thus, a relation exists between
the total number of legal states and the number
of data points required to base the modeling
effort upon

=

II."n:l: Elnirr_ -511—1*1 £ {2}
vl

where n,,. denotes the total number of record-
ings, i.e., the total number of observed states,
n,, denotes the total number of distinct legal
states, ¢ is an index that loops over all variables
in the state, and k, denotes the number of levels
that the i'" variable can assume. The number of
variables is usually given, and the number of
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recordings is frequently predetermined. In such a
case, the optimum number of levels, n,, . of all
variables can be found from the following equa-
tion:

n,., = ROUND(™yn . /5) . (3)
assuming that all variables are classified mnto the
same number of levels. For reasons of symmetry,
an odd number of levels is often preferred over
an even number of levels. Abnormal states (“too
low,” “too high,” and “much too low,” “much
too high™) are grouped symmaetrically about the
“normal™ state.

The number of levels chosen for each variable
is very important for several reasons. This num-
ber influences directly the computational com-
plexity of the inference stage. Traditional fuzzy
controllers usually require between 7 and 13
classes for each variable (Maiers and Sherif,
1985; Aliev et al., 1992; Wu et al,, 1992}, An
exhaustive search in such a high-dimensional
discrete search space would be very expensive,
and the number of classes should therefore be
reduced, if possible, to help speed up the optimi-
zation. It was shown in Mugica and Cellier
(1993) that the selected fuzzy inferencing tech-
nique makes it possible to reduce the number of
levels down to uwsually 3 or 5, & number con-
firmed by several practical applications (Vesan-
teri and Cellier, 1989; Cellier, 1991c; Albornoz
and Cellier, 1993a, 1993b).

Once the number of levels of each variable has
been selected, the landmarks must be chosen to
separate neighboring regions from each other.
There are several ways to find a meaningful set
of landmarks. The most effective way is based on
the idea that the expressiveness (or information
contents) of the model will be maximized if cach
level is observed equally often. To distribute the
observed trajectory values of each variable



equally among the various levels, they are sorted
into ascending order, the sorted vector is then
split into n,,, segments of equal length, and the
landmarks are chosen anywhere between the
extreme values of neighboring segments, e.g.,
using the arithmetic mean values of neighboring
observed data points in different segments.

Fuzzy OpTiMAL MasKs

By now, the quantitative trajectory behavior has
been recoded into a qualitative episodical be-
havior. In SAPS-II, the episodical behavior is
stored in a raw data rmatrix. Each column of the
raw data matrix represents one of the observed
variables, and each row of the raw data matrix
represents one time point, i.e., one recording of
all variables or one recorded state. The values of
the raw data matrix are in the set of legal levels
that the variables can assume, that means, they
are all positive integers, usually in the range
from 1" to 5" (SAPS-II uses integers in place
of symbolic values to represent qualitative
levels).

Masks as Qualitative Models. How does the epi-
sodical behavior support the identification of a
model of a given system for the purpose of
forecasting the future behavior for any given
input stream?

A continuous trajectory behavior has been
recorded and is available for modeling. It is
further assumed that the inputs into the real
system and the outputs that can be measured are
known. The trajectory behavior thus can be
separated into a set of inpul trajectories, u,.
concatenated from the right with a set of output
trajectories, y,, as shown in the following exam-
ple containing two inputs and three outputs:

tirme i, My
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To avoid possible ambiguities, it is defined that
the terms “inputs” and “outputs,” when used in
this article without further qualifier, shall always
refer to the input and output variables of the

subsystem to be modeled by the gqualitative
reasoncr.

In the process of modeling, it is desired to
discover finite automata relations among the
recoded variables that make the resulting state
transition matrices as deterministic as possible. If
such a relationship is found for every output
variable, the behavior of the system can be
forecast by iterating through the state transition
matrices. The more deterministic the state transi-
tion matrices are, the better the certainty that
the future behavior will be predicted correctly.

A possible relation among the qualitative
variables for this example could be of the form

¥ (6) = Fl (e = 286), (e — 30),
yyle =8y, u, (1)) - (5)

Eq. (5) can be represented as follows:

f Uy H; Yo Y2 K

t — 281 @ e el =
t —&r ( 0-=2 =3 10 0
= (6)

¢ 4 0 +1 0 0@

The negative elements in this matrix are referred
io as m-inputs. These m-inputs denote inputs of
the qualitative functional relationship. They can
be either inputs or outputs of the subsystem to
be modeled, and they can represent different
time instants. The above example contains four
m-inputs. The sequence in which they are enum-
erated is immaterial. They are usually enumer-
ated from left to right and top to bottom. The
positive value denotes the m-output. In the
above example, the first m-input, i, corresponds
to the output variable y, two sampling intervals
back. y,(r— 25r), whereas the second m-input
refers to the input variable w, onc sampling
interval in the past. u,(r — 8t), etc.

In inductive reasoning, such a representation
is called a mask. A mask denotes a dynamic
relationship among qualitative variables. A mask
has the same number of columns as the episodi-
cal behavior to which it should be applied and it
has a certain number of rows. The number of
rows of the mask matrix is called the depth of the
mask.

The mask can be used to flatten a dynamic
relationship out into a static relationship. It can
he shifted over the raw data matrix, the selected
m-inputs and m-output can be extracted from
the raw data, and they can be written next to
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Figure 2. Flattening dynamic relationships through
masking.

each other in one row of the so-called input/
output matrix. Figure 2 illustrates this process.
The position of the negative (input) elements of
the mask matrix can be interpreted as round
holes in a mask made from cardboard, whereas
the single positive (output) element of the mask
matrix can be viewed as a square hole. The zero
elements are covered up by the nontransparent
cardboard. The mask (this is where the name of
the matrix originally came from) is then shifted
downward along the recoded raw data matrix,
and the numbers underneath the holes are read
out and written into a single row of the input/
output matrix. After the mask has been applied
to the entire raw data. the formerly dynamic
episodical behavior has become static, i.e., the
relationships are now contained within single
rows,

Each row of the input/output matrix is called
a state of the system. The state consists of an
input stare and an owtput stare. The input state
denotes the vector of values of all the m-inputs
belonging to the state, and the output state is the
value of the single m-output of the state. The set
of all possible states is referred to as the set of
legal states of the qualitative model.

It has not been discussed yet how the time
distance between two logged entries of the
trajectory behavior, 1, is chosen in practice. In a
combined quantitative/qualitative  simulation
{mixed simulation), ¢ must be selected carefully
because its value will strongly influence the mask
selection process. Determining a good value for
this parameter in a systematic way is currently
the object of intensive research. In general,
experience has shown that the mask should cover
the largest time constant that has to be captured
in the model.

If the trajectory behavior stems from measure-
ment data, a Bode diagram of the system to be
modeled should be made. This enables us to
determine the eigenfrequencies of the system,
and, in particular, the smallest and largest eigen-
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frequencies. The smallest cigenfrequency e, Is
the smallest frequency, at which the tangential
behavior of the amplitude of the Bode diagram
changes by —20dB/decade, and the largest
eigenvalue w,;,, is the highest frequency where
this happens. The largest time cONStaANL, ...,
and the shortest time constant, fp.. of the
system can then be computed as follows:

27 2ar ™
oy W T, se—
sittling o fast -
The mask depth should be chosen as an integer
approximation of the ratio between the largest
and smallest time constants to be captured in the
maodel plus one:

i .
depth = 1NT(“:L"“‘) 1, (8)
Fasi

but this ratio should not be much larger than 3 or
4. Otherwise, the inductive reasoner will not
work very well, because the computing effort
grows factorially with the size of the mask.
Multiple frequency resolution in inductive
reasoning is still an area of open research.

If the chosen mask depth is 3, the mask spans
a time interval of 248, thus:

I j
B = scitling : {9}

2

Finding the Optimal Mask. How is a mask found
that, within the framework of all allowable
masks, represents the most deterministic state
transition matrix? This mask will optimize the
predictiveness of the model. In SAPS-1, the
concept of a mask candidate matrix has been
introduced. A mask candidate matrix is an
ensemble of all possible masks from which the
best is chosen by a mechanism of exhaustive
search. The mask candidate matrix contains (—1)
elements where the mask has a potential m-
input, a (+1) element where the mask has its
m-output, and (0) elements to denote forbidden
connections. Thus, a good mask candidate ma-
trix for the previously introduced five-variable
example might be:

fu W My ¥ ¥
1— 261 =1 =% ==k =% =1
1—8t —1i =i =1 = =]
! -1 -1 +1 @& 0/ (10)

In SAPS-II, 'the FOPTMASK routine determines



the optimal mask from a raw data matrix, the
fuzzy memberships of the variables, a mask
candidate matrix, and a parameter that limits the
maximum tolerated mask complexity. i.e., the
largest number of nonzero elements that the
mask may contain. FOPTMASK secarches
through all legal masks of complexity two. ie.,
all masks with one m-input and finds the best
one; it then proceeds by searching through all
lepal masks of complexity three. i.e.. all masks
with two m-inputs and finds the best of those;
and it continues in the same manner until the
maximum complexity has been reached. In all
practical examples, the quality of the masks will
first grow with increasing complexity, then reach
a maximum, and then decay rapidly. A good
value for the maximum complexity is usually five
or six.

Each of the possible masks is compared to the
others with respect to its potential merit. The
optimality of the mask is evaluated with respect
to the maximization of its forecasting power.

The Shannon entropy measure is used (o
determine the uncertainty associated with fore-
casting a particular output state given any legal
input state. The Shannon entropy relative 1o one
input state is calculated from the equation

H=§mdam&mwy (11)
[}

where p(efi) is the conditional probability of a
certain output state o to occur, given that the
input state { has already occurred. The term
probability is meant in a statistical rather than in
a true probabilistic sense. Tt denotes the quotient
of the observed frequency of a particular state
divided by the highest possible frequency of that
state.

The overall entropy of the mask is then
calculated as the sum

ms—gﬂw&, (12)

where p(i) is the probability of that input state to
occur, The highest possible entropy H,, is
obtained when all probabilities are equal, and a
zero entropy is encountered for relationships
that are totally deterministic.

A normalized overall entropy reduction H, is
defined as

Y
=1.0~3r (13)

max

H_ is obviously a real number in the range
between 0.0 and 1.0, where higher values usually
indicate an improved forecasting power. The
optimal mask among a set of mask candidates is
defined as the one with the highest entropy
reduction.

The fuzzy membership associated with the
value of a qualitative variable is a measure of
confidence. In the computation of the input/
output matrix a confidence value can be assigned
to each row. The confidence of a row of the
input/output matrix is the joint membership of
all the variables associated with that row (Li and
Cellier. 1990).

The joint membership of i membership func-
tions is defined as the smallest individual mem-
bership:

Memb, ... = (| Memb,
¥i

=inf (Memb,) <min (Memb,) . (14)

The confidence vector indicates how much confi-
dence can be expressed in the individual rows of
the input/output matrix.

The basic behavior of the input/output model
can now be computed. It is defined as an ordered
set of all observed distinct states together with a
measure of confidence of each state. Rather than
counting the observation frequencies (as would
be done in the case of a probabilistic measure),
the individual confidences of each observed state
are accumulated. If a state has been observed
more than once, more and more confidence can
be expressed in it. Thus, the individual confi-
dences of each observation of a given state are
simply added together,

To be able to still use the Shannon entropy,
which is a probabilistic measure of information
content, in the computation of the fuzzy optimal
mask, the accumulated confidences must first be
converted back to values that can be interpreted
as conditional probabilities. To this end. the
confidences of all states containing the same
input state are added together, and the confi-
dence of each of them is then divided by this
sum. The resulting normalized confidences can
be interpreted as conditional probabilities.

Application of the Shannon entropy o a
confidence measure is a somewhat questionable
undertaking on theoretical grounds, because the
Shannon entropy was derived in the context of
probabilistic measures only. For this reason,
some scientists prefer to replace the Shannon
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entropy by other types of performance indices,
(Shafer, 1976; Klir, 1989), which have been
derived in the context of the particular measure
chosen. However, from a practical point of view,
numerous simulation experiments have shown
that the Shannon entropy works satisfactorily
also in the context of fuzzy measures.

One problem still remains. This size of the
input/output matrix increascs as the complexity
of the mask grows, and, consequently, the num-
ber of legal states of the model grows guickly.
Because the total number of observed states
remains constant, the frequency of observation
of each state shrinks rapidly, and so does the
predictiveness of the model. The entropy reduc-
tion measure does not account for this problem.
With increasing complexity, H simply keeps
growing. Very soon, a situation is encountered
where every state that has ever been observed
has been observed precisely once. This obviously
leads 1o a totally deterministic state transition
matrix, and H_assumes a value of 1.0. Yet the
predictiveness of the model will be dismal,
because in all likelihood the next predicted state
has never before been observed, and that means
the end of forecasting. Therefore, this considera-
tion must be included in the overall quality
measure.

It was mentioned earlier that, from a statistical
paint of view, every state should be observed at
least five times (Law and Kelton, 1990). There-
fore, an observation ratio, Q_, is introduced as an
additional contributor to the overall quality
measure (Li and Cellier, 1990):

&L S-Ree 40y, + 305 20y, + 0y,
£ 5+ nig ’
(15)

where

fy., = number of legal input states ;

n,.=number of input states observed only
Once ;

f,, = number of input states observed twice ;
n,. = number of input states observed thrce ;

n,. =number of input states observed four
fimes ;
n.. =number of input states observed five times
"~ or more.

If every legal input state has been observed at
least five times, O is equal to L0. It no input
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state has been observed at all (no data are
available), . is equal to 0.0. Thus, @, can also
be used as a quality measure.

The overall quality of a mask, (2, is then
defined as the product of its uncertainty reduc-
tion measure, H , and its obscrvation ratio, O,

g,.=H 0, (16)

The optimal mask is the mask with the largest
0., valoe,

In SAPS-1I, the FOPTMASK function returns
the overall best mask found in the optimization;
a row vector that contains the Shannon entropies
of the best masks for every considered complexi-
ty. H,.; another row vector contaiming the corre-
sponding unccrtainty reduction measurcs, ) ;
and vet another row vector listing the quality
measures, O, . of these suboptimal masks. Final-
ly, FOPTMASK also returns the mask history
mairix, a matrix that consisis of a horizontal
concatenation of all suboptimal masks. One of
these masks is the optimal mask, which, for
reasons of convenience, is also returned separ-
ately.

Furzy FORECASTING

Once the optimal mask has been determined, it
can be applied to the given raw data matrix,
resulting in a particular input/output matrix.
Because the input/output matrix contains fune-
tional relationships within single rows, the rows
of the input/output matrix can now be sorted in
alphanumerical order. The result of this oper-
ation is called the behavior matrix of the system.
The behavior matrix is a finite state machine.
For each input state. it shows which output is
most likely 10 be observed.

Forecasting has now become a straightforward
procedure. The mask is simply shifted further
down beyond the end of the raw data matrix, the
vilues of the m-inputs are read out from the
mask, and the behavior matrix is used to de-
termine the future value of the m-output. which
can then be copied back into the raw data
matrix. In fuzzy forecasting. it is essential that.
together with the qualitative output, a [uzzy
membership value and a side value are also
forecast. Thus, fuzzy forecasting predicts an
entire qualitative triple from which a quantitative
variable can be regenerated whenever needed.

In fuzzy forecasting, the membership and side



functions of the new input state are compared
with those of all previous recordings of the same
input state contained in the behavior matrix. The
one input state with the most similar member-
ship and side functions is identified. For this
purpose, a cheap approximation of the regener-
ated quantitative signal

d. =1+ side, *(1 — Memb,) (17)

is computed for every element of the new input
state, and the regenerated d, values are stored in
a vector. This reconstruction is then repeated for
all previous recordings of the same input state.
Finally, the ¥, norms of the difference between
the d vector of the new input state and the d
vectors of all previous recordings of the same
input state are computed, and the previous
recording with the smallest #, norm is identified.
Its output and side values are then used as
forecasts for the output and side values of the
current state.

Forecasting of the new membership function is
done a little differently. Here, the five previous
recordings with the smallest ., norms are used
(if at least five such recordings are found in the
behavior matrix), and a distance-weighted aver-
age of their fuzzy membership functions is com-
puted and used as the forecast for the fuzzy
membership function of the current state.

Absolute weights are computed as follows:

B n::.x_dl'
L o (18)

whsg

where the index k loops over the five closest
neighbors, and d,=d, i<j; dg, =d;. The
absolute weights are numbers between 0.0 and
1.0. Using the sum of the five absolute weights,

8o Wiine s (19)
Wk

it is possible to compute relative weights:

LT
I'r-rl* =r | 5
i

W : (20}
Also the relative weights are numbers between
0.0 and 1.0. However, their sum is always equal
to 1.0. It is therefore possible to interpret the
relative weights as percentages. Using this idea.
the membership function of the new output can
be computed as a weighted sum of the member-
ship functions of the outputs of the previously
observed five nearest neighbors:

ME!Hbm“"“ §s § Weet, ' Mzmbm.k » o (21)

The fuzzy forecasting function will usually give a
more accurate forecast than the probabilistic
forecasting function. A comparative study of the
most commonly used inferencing methods and
the five-nearest-neighbors defuzzification method
is presented in Mugica and Cellier (1993). This
method allows us to retrieve pseudo-continuous
output signals with a high quality using the
REGENERATE function. This means also that
a forecast of the continuous-time signals can be
obtained (Cellier, 1991a). Notice that the RE-
GENERATE function is the inverse process of
the RECODE function.

Fuzzy ConTROLLER DESIGN

In the previous section of this article, the fun-
damentals behind furzy inductive reasoning were
outlined. Now, these elements will be used in the
design of a systematic methodology for the
development of fuzzy controllers. Details of the
advocated approach will be presented by means
of a simple example.

The procedure for the design of fuzzy control-
lers consists of two main stages. In the first stage,
the fuzzy controller parameters are identified,
and in the second stage, the controller is inte-
grated into the overall system.

FirsT STace: Fuzzy ConTroLLER MoDELING

“Measurement data” are obtained from the
experiment shown in Figure 3. The model con-
sisting of the desired closed-loop system together
with the inverse plant dynamics is simulated
during a given period of time with a preselected
sampling rate. The sampling rate is chosen in
accordance with the rules described in the sub-
section “Fuzzy Optimal Masks.” A binary ran-
dom input, r, is applied to the model input. This
type of input excites the system optimally well at
all frequencies. At the output of the closed-loop

r }ﬁ-.[ﬁ uu
Gul® - G |

Y

T i T

Save Tor later reuse J

Figure 3. Data cxtraction.
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transfer function, G, (s), the desired output
signal v, . is measured. This signal is fed into
the inverse transfer function, G '(s), of the
plant. As a result, the optimal centrol input,
s> 15 found, All three variables, r, y,,,, and
., arc stored in a measurement matrix.

With the data obtained in this manner and
using the inductive reasoning approach described
in previous sections, it is possible to build a set
of optimal masks that characterize the desired
controller. This is accomplished by means of
fuzzy recoding and fuzzy optimal mask synthesis
(both discussed previously). Each of the masks
found in this fashion represents a model of a
fuzzy controller for the desired plant.

Omnce the best mask is selected, it is nccessary
to check its predictive power by means of fuzzy
forecasting and fuzzy signal regeneration. At this
point, it may happen that the selected mask
exhibits unwanted behavior due to a poor selec-
tion of the sampling rate, or due to other
inherent system problems such as instabilities or
algebraic loops (direct coupling between input
and output variables). In these cascs, an analysis
of the problem must be made to determine the
possible causes. If the problem is caused by a
bad selection of the sampling rate, it will be
necessary to return to the previous step and
redesign the fuzzy controller. If the problem is
caused by the system structure, a search through
the mask history, i.e.. through the set of subopti-
mal masks, has to be performed to find a mask
that exhibits good forecasting properties.

tuzzy variable, r*, by means of fuzzy recoding.
Similarly, also the system output, y, is converted
to a fuzzy variable, y*. The fuzzy controller uses
these two fuzey variables to compute a fuzey
control input, u*, by means of fuzzy forecasting.
The fuzzy control input is then converted back to
a enisp control signal, k., by means of fuzzy signal
regeneration.

Finally, the results of the integrated fuzzy
control system can be compared with those of
the desired system.

A SimpLE ExamPLE

Given a linear SISO plant with the transfer
function

_ Sz T

O = P8t 10

(22)
The plant was chosen as a proper but not strictly
proper transfer function because, in this case,
computation of the inverse dynamics is trivial.
The goal is to design a fuzzy feedback controller
around this plant such that the overall system
behaves similarly to a linear system with the
transfer function

|
s+1°

Gls) = (23)
Obviously, this task can be accurately accom-
plished by the classical controller shown in
Figure 5, where

SeconND STack: Fuzzy CONTROLLER £+5-5+10
INTEGRATION Coompld) =773 7 . (24)
s (5 +3-947)
The second stage in the fuzzy controller design
process is the combination of this controller with
the plant in a single system, the control system. g . 3 .
Once again. this is accomplished by using the — GgunglS) = G5 =
inductive reasoning technique described in the +
second section. The overall control system is F
shown in Figure 4.
The crisp system input, r, is converted to a Figure 5. Classical controller design,
I_..... Fuwzy r:__ 5 u* =y i v
Recoding }rlh BTy . Emﬂ s =T
[ Fuzzy |~ |Forecasting Regen
Recwding

Figure 4. Fuzzy controller design.
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In this article, a fuzzy controller will be used
instead. The control system with the fuzzy con-
troller is shown in Figure 4.

BulLpiNG THE Fuzzy INDUCTIVE MopeL

The desipn of the fuzzy controller starts by
generating data from an appropriate experiment.
The traits of this experiment have been de-
scribed in the previous section. A subset of the
collected data will be used to generate the fuzzy
model of the controller; the rest of the data will
be used for validation purposes. This simulation
cxperiment has been coded in ACSL.

Fuzzy Recoding of the Crisp Inputs and
Outputs. The raw data matrix is obtained from
the measurement mairix by means of (off-ling)
fuzzy recoding. The first question to be ad-
dressed in the recoding process is the selection of
the appropriate sampling rate. In the given
example, this value can be deduced from the
longest time constant to be considered (i.e., the
inverse of the slowest eigenvalue of the Jaco-
bian). Because the optimal mask should approxi-
mately cover the slowest time constant of the
closed-loop system (1.0sec), a mask depth of 3
would suggest the use of a communication inter-
val of 0.5 sec. i.e., the measurement matrix (and
the raw data matrix) should contain entries
{rows) that are 0.5 sec apart.

Unfortunately, fuzzy inductive forecasting will
predict only one value of & per sampling interval.
Thus, the overall control system of Figure 4 will
react like a sampled-data control system with a
sampling rate of 0.5 sec. From a control system
perspective, the variables should be sampled
considerably faster, namely once every (.05 sec.

The next step is to find the number of discrete
levels into which each of these variables will be
recoded. For a given example, it was decided
that cach of the three variables can be suffi-
ciently well characterized by three levels. A
discretization of the crisp variables in this man-
ner implies that the number of legal states of the
recoded system is 27 (3 x 3 x 3).

As cxplained before, it is desirable to record
each state at least five times. Consequently, a
minimum of 130 recordings, corresponding to a
total simulation time of 6.5sec, are needed.
However, due to the mismatch between the
sampling rate required by fuzzy forecasting and
the actually used sampling rate that is required
due to the plant characteristics, considerably

more data is needed. [t was decided to choose a
total simulation time of 100 sec, with 90 sec being
used for model identification and the last 10sec
being used for validation. This provides the
optimal mask module with 1800 recordings used
for mode! identification, while fuzzy forecasting
is carried out over the final 200 steps.

Fuzzy Optimal Mask of the Conirolier. It was
decided to choose the following mask candidate
matrix:

\x F ¥ H
=2 =1 -1 -1}

[ — 1961 [ R | O

¢ —118¢ v o @B

¢ — 108¢ i i

t— 98t A T

r— &t 0 0 0

t \—1 -1 =+1) (25)
of depth 21.

As mandated by control theory, the sampling
interval 8¢ is chosen to be 0.05sec. Yet, as
dictated by the inductive reasoning technique,
the control input, w, at time ¢ will depend on past
values of r, ¥, and u at times ¢ — 0.5 and { — 1.0.

The optimal mask found with this mask candi-
date matrix is

iy r ¥ i
i — 2061 {0 0 0\
i — 1941 0 ] 0
1 — 115 0 ] 0
= 108t 0 0 0
1 = Yat 0 0 0
i—&t 0 { 0
i 0 -1 +1/ (26)
In other words,
w(e) =1 y(e)) - (27}

Unfortunately, the *“‘optimal” mask will not
work in this example. Due to the direct coupling
between the plant input, «, and the plant output,
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¥, the optimal mask suggests that knowledge of
the current value of the plant output. v, is
sufficient to predict the optimal value of the
plant input, u. In an open-loop situation, this is
correct. If w(r) is given, w(r) can be estimated
accurately with this optimal mask. However, this
is a chicken-and-egg problem. If y(r) is given,
u(r) can be computed, and once u(r) is known,
#(t) ean be computed also. There exists an
algebraic loop between these two variables.

The fact that the plant was chosen as a proper
but not strictly proper transfer function made the
solution of the inverse dynamics problem easy,
but, at the same time, made the fuzzy control
problem considerably more difficult. The optimal
mask algorithm optimizes the mask for open-
loop. If the plant has low pass characteristics. the
optimal mask will also work in a closed-loop
setting. However, in the given example, some of
the trivial masks (such as the above “‘optimal”
mask) exhibit poor tracking behavior, while
others show stability problems.

In this case, it was necessary to search through
the mask history, i.e., through the set of subopti-
mal masks. It was found that the second best
mask of complexity four (contaiming four non-
zero elements) exhibits both good tracking be-
havior and good stability behavior. The mask is
as follows:

fx F ¥ i

t—205, {0 0 -1)

t — 196t o 0 0

t— 118t 0 9 M

¢ — 1081 0 0 0

t — 951 0. D 0

1 — &t 0 i .

! \-2 -3 +1] (28)

Thus,
wlr) = Flute = 1.0V, (), ¥(1)) . (29)

Fuzzy Forecasting and Signal Regemerafion. As
mentioned earlier, the first 1800 rows (90 sec) of
the raw data matrix were used as past history
data to compute the optimal mask. Fuzzy fore-
casting was used to predict new fuzzy triples of u
for the last 200 rows (10sec) of the raw data
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Figure 6, Simulated and forecast control input com-
pared.

matrix. From the predicted fuzzy triples, crisp
values were then regenerated.

Figure 6 compares the true “measured” values
of u obrained from the original simulation (solid
line), with the forecast and regenerated values
obtained from fuzzy inductive reasoning (dashed
line) in open-loop, i.e., the “measured” time
trajectories r(t) and y(t) were optimally recoded
into the fuzzy signals r*(r) and y°(r). Fuzzy
forecasting was then used to estimate the fuzzy
signal u*(r). Fuzzy signal regeneration was used
to reconstruct the crisp signal w(r), which was
then compared with the previously “measured”
trajectory u,,(f). Figure 7 shows the configura-
tion used in the experiment.

The results are encouraging. There is hardly
any difference between the optimal trajectory,
U, and the output of the fuzzy controller, u, in
open loop. Quite obviously, the optimal mask
contains sufficient information to be used as a
valid replacement of the true inverse dynamics.
Motice that the fuzzy inductive reasoning model
was constructed solely on the basis of measure-
ment data.

INTEGRATION OF PLANT AND Fuzzy
ConTRoLLER MopELS

At this point, the fuzzy controller can be inserted
into the overall system as previously shown in
Figurc 4. The crisp plant input, r, is converted to
a qualitative triple, r*, using fuzzy recoding.
Also the crisp plant output, y, is converted to a
qualitative triple, y*. From these two qualitative
signals, a qualitative triple of the plant input «*
is computed by means of fuzzy forecasting. This
gualitative signal is then converted back to a
crisp signal, u. using fuzzy signal regemeration.
The plant itself is described by means of a
differential equation model. This experiment has
been coded in ACSL/SAPS. The continuous
plant dynamics are described by a conventional
ACSL program. However, a subset of the func-
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of the functions contained in the SAPS-II library
has been made available also as functions that
can be called from within an ACSL program.
This facility enables the user to perform mixed
quantitative and qualitative simulation experi-
ments (Cellier et al., 1992).

Forecasting was restricted to the last 200
sampling intervals, i.e., to the time span from
90.0sec to 100.0sec. Figure 8 compares the
desired plant output, y,_(t). from the purely
quantitative simulation (solid line) with the out-
put, v, of the model containing the fuzzy control-
ler (dashed line).

As can be seen, the plant with the fuzzy
controller behaves indeed almost exactly like
1/(s + 1), as desired. The new design approach
worked beautifully, although the direct input/
output coupling in the plant made the design
task considerably more difficult.

It has been shown that fuzzy inductive reason-
ing can indeed be used to support a systematic
design of fuzzy controllers for systems with
multiple controller inputs. If the plant contains
multiple plant inputs (controller outputs), each
controller output is computed separately by a
different optimal mask.

COoONCLUSIONS

The example demonstrates the validity of the
chosen approach. Control systems containing a

fuzzy controller designed using inductive reason-
ing are similar in effect to sampled-data control
systems. Fuzzy recoding takes the place of
analog-to-digital converters, and fuzzy signal
regeneration takes the place of digital-to-analog
converters. However, this is where the similarity
ends. Sampled-data systems operate on a fairly
accurate representation of the digital signals.
Typical converters are 12-bit converters, corre-
sponding to discretized signals with 4096 discrete
levels. In contrast, the fuzzy inductive reasoning
model employed in the above example recoded
all three variables into fuzzy varables with the
three classes “small.,” “medium,” and “large.”
The quantitative information is retained in the
fuzzy membership functions that accompany the
qualitative signals. Due to the small number of
discrete states, the resulting finite state machine
is extremely simple. Fuzzy membership forecast-
ing has been shown to be very effective in
inferring guantitative information about the sys-
tem under investigation in qualitative terms.

In spite of the nice results that were already
obtained, the practicality of this methodology
should be proven in a more profound way by
applving the techmique to more sophisticated
examples. Fuzzy inductive reasoning has already
been successfully applied to qualitative modeling
of complex and highly nonlinear systems (Cellier
et al., 1992; Albornoz and Cellier, 1993a,
1993b), although not in the context of fuzzy
controller design. Current rescarch efforts are
focused on the application of this approach to
the design of fuzzy controllers for an inverted
double pendulum, for a large industrial robot
arm, and for steering a large tanker ship.

Some of the knowledge used in the construc-
tion of the mixed models. such as the sclection of
the most appropriate sampling rate, is still of a
somewhat heuristic nature. These aspects need
to be studied in more depth to guarantee that
they can be fully automated. to incorporate them
into the design methodology., Also. the applica-
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tion of this technigue to the design of furzy
controflers for stiff systems needs 1o be studied
in more depth due to the multiple frequency
resolution problem inherent in such systems. It is
not practical to simply request the mask 1o be
made deeper and deeper.
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