J Syst Eng (1995)5:207-222
© 1995 Springer-Verlag London Limited

Joui-nal of
Systems
Engineering

Fuzzy Adaptive Recurrent Counterpropagation Neural
Networks: A Tool for Efficient Implementation of Qualitative

Models of Dynamic Processes

Francois E. Cellier and YaDung Pan

Department of Electrical and Computer Engineering, The University of Arizona, USA

In this paper, a new method for efficient implemen-
tation of qualitative and mixed quantitative/qualitative
models of time-varying (dynamic) processes is shown.
It involves a special brand of recurrent neural network
termed fuzzy adaptive recurrent counterpropagation
neural network (FARCNN). This is the first paper
on FARCNNs ever written. It explains the method-
ology in detail, and ends with an illustrative example
of their use.

Keywords: Modelling; Simulation; Time-series
analysis; Forecasting; Mixed quantitative and quali-
tative models; Neural networks; Fuzzy systems;
Learning systems; Artificial intelligence

1. Introduction

Qualitative models of dynamic processes are used
for many purposes. A common application of such
models arises in the context of fault monitoring
and diagnosis of technical processes [1, 2]. Other
applications include descriptions of systems or
subsystems for which no analytical (i.e.,
quantitative) models are available, such as in the
case of many biomedical [3, 4] and economical [5]
applications. :

Qualitative models rely on discrete or discretised
variables for their description [6]. While some
qualitative models are simulated using discrete event
simulation [7], others are simulated by means of

Received 15 July 1994

Correspondence and offprint requests to: F. E. Cellier, Depart-
ment of Electrical and Computer Engineering, The University
of Arizona, Tucson, Arizona 85721, USA.

knowledge inferencing from a finite state machine
representation [8].

Monitoring and diagnostic systems are not of
much use if they cannot be implemented in real
time. For example, the Anaesthetic Expert Advisor
RESAC [9] became so complex that it could no
longer render its intended purpose on the machine
upon which it was implemented. Therefore, the
same research group created an alternative system,
ANNAD [10] that was based on a neural network
architecture. This system acts similarly to RESAC,
but provides its advice much faster. Neural networks
are naturally parallel, and therefore can be
implemented very efficiently for use in real-time
environments.

Unfortunately, most neural networks are struc-
tured very differently from the rule-based systems
that were used previously. Therefore, the software
system has to be designed from scratch. Also,
neural networks are difficult to train, and it is not
easy to anticipate in any given situation, how long
it will take to design and train a neural network,
or whether the approach will work at all.

It seems therefore an interesting task to study
whether a neural network architecture can be
designed that resembles much more closely the rule-
based systems of the past, and that therefore
can be implemented much more rapidly than the
conventional neural network architectures if a rule-
based design already exists; a network, the conver-
gence of which can be guaranteed from the
outset.

In the remainder of this paper, such a neural
network architecture is presented.

208

Kohonen
layer

F. E. Cellier and YaDung Pan

Grossberg
layer

Fig. 1. Counterpropagation network for XOR function.

2. Counterpropagation: Back to the
Basics

The basic properties of counterpropagation are best
introduced by means of a simple example: the
infamous XOR problem. It is desired to design a
neural network that can reproduce the behaviour
of an XOR gate: the counterpropagation network
(CNN) for this problem is shown in Fig. 1. The
first layer, the so-called Kohonen layer, consists of
four simple perceptrons with a threshold of 1.0. Its
weight matrix, W', is similar to the truth table of
the input patterns in Table 1:

-1 -1
~1 +1

W=t -1 M
+1 +1

except that the representation of false is now —1
rather than 0, while the representation for true is
still +1. In this paper, superscripts always point to
the layer of the neural network, whereas subscripts
denote elements of vectors or matrices.

If a particular input pattern, e.g. u! = (-1
+1)T, is shown to the neural network, the matrix
multiplication, W! - u? produces the vector

x1=(0 +2 =2 0)7T

Table 1. Truth table of XOR gate.

U Uy y
0 0 0
0 1 1
1 0 1
1 1 0

and the output activation functions of the four
neurons produce the vector

y'=(0100)T

accordingly. Thus, the Kohonen layer acts as a
powerset generator. It contains as many perceptrons
as there exist different input patterns. If the CNN
has k different binary inputs, a complete Kohonen
layer will consist of 2% perceptrons, the thresholds
of which can be set to d} =k — 1. There is no
competitive learning as in the case of Hecht-
Nielson’s CNNs [11]. Both the weight matrix, W*,
and the threshold vector of the perceptrons, d!,
can be fixed from the onset, and the perceptrons
do not need to cooperate with each other at all.

The second layer, or Grossberg layer, consists of
as many linear neurons as there are output variables;
in the case of the XOR example, a single linear
neuron. The weight matrix, W2, is similar to the
transpose of the output patterns of the truth table,
in the case of the XOR problem thus:

W2= (-1 +1 +1 1) @)

The Grossberg layer acts as a selector. The product
W2 -y! picks out the output pattern that corresponds
to the input pattern that was shown to the CNN.
As in the case of the Kohonen layer, no learning
is necessary. The weight matrix, W2, can be
predetermined just like the weight matrix W,

In the remainder of this paper, it is this type of
neural network that will be referred to as a
counterpropagation neural network (CNN). A CNN
is a binary neural network in that all its inputs and
outputs are binary, and the false value is represented
by —1, while the true value is represented by +1.
~ The output layer of the CNN does not necessarily
have to be binary. The W? matrix could assume
any values. In such a case, the network will

Fuzzy Adaptive Recurrent Counterpropagation Neural Networks

be called Generalised counterpropagation neural
network, (GCNN).

3. CNN: a Tool for Rapid
Implementation of Finite State
Machines

A finite state machine (FSM) is similar to a logic
truth table, except that its variables may employ
multi-valued logic. Often, the number of output
variables equals the number of input variables, and
the semantic meaning of the FSM is a transition

from the input state to the output state, i.e., the

current values of the set of input variables represent
the current state of the system, whereas the values
of the set of output variables represent the next
state of the system. This is where the name ‘finite
state machine’ comes from. However, the concept
of an FSM can be generalised by defining it to
mean an arbitrary truth table with i input variables
and o output variables, each of which can assume
a finite set of values that can be represented either
by integers, such as ‘1’, ‘2’, and ‘3’, or by symbols,
such as ‘small’, ‘medium’, and ‘large’.

The purpose of the CNN is that of a table-lookup
function. Whenever one of the input patterns is
shown to it, it reacts by presenting the corresponding
output pattern at its output.

The realisation of this neural network is quite
trivial. It is shown in Fig. 2. It consists of a set of
finite state to binary (FS/B) converters, followed
by a regular CNN, followed by a set of binary to
finite state (B/FS) converters. The example shown
in Fig. 2 contains three input signals, u; to u;, and
two output signals, y; and y,. Each of the five
signals is a multi-valued logic signal. The FS/B
converter converts one multi-valued logic signal into
multiple binary signals. For example, if u; has eight
levels, it can be converted into three separate binary
signals, u,, to u,, etc. Each variable can be
converted separately, thereby providing the means
also to parallelise this operation.

The B/FS converters can themselves be realised
as GCNNs. Since cascaded CNNs can always be

CNN

o — B
v, —ES g ?

Fig. 2. Counterpropagation network for a finite state machine.

209

amalgamated into one, the B/FS converters could
be combined with the CNN to their left, forming a
single GCNN.

4. Bringing Time Into the Picture

So far, the neural networks presented and the
functions they implemented were all static in nature.
Time did not fit into the scheme at all. However,
since the goal of this paper is to present a neural
network capable of identifying dynamic systems and
imitating their behaviour, the concept needs to be
enhanced.

Many dynamic systems can be approximated by
difference equations of the form

y(t) = f(“(t)’y(t - At),ll(t - At)’ (3)
y(t — 2A8),u(t — 2A9),..)

The output vector, y, at time ¢ is a function of the
input vector, u, at the same time, the output vector,
y, one sampling interval back, the input vector one
sampling interval back, the output vector two
sampling intervals back, etc.

If the vector function f is a tabular vector function
rather than an analytical vector function, and if all
variables are of the enumerated type, the situation
is exactly the same as in the previous section of
this paper, except that now, the variables may be
sampled at different time instances.

Previous research in time-series analysis has
provided answers as to how often the variables
need to be sampled and how many past values need
to be used in the model [12, 5].

Assuming that a history of two sampling intervals
suffices to capture the dynamics of the system, the
outputs, once produced, can be delayed and wrapped
around to form the past output values ‘needed as
additional inputs to the GCNN. This is illustrated
in Fig. 3. The illustrated example represents a
single-input triple-output system. The boxes denoted
as z~! represent delays. All FS/B converters have
been amalgamated for simplicity into a single
multi-input FS/B box, and similarly for the B/FS
converters. Assuming that each of the multi-valued
logic signals, u, y,, y., and y;, has four levels, the
CNN will have 2 X (1+1+1+3+3) = 18
binary inputs and 2 X 3 = 6 binary outputs.

The feedback provides the memory necessary to
capture the system dynamics. The neural network
has become recurrent, and it will therefore be
called recurrent counterpropagation neural network
(RCNN).

210

F. E. Cellier and YaDung Pan

CNN

' B

3

z-1

y

Fig. 3. Recurrent counterpropagation network.

5. Processing Continuous Variables in
an RCNN

The next question to be raised concerns what to do
about continuously changing phenomena. Differ-
ence equations may still provide a valid approxi-
mation, but the variables to be processed by them
are no longer of the enumerated type.

The first solution that comes to mind is to
preprocess continuous input and output variables
using standard analogue to digital (A/D) converters.
This solution is shown in Fig. 4. A continuous-time
system with three inputs and two outputs is used
to illustrate the approach. The real system is first
used as a source of data for training the neural
network. The system is excited as well as possible
at all frequencies by preferably applying binary
random noise (BRN) to all inputs [13, 8], and these
inputs and the reaction of the system to the
excitation are recorded once every At time units.

Although the physical plant to be modelled is a
continuous-time system that should be properly
described by sets of differential equations, it has
been shown that difference equations, if chosen
carefully, are able to capture the dynamics of such
plants [8, 12, 5]. It is important though to select a
proper value of At [12], and to choose a sufficiently
large number of past values [5]. In the example
shown in Fig. 4, it is assumed that two sets of past
values suffice to characterise the plant dynamics
adequately.

It is furthermore assumed that 12-bit A/D con-
verters are used, converting the 3 + 3 + 3 + 2 +
2 = 13 analogue inputs to 12 X 13 = 156 digital
inputs, and the two analogue outputs to 12 X 2 =
24 digital outputs. A standard CNN can now be
devised that relates the 156 binary inputs to the 24
binary outputs.

After identification of the RCNN, the A/D
converters at the output can be replaced by digital
to analogue (D/A) converters. Continuous input
signals shown to the network are first converted to
binary input signals. These are then processed by
the CNN. The resulting binary outputs are finally
converted back to continuous output signals to be
delayed and fed back.

There are two problems with this approach. Since
the discrete representation of the system is only an
approximation, it is not evident that the input/
output relationship is still fully deterministic, i.e.,
it is conceivable that, for the same set of input
values, different output values can be observed. This
should not be a big problem. If the representation is
chosen carefully, the input/output relationship
should be fairly deterministic, or at least, if different
digital output values result, they should correspond
to very similar analogue output values. Conse-
quently, any of them may be chosen during fore-
casting, and it is usually quite acceptable always to
select the most frequently occurring input/output
combination. Thus, the CNN can still be made fully
deterministic.

The more serious problem with this approach is
the sheer size of the CNN. Since the CNN has 156
binary inputs, there exist conceptually 2'5¢ legal
combinations or input states. Thus, a complete
CNN should have a hidden layer of length 2136,
which is, of course, quite unreasonable. Although
not all of these combinations may occur in practice,
the required number of training data records for
the CNN would still be unmanageably large.

Fuzzy reasoning has taught us a better way [13].
Rather than converting analogue signals to digital
signals by means of A/D converters, these signals
can be fuzzified. In our own dialect of the fuzzy
reasoning methodology [13], quantitative

Fuzzy Adaptive Recurrent Counterpropagation Neural Networks

y 3

211

System

u(t) #3=D

u (t-At) =3:>
u(t-2At) 3

y (t- AY) ==

y (t- 2At) ==y

.
.

2

156

» _1<7

2,
Z
7

=k
z"K}J |

Fig. 4. Recurrent counterpropagation network for continuous signals.

(analogue) signals are converted into qualitative
triples consisting of a class value of the enumerated
type, a side value of the binary type, and a
real-valued fuzzy membership function. Figure 5
illustrates the approach. A quantitative variable,
the systolic blood pressure of a human being is

converted to its qualitative counterpart. A systolic
blood pressure of 115.0 (quantitative value) is
thereby considered ‘normal’ (class value) with a
fuzzy membership value of 0.8, and a side value of
‘left’ (the point is to the left of the maximum of
the fuzzy membership function that represents the

Membership Functions

1.5 T

" .

E much too low too high much too high
1.0

k-]

o N

8 0.5 X,

5 N

5 A
0 " N o AN S N L "

0.0 20. 40. ®0. ®0. 100.

120.

140. 1680. 180. 200, 220. 240.

Systolic Blood Pressure

Fig. 5. Fuzzification of systolic blood pressure.

212

selected class). Notice that a quantitative value of
150.0 can be fuzzified either into class ‘normal’ with
a side value of ‘right’ and a fuzzy membership value
of 0.5, or it can be fuzzified into class ‘too high’
with side value ‘left’ and a fuzzy membership
value of 0.5. However, it does not matter which
fuzzification is chosen, since the defuzzified value
will in both cases be the same, namely 150.0.
In the current implementation, the side function
assumes the values —1 corresponding to ‘left’, and
+1 corresponding to ‘right’.

If the fuzzy membership functions are known, it
is possible to regenerate the quantitative values
from the qualitative triples without any loss of
information; thus, the process of fuzzy recoding is
reversible.

The class values are of the enumerated type, and
the side value is even binary. Thus, it is easy to
generate an RCNN that translates the class and
side values of observed inputs into the class value
and side value of an observed output. Since the
discretisation is now much more coarse than before,
the input/output relationship will be even more
deterministic, and the number of discrete inputs to
the CNN is drastically reduced. Experience has
shown [8] that one usually gets away with three to
eight classes. Thus, fuzzy two-bit converters will
often suffice. Together with the binary side value,
an analogue signal is thereby discretised into three
binary signals and a real-valued fuzzy membership
function. In the presence of abundant training data,
fuzzy three-bit converters may yield slightly more
accurate results. A fuzzy three-bit converter maps
an analogue signal into four binary signals and a real-
valued fuzzy membership function. The approach is
illustrated in Fig. 6 using the same example as in
Fig. 4.

The fuzzifier replaces the A/D converter. It
converts 13 analogue inputs into 39 binary inputs
plus 13 fuzzy membership values. The defuzzifier
replaces the former D/A converter. It converts six
binary outputs and two fuzzy membership values
_ back into two analogue outputs.

There are still two problems with this approach.
The first objection deals with the size of the CNN.
Although the number of inputs of the CNN has
been reduced from 156 to 39, there are nevertheless
2% legal states left in the system,; still a frighteningly
large number. The paper will deal with this objection
in due course.

A second — and possibly more serious — objection
can be raised. Originally, a qualitative model was
sought that would translate 13 analogue inputs into
two analogue outputs. The advocated solution
reduces this problem to the identification of a CNN,

F. E. Cellier and YaDung Pan

and the identification of another box that still is
supposed to translate 13 analogue inputs into two
analogue outputs. This box has been marked with
a ‘? in Fig. 6. Has anything been achieved at all?
The answer is yes. Even if the box with the ‘?’ is
removed from the system, the network will work,
although the prediction would be rather crude since

- the neural network will only predict the class value.

The purpose of the box with the ‘?’ is to interpolate
smoothly between neighbouring discrete predictions,
i.e., this box corrects for an error in the prediction
that is of second order small.

However, there is yet a more important distinction
between the original modelling problem and the
problem to be solved by the box with the ‘?’. The
original qualitative modelling problem can be solved
(and has often been solved in the past [5]) by a
Backpropagation Neural Network (BNN). Of course,
the modified problem can also be solved with a
BNN. However, whereas a new BNN has to be
identified for each new application when solving
the original modelling problem, the ‘?’-box problem
can - with a small modification of the
architecture — be solved once-and-for-all by a stan-
dard BNN that will work for any and all applications.
This statement will be proven in due course.

Most fuzzy inferencing and defuzzification tech-
niques, such as the mean of maxima (MoM)
technique and the centre of area (CoA) technique,
use the information stored in the tails of the
overlapping fuzzy membership functions of the
inputs to generate multiple discrete output values
and smoothly interpolate between them using the
relative importance of the input classes, i.e., the
membership value of the output is inferred by
looking at the input space alone [14]. The advantage
of this approach is that no training data need to be
stored. If training data are used at all, they
only serve to help with the shaping of the fuzzy
membership functions.

It was shown in [15] that — at least in a data-rich
environment — it may be more beneficial to store
away the available training data set, to look at the
input space for computing a distance function
between the new vector of inputs and the vector of
inputs in the training data set, use this information
to determine the relative importance of the inputs
stored in the training data set, pick out the five
nearest neighbours, and finally look at the output
space to interpolate smoothly between the output
values of these five nearest neighbours from the
training data set. This approach looks similar in
nature to the ‘?’-box approach advocated in this
paper.

The outlined approach can be viewed in the

Fuzzy Adaptive Recurrent Counterpropagation Neural Networks

213

EN) B 2
u == -
—‘L z- 1 D
- 1|3 Fuzzi- e 12 y
4 ib fier 39 CNN E> ftl-:::l- ﬁﬁ
—_—
2,
| 7 727 'K

2,
7
”

a

Fig. 6. Fuzzy inferencing for counterpropagation.

context of fuzzy measures. It was demonstrated in
[15] that the membership value of the output can
be written as a linear combination (weighted sum)
of the membership values of the output of previous
occurrences of the same input/output pattern. The
weights themselves are deterministic functions of
the membership and side values of the inputs. The
functions are independent of the shape of the fuzzy
membership function and of the landmark values
that separate neighbouring classes. This fuzzy infer-
encing technique has been termed the five-nearest-
neighbour (SNN) rule.

Let us turn now to the other objection. The
fuzzy inductive reasoning (FIR) approach [13, 8]
has taught us that not all of the possible inputs are
needed to predict the output correctly. A selector
function picks a subset of the available inputs. This
subset is problem-dependent. The FIR methodology
teaches us how to find the selector function. In
FIR, this is called the optimal mask. A different
optimal mask (selector function) is needed for each
of the output variables. Each optimal mask requires,
on the average, somewhere between three to five
inputs. Figure 7 illustrates the proposed architecture
for the same example as that shown in Fig. 6.

In this example, it is assumed that the optimal
mask to compute y; has four inputs, whereas the
optimal mask to compute y, has only three inputs.
Four classes (fuzzy two-bit converters) are used for
all analogue variables. The top CNNs that is
used to compute y, has now 12 binary inputs
corresponding to 212 = 4096 states, while the bottom
CNN, used to compute y,, has nine binary inputs

corresponding to 2° = 512 different states. These
numbers are now quite reasonable. The CNNs
predict the class and side values of the output from
the class and side values of the inputs. The BNN
predicts the membership value of the output from
the membership and side values of the inputs.
Notice that the two BNNs are identical (they use
the same weights), although the number of input
variables is different. The BNN was trained: such
that unused membership inputs can be fixed at 0.0.

The network architecture depicted in Fig. 7 is
called a Fuzzy Recurrent Counterpropagation Neural
Network (FRCNN).

Any type of inductive modelling is somehow
related to an optimisation problem. Saying that a
neural network needs to be ‘trained’ is just another
way of saying that an optimisation problem: needs
to be solved. Backpropagation training is slow,
since the search space is a high-dimensional continu-
ous space. Consequently, the solution of the associ-
ated optimisation problem is very expensive. Fuzzy
recoding has alleviated this problem to some extent.
The continuous search space is discretised (the
search extends only over the space of discrete class
values), and the grain size is even quite coarse.
The discretisation is in fact so coarse that the
resulting outputs are not smooth enough. The
fuzzy membership functions are used to interpolate
between neighbouring grid points. Fuzzy inferencing
provides a means for finding a smooth interpolation
function. The better the fuzzy inferencing is done,
the smoother will be the interpolated output.

The FRCNN architecture provides us with a good

214

F. E. Cellier and YaDung Pan

z 1‘ l
- z" e
___Member
4
______> BNN Member
Sid Y
__p 4 ide D
F P e-
) E> fl;:lz.l Side V| CNN N fuzzi. -,
3 8 > fier
U === ﬂ Class Clas
_L z ! Selector
y 2 Z Class Clas
— Fuzzi-I> 2 Y De-
:'3_'> fier | side 5| SN ft‘_‘m- > Y,
F'" 3 oo fier
; : Memb '
Member BNN el
|5
. z" 1<
z" 1<__|

Fig. 7. Basic FRCNN architecture.

compromise between smooth approximation and
fast training. The training of the BNN is slow, but
can be done off-line and once-and-for-all. Training
of the CNN is extremely fast. As soon as a particular
pattern has been seen once, it will be recognised
again for all future. FRCNNs are really nothing
new. They are simply a highly efficient way of
implementing the FIR methodology [13, 8] for real-
time applications.

This concludes the basic description of the
FRCNN architecture. The fuzzy converters are quite
harmless. The fact that they operate on each variable
separately and in the same manner, offers an easy
means for parallelisation. Fuzzy converters can be
integrated onto fast and inexpensive chips just as
regular converters can.

6. Practical Implementation of the
FRCNN Architecture

In this section, the practical implementation of the
FRCNN architecture shall be demonstrated by

means of an example. In order to be able to
compare our approach with other previously pub-
lished techniques, an example was chosen from the
literature.

It is desired to generate a qualitative model of a
non-linear static function with three inputs and one
output [16-19]:

y= (1_0 + ufl).s + u2—1 + u%.S)z (4)

where u,, u, and u; are three analogue inputs, and
y is the analogue output.

Figure 8 illustrates our approach. The three
analogue inputs are fuzzified using three separate
fuzzy two-bit A/D conveters (FF). c; is the low bit
and c, is the high bit of the converted signal. s
denotes the side value and M stands for the fuzzy
memberhsip value.

The CNN is fed by the class and side values from
the three fuzzifiers (FFs). Consequently, the CNN
has nine binary inputs. Its three binary outputs are
the two bits of the class value of the output y, as
well as its side value. Due to the coarse discretisation,
the input/output map should be fairly deterministic.

Fuzzy Adaptive Recurrent Counterpropagation Neural Networks

215

~N
%

cl

M13 —] :2 DFF vy}

M2s wrl

wr2

M32 BNN wr3

LNN yp-

N bW -

wrd

M35 wrs

Ma1 ul u2 u3 ud us

NSNS
F:

clfp—
2
s
ul cl cll
1 c2 cl2
“FF X s
M
Mi3
Mi4
M15
M21
M22
M23
M24
M25
M31
u . cl c21
2] FF < 22 CNN M2
s s2 M34
M/ M35
I.l3 cl c31
2 c32
FF s s3 M1
M M2
M3
M4 |-
M5 H

Fig. 8. Implementational issues of FRCNN architecture.

Only in the vicinity of a landmark between two
classes (the membership value is somewhere around
0.5), will there be non-determinism.

Since the CNN has nine binary inputs, the hidden
layer should have 2° = 512 perceptrons. However,
in order to be compatible with [16], only 216
training data points were used. Thus, the CNN will
not be exhaustive. The training data are uniformly
distributed over the input range [1.0, 6.0] x [1.0,
6.0] x [1.0, 6.0].

However, the CNN is in reality a GCNN, since
its Grossberg layer (the output layer) also computes
20 analogue outputs besides the three binary ones.
These are the old (training) values of the fuzzy

membership functions of the three inputs and the
output. M;; stands for the jth membership value of
the ith input, and M; stands for the jth membership
value of the output.

In order to understand how the BNN works, it
is necessary to recall some of the results from [15].
In particular, it has yet to be proven that the BNN
is indeed application-independent.

In [15], the following algorithm is proposed to
infer the fuzzy membership value of the output.
For each input, position functions, p; and p;, are
computed as follows:

pPi=c;+ Sij(l'o - Mij) (%)

216

p,' — C,- + S,-(l.O - M,) (6)

where M,; denotes the jth old membership value of
the ith input from the training data, and M, stands
for the new membership value of the ith input from
the ith fuzzifier. Corresponding conventions hold
for the class values, c; and ¢;, and for the side
values, s; and s;.

The position values represent normalised versions
of defuzzified signals. They are normalised since
the lowest class (c; = 0) corresponds to a position
variable range from 0.0 to 0.5, the next higher class
(c; = 1) corresponds to the range [0.5, 1.5], and so
on. Each class, except for the lowest and highest,
is exactly equally wide. The slope of all membership
functions is identical relative to the normalised
position variables.

p; is the vector of p;; elements, and p is the vector
of p; elements:

p; = (Plj’ijap3j)T Q)]
p= (p13p2ap3)T (8)
Distance functions, d;, are now computed as follows:
di=p-pj ®

The largest of these distance functions is called
dmax-

Absolute weights are then computed using the
equation

domax — 4;
waij = ——d—_—l (10)
The sum of all absolute weights is
(11)

Sw = E waij
Vi

From this, it is possible to compute relative weights
as follows:
wabsj

wrelj = s (12)

The relative weights are numbers in the range [0.0,
1.0]. Their sum is 1.0.

As can be seen, this algorithm depends only on
current and past values of the fuzzy membership,
class and side functions of the input variables. The
output variable does not appear anywhere in these
equations. Consequently, the BNN that emulates
this algorithm cannot be application-dependent, i.e.,
does not contain any information about the input/
output relationship of the system to be modelied.

According to [15], each discrete pattern should
ideally be observed five times during the training

F. E. Cellier and YaDung Pan

of the CNN. Thus, the training data should ideally
consist of 5 X 512 = 2560 records. In reality, there
are not even 10% of these data available. Thus,
many of the patterns will in fact be observed only
once or twice during the training period, and some
will not be observed at all. It is necessary to discuss
what the CNN should do if it does not contain
sufficient data records.

In [15], it was proposed simply to search the input
space for the five nearest neighbours, irrespective of
whether they belong to the same class or not. If a
particular class and side pattern for the combinations
of inputs has not been observed at least five times,
the training data set is searched for input patterns
that vary only in their side values, and these records
are then used as neighbours. If there are even not
enough of those patterns available, neighbouring
cells of the input space are searched.

Since Eq. (5) depends not only on the membership
values of the previously observed neighbour inputs,
but also on their class and side values, all these
quantities would have to be passed from the CNN
to the BNN to enable the BNN to implement Eq.
(5). In order to avoid this, the old membership
values are modified as follows:

Ml] = S,-((C,- - Cij) + (si - s,-j) + S,-j M,])

(13)
where c; stands for the current class value of the
qualitative triple {c;,s;,M;;), and c; stands for the
class into which the qualitative triple is to be
mapped. The corrected qualitative triple has a class
value of ¢;, a side value of s;,, and an extended
membership value of M,;. Equation (13) is not valid
for s; = 0, but this does not matter, since, while
individual data points may have accidentally a value
of My = 1 together with s5; = 0, the ‘boxes’ inside
the CNN into which the five neighbours must be
mapped never assume a value of 5; = 0.

This modification allows us to rewrite Eq. (5) as

Pi=c¢+5,(1.0— M) (14)

thus, only the old membership values are still
needed. Moreover, the class value, c¢;, can be
dropped from Eqs (6) and (14), since this is only
an additive constant that will drop out again when
computing Eq. (9).

In this way, the CNN can be filled up until it is
fully exhaustive. The Grossberg layer of all (class/
side) combinations refers to exactly five old
(corrected) membership values to be used by the
BNN. Thus, in the neural network implementation
of fuzzy inductive reasoning, fuzzy inferencing is
done with a predefined set of five neighbours
(5N) for each (class/side) combination, rather than
searching the input space for the nearest five

Fuzzy Adaptive Recurrent Counterpropagation Neural Networks

neighbours (SNN) as was proposed in [15]. The
advantage of this modification is that no search is
needed. The FRCNN architecture will reproduce
the five required M;; values instantaneously.

The BNN shown in Fig. 8§ is a general-purpose
BNN that can be used for any system with up to
five input variables and up to five data records per
input variable in the training data.

The BNN is a cascaded feedforward neural
network. Each subnetwork implements one of the
fuzzy inferencing equations. It consists of an input
layer, two hidden layers, and an output layer,
trained by means of backpropagation. The overall
BNN contains 32 layers with altogether 958 neurons.

According to the 5NN (or 5N) algorithm, the
membership function of the output can now be
computed as follows:

M= wea M, (15)
vi

where Wre, are the outputs of the BNN, and M;

are the — until now unused — membership functions
of the outputs of the five neighbours used in the
fuzzy inferencing process.

This equation can be realised by a neural network
with a single linear neuron and five inputs. The
network will be called linear neural network (LNN).
The old membership values of the output variable
from the training data set, M;, are fed into this
LNN as inputs, whereas the relative weights are
multiplied into the LNN as weights.

It is possible that the five neighbours predict
different (class/side) combinations. In this case, the
most likely (class/side) combination is chosen, and
the membership values accompanying other predic-
tions are corrected using Eq. (13). If the output of
the LNN happens to be outside the range [0.5,
1.0], the assumption was incorrect, and needs to
be revised. This can, for example, be accomplished
by the defuzzifier (DFF) that generates an approxi-
mation of the quantitative output, y.

After the FRCNN has been built, testing data
can be generated to validate the approach. In
accordance with [16], 125 testing data were selected
that are uniformly distributed over the range [1.5,
5.5] x [1.5, 5.5] x [1.5, 5.5]. The testing data set
is completely distinct from the training data set.

The same performance index, the average percent-
age error (APE), was used that had been applied
in [16]: ‘

_1(<) -yl o
APE = k(gl G)><100/o (16)

where k is the number of testing data pairs, y(€) is

217

the ¢th true output value, and $(€) is the £th output
value as computed by the FRCNN.

The FRCNN approach leads to a value of APE
of 11.27%. The APE value can be improved to
6.18% if the five nearest neighbours (5NN) are
used instead of just any five neighbours (5N).
However, no neural network implementation of the
5NN approach has been found yet, thus the larger
APE value is what should be used to get a fair
estimate of the method. This value is considerably
larger than the APE values reported in the literature
for this problem [16-19]. The SNN value is about
the same as the value reported for the GMDH
method [17]. The best APE value reported so far
is 1.066% [16].

Yet, the results presented here may still be
attractive. Most of the techniques reported earlier
require very long training periods. In contrast, the
FRCNN architecture does not require any training
at all (beside from feeding it once with the training
data set). Thus, the FRCNN architecture is well
suited for real-time applications.

Moreover, the application presented here is
notorious for its lack of available training data. If
the FRCNN architecture is presented with a decent
amount of training data, its performance will be
excellent. The example is meaningful though as
stated, since it tests the ability of a scheme for
generalising knowledge. As mentioned in [5], the
XOR problem is utterly uninteresting — as uninter-
esting as memorising the Manhattan phonebook
and then reciting from it. The basic CNN has no
knowledge generalisation abilities whatsoever. It is
just a smart memorising scheme. The knowledge
generalisation capabilities of the FRCNN architec-
ture are caused by the fuzzification exclusively, but
good knowledge generalisation schemes usually
imply some sort of learning, and the FRCNN
architecture was, on purpose, designed as a synthesis
tool and not as a learning tool.

7. Dealing With Variable-Structure
Systems

Many technical applications are slowly time-varying.
This means that their behavioural patterns change
slowly over time. The neural network mimicking
the behaviour of such a system needs to be trainable
‘on the job’ in order to update its behaviour on the
basis of observed modifications in the system’s
behaviour. This means, the network should be able
to adapt.

Minor behaviour adaptations are reflected by a
modification in the fuzzy inferencing, while the

218

predicted classes remain the same. This effect
can be implemented in the FRCNN very easily.
Whenever a new test pattern has been processed,
its membership values are simply copied into the
past data vector of the Grossberg layer of the CNN,
replacing one of the older data records. A round-
robin strategy can be used to ensure that always
the oldest data point is replaced by the newest. Of
course, membership values outside the range [0.5,
1.0] (data borrowed from other class/side
combinations) are replaced with highest priority.

An FRCNN that implements this adaptation
mechanism will henceforth be called a fuzzy adaptive
recurrent counterpropagation neural network
(FARCNN).

Major behavioural changes are reflected by a
modification in the selector stage. Other variables
are now needed to predict the system’s behaviour
correctly. This is much more difficult to realise in
the network, since a modification of the selector
stage calls for an entirely new set of training data,
which means that the network cannot be used again
at once. For this reason, it may be better to include
all variables that might be potentially useful in the
selector stage from the beginning. However, this
means that the number of input variables of the
CNN will grow, and with it also the number of
legal input states. It can therefore no longer be
assumed that sufficient training data will be available
to exhaust all legal input states.

The following adaptation mechanism is proposed
to cure this problem. Once a new pattern has been
processed, a search determines whether this pattern
has ever been seen before. If this is not the case,
an additional perceptron is added to the Kohonen
layer of the CNN, and the new input/output pattern
is added as an additional row of its W! matrix and
as an additional column of its W2 matrix.

8. Mixed Qualitative/Quantitative
Modelling

In this section, a complete example of a qualitative
model of a continuous-time non-linear dynamic
process shall be presented. In order to be able to
compare the results obtained with the state-of-the-
art, again an example from literature was chosen [8].

Figure 9 shows the position control of a hydraulic
motor with a four-way servovalve. The detailed
equations of this differential equation model are of
no immediate concern here. They can be found in
[8]. The controller is a P-controller with limiter;
the mechanics of the servovalve contain two fast
mechanical time constants (velocity and position of

F. E. Cellier and YaDung Pan

the piston) and another non-linearity (limiter); the
hydraulics contain two hydraulic time constants (for
the pressures in the two chambers) and the non-
linear relationship between pressure and flow rate
in the valve; the mechanics of the hydromotor
contain two slow mechanical time constants (angular
velocity and position of the rotor); and the measure-
ment dynamics contain one fast electrical time
constant. Thus, the overall system is of seventh
order and highly non-linear.

The quantitative model of this system will be
used as a gauge to check the accuracy of a
mixed quantitative/qualitative model in which the
mechanics of the servovalve and the hydraulics are
replaced by a qualitative model (a FARCNN),
whereas the controller, the mechanics of the hydrom-
otor, and the measurement dynamics are kept as
differential equation models.

It is important to realise that the qualitative
model, which effectively replaces a differential
equation model by a difference equation model,
contains implicitly a sample-and-hold circuit. Thus,
the Shannon sampling theorem must be satisfied.
This dictates a sampling rate of At = 0.0025 s.
However, in order to capture the dynamics of the
hydraulic time constants, a much larger sampling
rate would be indicated. In fact, the FIR method-
ology [8] suggests the following qualitative model:

Tlt) = f(u(f), wm(t — 0.05), Tom(t —0.05))
17

Thus, both the angular velocity of the motor, w,,,
and the motor torque T,,, need to be delayed by
20At. Equation (17) also indicates, which selector
function should be used. The qualitative model will
operate on three analogue inputs only, the control
input, u, at the current time, the angular motor
velocity, o,,, delayed by 20A¢, and the motor torque,
Tm» also delayed by 20At.

An FARCNN is identified using the techniques
that were outlined earlier in this paper. The data
used for the qualitative model are records of the
three variables u, w,, and T, stored once every
0.0025 s. To this end, binary random noise (BRN)
was applied to the quantitative model in closed-
loop: 6, = BRN. The clock for the noise generator
was 0.1s, i.e., the value of O, was randomly
assigned a new value of either 1.0 rad or —1.0 rad
once every 0.1 s. Figure 10 shows the FARCNN
used in this case. Both the BNN and the LNN are
exactly the same as had previously been used in the
non-linear function example.

The quantitative model was simulated across 2.5 s
of simulated time corresponding to 1001 data
records. The first 2.25 s, or 901 data records, were

Fuzzy Adaptive Recurrent Counterpropagation Neural Networks

219

PILLRELILILIRERES,
LALLLLLL0L 00001007

ALLECLLTNRRNASNN
c
o
=A
=
8
-
=
]
A3

z
, 223
LSS RLLLEELLLELL LS,

PLLLLLIIIIILLL2227,

(O]

v

Mechanics of <o 1 Mechanics of
ontroller [~ —»1 Hydraulics 'H 6
Controller = ™gervovalve [% ydrau . [Hydromotor m
Measurement ‘
Dynamics
Fig. 9. Position control of a hydraulic motor.
Input
Member el,
3 Weights Output
Member
BNN :{) LNN

T nput s
LA RARRRALRLA
i u T
727 rrys LA AR
% —>> 3 T $iieeest
274 722 m l R
7 & tosy O)m 20 Fuzzi_ Output Sid qua SLeesiLos:
P ot LLuYy - C u u l e . VAL AL AR
G w2 P pn NN P | fuzzi- ma
100 = 7707 1er 2 eslailig:
%8 6 S fier 1
(L4 2247 Ld *, ¢
- Input Output Class % Q???E
27, 00 pppy 3
AR Class g

27 PR
5 o 4o 55w 505
% 1 2R o
127 omm 2277 s7 <] “220
¥ 5% 3.5
% 8 -20 Y
rre P pr2v 77, 2225
550 b 5507 27, P
% B %=
e, FLAAA III:’IIIIII:
K Tm quant $555e0555
4l LA . LARAR L
r2e O rree. 4, LR
LA Ll LSOOI
s O AR PO LPIPPPP
Loiun s el sl YRy

AEELPPIEI L
isiisis 22555
C000555540% G R R
[ZrFI¥FF¥rYi

Fig. 10. FARCNN for hydraulic motor.

used as training data, and the final 100 data records
were used for model validation. Figure 11 shows a
comparison of the last 100 values of the torque,
T,,, stored during the quantitative simulation (solid
line) with the values, T.., that were predicted by
the FARCNN when used in open-loop (dashed
line). In this experiment, 4 and w,, were driven by
the data previously stored during the quantitative
simulation, and only 7, was fed back into the
FARCNN.

During the next experiment, the hydraulic motor
control loop was closed around the FARCNN.
Here, © and o, were generated on-line by the

quantitative model, and 7, was fed back from
the FARCNN to the quantitative model, thereby
influencing future values of u and w,,. Figure 12
shows the closed-loop configuration. The differential
equation models describing the electrical and mech-
anical components of the overall control system
had now to be simulated simultaneously with the
FARCNN. Figure 13 shows the results of this
experiment. The solid line shows the results from
the purely quantitative simulation, whereas the
dashed line shows the results from the mixed
quantitative and qualitative simulation run.

As was to be expected, the results are slightly

220

Torque [Nm)]

F. E. Cellier and YaDung Pan

Simulated and Forecast Behavior in Open Loop

300. T T T T
200 b et
O IS A N e T
e
-100. A Lot R ot o ST
-200. L ' . '
2.25 2.30 2.35 2.40 2.45 2,50

Time [sec]

Fig. 11. Qualitative simulation in open loop.

Qualitative Model

FARCNN Defuzzifier i Mechanics of |
Tm |Hydromotor |

Measurement| <

g <o 1Dynamies

Angular Position [rad]

Fig. 12. Mixed quantitative/qualitative system configuration.

Simulated and Forecast Behavior in Closed Loop

2.25 2.30 2.3% 2.40 2.45 2.50

Time [sec]

Fig. 13. Mixed quantitative/qualitative simulation in closed loop.

Fuzzy Adaptive Recurrent Counterpropagation Neural Networks

better for the open-loop case, but even the closed-
loop results are excellent. The results are almost
identical to those shown in [8]. This is not further
surprising, since FARCNNS are simply a means for
fast implementation of the FIR qualitative modelling
methodology for real-time applications. The differ-
ence between the 5N and 5NN fuzzy inferencing
schemes is not critical here, since sufficient training
data were made available to the FARCNN architec-
ture. To compensate for the loss in precision, tlie
number of classes in the fuzzification was increased
from five to eight, which is still realizable with
fuzzy three-bit converters.

9. Summary and Conclusions

A new neural network architecture was presented.

that allows us to implement rapidly a large variety of
different static and dynamic functional relationships
with minimal learning needs.

The basic CNN architecture provides a parallel
implementation mechanism for binary truth-table
lookup. As a typical application of this technology,
an arbitrary combinatorial digital circuit can be

realised quickly and efficiently. A single pass through.

the Kohonen and Grossberg layers will suffice to
produce the desired outputs to an arbitrary set of
inputs. The gate delays will thereby be minimised.

The GCNN generalises the CNN architecture

to deal with multi-valued logic. This enhanced:

architecture can for example be used for efficient
implementation of finite state machines (FSMs).
Each pass through the network corresponds: to
one clock of the FSM. This allows for real-time
implementation of Petri net simulators.

Another application of this technology may be
the real-time implementation of forward chaining
expert systems. The Kohonen layer can implement
the conditions for rules to be fired;j. while the

Grossberg layer implements the consequences off

such firings.

The RCNN enhancement allows to incorporate
memory into the network. It enables the transition
from dealing with purely static relationships only
to being able to handle fully dynamic functional
relationships. It enables us to implement electronic
circuits containing flip-flops efficiently, it allows us
to realise second generation time-dependent expert
systems for real-time applications, and it provides
us with the means to implement crisp inductive
reasoning models.

The processing of continuously changing infor-
mation causes considerable difficulties to the
inherently digital network architecture. However, a

221

solution to this dilemma was proposed involving
newly designed fuzzy A/D and fuzzy D/A converters
and a standardised backpropagation neural network
(BNN). The problem of propagating fuzzy member-
ship values across the network was addressed, and
a network architecture for accomplishing the fuzzy
signal propagation was presented.

References

1. de Albornoz A, Cellier FE. Variable selection and
sensor fusion in automated hierarchical fault monitor-
ing of large-scale systems. In: Piera Carreté N, Singh
MG (eds). Proc QUARDET’93, IMACS workshop
on qualitative reasoning and decision technologies,
Barcelona, Spain, 16-18 June, 1993, pp 722734

2. de Kleer J, Williams B. Diagnosing multiple faults.
Artif Intell 1987; 32(1): 97-130

3. Nebat A, Cellier FE, Linkens DA. Controlling
an anaesthetic agent by means of fuzzy inductive
reasoning. In: Piera Carreté N, Singh MG (eds).
Proc QUARDET’93 IMACS workshop on qualitative
reasoning and decision technologies, Barcelona,
Spain, 16-18 June 1993, pp 345-356

4. Uckun S, Dawant BM. Qualitative modeling as a
paradigm for diagnosis and prediction in critical care
environments. Artif Intell Med 1992; 4(2): 127-144

5. Weigend AS, Gershenfeld NA. Time series predic-
tion: forecasting the future and understanding the
past. Addison-Wesley, Reading, MA, 1994

6. Cellier FE. Qualitative modelling and simulation ~
promise or illusion. In:. Nelson BL, Kelton WD,
Clark GM (eds). Proc winter simulation conference,
Phoenix, AZ, 811! December, 1991, pp 1086-1090.

7. Zeigler BP, Chi SD. Symbolic discrete-event system
specification. IEEE Trans Syst Man Cybern 1992;
22(6): 28-43

8. Cellier FE;. Nebot A, Mugica F, de Albornoz A.
Combined qualitative/quantitative simulation models
of . continuous-time processes using fuzzy inductive
reasoning techniques. Int J Gen Syst 1995; 25(1)

9. Linkens DA, Greenhow DA, Asbury AJ. An expert
system for the control of depth of anaesthesia.
Biomed Meas. Inform Control 1986; 1(4): 223-228

10. Linkens: DA, Rehman HU. Nonlinear control for
anaesthetic depth wusing neural networks and
regression. In: Proc ISIC’92, IEEE int symp on
intelligent control, Glasgow, Scotland, UK, 11-13
August, 1992, pp 410415

11. Hecht-Nielsen R. Neurocomputers. Addison-Wesley,
Reading, MA, 1990

12. Nebot A, Medina S, Cellier FE. The causality
horizon: limitations to predictability of behaviour
using fuzzy inductive reasoning. In: Guasch A, Huber
R (eds). Proc. ESM’94, SCS European simulation
multiconference, Barcelona, Spain, 1-3 June, 1994,
pp 492496

13. Cellier FE: Continuous- system modeling. Springer,
New York, 1991

14. Filev DP, Yager RR. A generalized defuzzification
method via BAD distributions. Int J Intell Syst 1991;
63 687697

15. Mugica' F, Cellier FE. A new fuzzy inferencing

222 F. E. Cellier and YaDung Pan

method for inductive reasoning. In: Proc int symp degree of the complete polynomial. Trans Soc Instrum

on artificial intelligence, Monterrey, Mexico, 20-24 Control Engrs 1986; 22(9): 928-934 .

September 1993, pp 372-379 18. Sugeno M, Kang GT. ‘Structure identification of
16. Jang JS. ANFIS: adaptive-network-based fuzzy infer- fuzzy models’. Fuzzy Sets Syst 1988; 28: 15-33.

ence system. IEEE Trans Syst Man Cybern 1993; 19. Takagi T, Hayashi I. NN-driven fuzzy reasoning. Int

23(3): 665-685 J Approx Reason 1991; 5(3): 191-212

17. Kondo T. Revised GMDH algorithm estimating

