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Abstract This paper describes an approach to mixed quan-
titative and qualitative modeling using fuzzy inductive rea-
soning. The approach has been veri�ed by means of several
large{scale engineering and biomedical applications to pro-
duce excellent results in predicting future system behavior.
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INTRODUCTION

Models never re
ect all facets of reality. Models are always somewhat
reductionistic in nature, and consequently, simulation results are never
totally accurate. The problem dealt with in this paper is how to cope
with the various sources of uncertainty in a model, and how to interpret
the simulation results in light of these uncertainties. Somehow, model
uncertainties get translated into inaccuracies of the simulation results,
but how?

The �rst aspect to be noticed is that validity of a model does not
necessarily translate into accuracy of simulation results. Although this
may seem counterintuitive, the two are often in competition with each
other.

A deductive model, derived from physical principles, has usually a
high degree of validity in the sense that somewhat valid results can be



obtained for a large range of values of its parameters. However, the
results may not be very accurate due to the uncertainty of the actual
parameter values and due to unmodeled dynamics.

An inductive model, derived from observations of the input/output
behavior of the real system, may be very accurate when presented with
the precise previously observed inputs, yet it usually has a low degree
of validity in the sense that its predictions may be totally wrong when
the model is driven by other, previously unobserved, input patterns.

Hence there is room for both deductive and inductive modeling
in science and engineering. Either technology has its virtues and its
de�ciencies, and which of the two may be more appropriate in a given
situation depends on the application area and the demands made on
the model.

In this paper, a methodology is presented that preserves the best
of both worlds by enabling the user to mix deductive and inductive
models in a single modeling and simulation environment.

A second observation needs to be made. Assessing the inaccuracy of
a simulation result is in itself a modeling task. Yet, the same methodol-
ogy that is used to model the output to be predicted cannot be used to
model its error. This would lead to a paradoxical situation. If it indeed
were possible to compute, in a deterministic sense, the inaccuracy of a
prediction made, then one could simply subtract the predicted predic-
tion error from the prediction itself and obtain the precise value of the
output. Evidently, this cannot be done. The modeling error can only
be modeled in a statistical sense.

In this paper, a methodology shall be described that assesses the
error of a prediction made simultaneously with making the prediction.
The two are di�erent facets of one and the same process and are insep-
arable one from the other. In a robust modeling methodology capable
of dealing with model uncertainty, modeling the modeling error should
not be an afterthought. Modeling the output and modeling its error
should be done simultaneously. A modeling and simulation methodol-
ogy that does not take the model uncertainty into consideration from
the beginning is not robust when dealing with uncertain situations.



INDUCTIVE MODELING

Inductive modeling starts out with one or several sets of observations
of input/output behavior of a system, and tries to deduce something
about the relationship between these observational patterns. In the
ideal situation, a relationship can be postulated that allows to repro-
duce the observed output patterns when presented with the observed
input patterns, and that produces predictions of the output that are not
totally incorrect when presented with di�erent, hitherto unobserved,
input patterns.

Inductive models come in two shades. Parametric models make an
assumption about the structure of the relationship, and then optimize a
set of unknown parameter values to obtain an optimal curve �t between
the observed and predicted output trajectories. Non{parametric models

do not make any assumption about the underlying model structure, and
restrict themselves to intelligently characterize and catalog previously
observed input/output patterns for future reference and interpolation.

A typical example of a parametric model is a neural network. Neural
networks assume a very rich structure, in fact, a structure that is so
rich that it can represent basically any behavioral pattern, and then
optimize a large set of parameters (the weights) to �t the observed
input/output patterns (supervised training).

There are three drawbacks to such an approach.

1. By assuming a structure in advance, it becomes very di�cult to
afterwards assess the error of that assumption itself. However,
in a neural network, the assumed structure is so rich that the
structural error is usually negligible.

2. Most parametric models are deterministic in nature. By embrac-
ing a totally deterministic modeling technique, it becomes di�cult
to assess the error of predictions made, because, as was explained
before, this error cannot be estimated in a deterministic sense.
In fact, this is hardly ever tried. For example, very few neural
networks make any attempt at estimating the inaccuracy of their
predictions. A neural network will predict anything for any input
pattern it is presented with, irrespective of how unlikely the cor-
rectness of that prediction may be. This is a serious drawback of



all such modeling methodologies.

3. Inductive modeling is almost synonymous with optimization. The
more parameters are to be optimized, the slower will the optimiza-
tion be. Training a neural network by optimizing its weights in a
supervised training mode is notoriously slow.

Non{parametric models may present an answer to these objections, as
shall be shown. However, also they have their drawbacks. In particular,
they o�er no extrapolation capability whatsoever. A non{parametric
model can only reproduce what it has been shown earlier in terms of
input/output patterns. It cannot extrapolate beyond the range of its
previous experiences. However, the extrapolation power of parametric
models lies precisely in the structural assumption made, i.e., the more
incorrect that structural assumption is, the more likely it will be that
the extrapolated predictions are wrong. The enhanced validity of a
parametric model hinges upon a correct guess of the underlying model
structure. A neural network doesn't make any attempt at guessing the
correct structure, and therefore, its extrapolation capability may, in
fact, be a rather dubious virtue. Since the neural network never fails to
make a prediction, the user is seduced into believing that the model is
very robust, whereas, in reality, the only thing \robust" in this entire
enterprise may be the gullibility of the user.

FUZZY INDUCTIVE REASONING

Fuzzy inductive reasoning is a qualitative modeling and simulation tech-
nique consisting of a non{parametric inductive modeling step followed
by a deductive simulation step. The methodology is described in due
course.

Quantitative real{valued variables are fuzzi�ed into qualitative triples
consisting of a class value, a fuzzy membership value and a side value.
The technique is illustrated by means of the example shown in Fig.1.

The ambient temperature is classi�ed into the �ve classes `cold,'
`fresh,' `moderate,' `warm,' and `hot,' using, in the shown example, pop-
ular knowledge to determine the so{called landmarks, i.e., the borders
between neighboring classes. A quantitative value of temperature =
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Figure 1: Fuzzy Recoding of Ambient Temperature

18:0 would in this case be recoded into a class value of `moderate,' a
membership value of 0.938, which is the highest value of all the bell{
shaped membership functions associated with the quantitative value
18:0, and a side value of `left,' since 18:0 lies to the left of the maximum
of the corresponding membership function. Evidently, the qualitative
triple contains exactly the same information as the original quantita-
tive value. The original quantitative value can be regenerated whenever
needed in the reverse operation of fuzzi�cation, the so{called defuzzi�-

cation.

Fuzzi�cation of real{valued variables is done for three reasons:

1. It speeds up the optimization dramatically. Let a relationship be-
tween n inputs and one output be given. Rather than searching
through a n{dimensional continuous search space to �nd the opti-
mal input/output pattern, the search is limited to the very coarse
n{dimensional discrete search space of class values. In this way,
class values are used for determining the neighborhood of the op-
timal solution, whereas the fuzzy membership information is then
used for interpolation in the vicinity of the optimal solution.

2. The optimization in the discrete space of the class values is deter-
ministic. However, the subsequent interpolation in the continuous
space of fuzzy membership values is stochastic. This approach is
better capable of coping with model uncertainty than a purely
deterministic approach.

3. An almost identical technique to the one that is used to predict, in
a statistical sense, the fuzzy membership value of the output, can



also be used to assess, again in a statistical sense, the accuracy
of the prediction made.

Once the real{valued variables have been fuzzi�ed, qualitative modeling
proceeds in two stages. In the �rst stage, it is determined, which input
variables characterize best the input/output relationship. Given a set
of input variables and a set of output variables of a system sampled
at usually equidistant points in time. The value of a particular output
variable, yi, at time point t is to be determined in function of the inputs
at the same time point, and both inputs and outputs at past sampling
points, e.g.

y1(t) = ~f(y3(t� 2�t); u2(t� �t); y1(t� �t); u1(t)) (1)

where ~f denotes a qualitative relationship. Notice that ~f does not stand
for any (known or unknown) explicit formula relating the input argu-
ments to the output argument, but only represents a generic causality
relationship that, in the case of the inductive reasoning methodology,
will be encoded in the form of a tabulation of likely input/output pat-
terns, i.e., a state transition table. In SAPS{II (the currently used
implementation of the methodology), Eq.(1) is represented by the fol-
lowing matrix:

0
B@

tnx u1 u2 y1 y2 y3

t� 2�t 0 0 0 0 �1
t� �t 0 �2 �3 0 0
t �4 0 +1 0 0

1
CA (2)

The negative elements in this matrix are referred to as m{inputs. m{
inputs denote input arguments of the qualitative functional relation-
ship. They can be either inputs or outputs of the subsystem to be
modeled, and they can have di�erent time stamps. The above example
contains four m{inputs. The sequence in which they are enumerated is
immaterial. They are usually enumerated from left to right and top to
bottom. The single positive value denotes the m{output. The terms
m{input and m{output are used in order to avoid a potential confusion
with the inputs and outputs of the plant. In the above example, the



�rst m{input corresponds to the output variable y3 two sampling inter-
vals back, y3(t� 2�t), whereas the second m{input refers to the input
variable u2 one sampling interval into the past, u2(t� �t), etc. Notice
that the Fuzzy Inductive Reasoning (FIR) methodology restricts itself
to multi{input/single{output (MISO) systems, since multiple outputs
(MIMO systems) can always be reduced to sets of MISO systems. Con-
sequently, every FIR model has exactly one m{output.

In fuzzy inductive reasoning, such a representation is called a mask.
A mask denotes a dynamic relationship among qualitative variables. A
mask has as many columns as there are plant variables to look at, and
it has a certain number of rows, the depth of the mask.

The optimal mask is the one abstraction that optimizes the pre-
dictive power of the model. The problem of �nding the optimal mask
relates to the struggle between generality and speci�city. If more m{
inputs are added to the mask, the observed patterns become more and
more speci�c. Yet, chances are that a newly observed input pattern
has never been seen before, making a prediction impossible. Removing
m{inputs from the mask leads to bolder, less speci�c, patterns that are
likely to be ambiguous. The so obtained model no longer represents the
true dynamics of the system, leading to non{deterministic input/output
behavior, i.e., to ambiguities in the predictions made. In SAPS{II, the
Shannon entropy measure is used to determine the speci�city of a given
input/output relationship, whereas the observation ratio is used to de-
termine its generality. The optimal mask is a compromise between the
two measures. Details can be found in (Cellier et al., 1996).

In the second stage, the optimal mask is applied to the observed
input/output trajectories to obtain a �nite state machine representa-
tion of corresponding input/output patterns. The resulting �nite state
machine represents the non{parametric inductive model of the system
under study.

Once the qualitative model has been found, the qualitative simula-
tion (forecasting of future behavior) again proceeds in two stages. In
a �rst (deterministic) stage, future input patterns are compared with
those stored in the experience data base (the �nite state machine), and
the most likely output is read out of the data base. In this stage, both
the class and side values are used to determine the most similar pattern.



In a second (statistical) stage, a prediction needs to be made of the
most likely fuzzy membership value of the output. The fuzzy member-
ship value is a distance weighted average of the �ve nearest neighbors
in the experience data base, whereby the distance function is computed
in the input space, and the interpolation is done in the output space.
Mathematically, this is done in the following way.

Since FIR deals with multi{input/single{output (MISO) systems
exclusively, each state consists of a number of input variables and a
single output variable. The �rst problem to be considered is one of
normalization. Since the di�erent input variables can represent arbi-
trary physical or other quantities, their absolute values can be vastly
di�erent one from another. In order to create a meaningful metric of
proximity in the input space, it is necessary to normalize the input vari-
ables. This is accomplished using a pseudo{regeneration of the fuzzi�ed
input variables:

posi = classi + sidei � (1:0 �Membi) (3)

where the class values are assumed to be integers starting from `1' rep-
resenting the lowest class, and the side values are also integers assuming
the values `�1' representing the logical value `left,' 0 representing the
value `center,' and `+1' representing the value `right.' The index i

represents the ith input variable in the input state of the current obser-
vation. The position value, posi can be viewed as a normalized pseudo{
regeneration of the ith input variable. Irrespective of the original values
of the input variable, posi assumes values in the range [1:0; 1:5] for the
lowest class, [1:5; 2:5] for the next higher class, etc.

Similarly,

posij = classij + sideij � (1:0�Membij) (4)

represents the normalized pseudo{regeneration of the ith input variable
of the jth nearest neighbor in the experience data base.

pos = [ pos1; pos2; : : : ; posn ] (5)



is the position vector representing the current input state, assuming
that the system to be modeled contains n m{inputs, and

posj = [ pos1j ; pos2j ; : : : ; posnj ] (6)

represents the corresponding position vector of the jth nearest neighbor.

The distance between the current input state and its jth nearest
neighbor is computed as:

disj = kpos� posjk (7)

It is necessary to avoid distance values of 0:0:

dj = max(disj; �) (8)

where � is the smallest number that can be distinguished from 1:0 in
addition.

sd =
5X

j=1

dj (9)

is the sum of the distances of the �ve nearest neighbors, and:

drelj =
dj

sd
(10)

are the relative distances. By applying this algorithm either to the
entire experience data base or a suitable subset thereof, the �ve near-
est neighbors can be determined while simultaneously computing their
distance function.

The interpolation is done in the output space. Absolute weights are
computed as:

wabsj
=

1:0

drelj
(11)



and

sw =
5X

j=1

wabsj
(12)

is the sum of the absolute weights. Hence the relative weights can be
computed as:

wrelj
=

wabsj

sw
(13)

Using this information, the membership value of the predicted output
is determined as:

Membout =
5X

j=1

wrelj
�Memboutj (14)

If one of the observations in the experience data base coincides, by
chance, with the new observation, its relative distance value will be very
close to 0:0, whereas that of the other four neighbors will be consider-
ably larger. Consequently, only this data record will have an in
uence
on determining the membership value of the output. On the other
hand, if the �ve nearest neighbors are all approximately equally far
away from the new observation, the relative distance values will all be
approximately 0:2, and each of the corresponding records in the expe-
rience data base will have equal weight in determining the membership
value of the new output.

This approach, although quite heuristic in nature, has been very
successful at predicting, rather accurately, a signi�cant set of variables
from di�erent application domains, including biomedicine (Nebot et al.,
1996), nuclear reactors (de Albornoz and Cellier, 1993), aircrafts (de
Albornoz and Cellier, 1994), and switching circuits (de Albornoz et al.,
1994).

The idea behind assessing the accuracy of a prediction made is
straightforward. It is directly related to the distance of the observa-
tions in the experience data base to the new observation. If the new
observation is very close to one or several previous observations, then



the con�dence in the prediction made is high. On the other hand, if
the new observation is quite far away from its �ve nearest neighbors
and a lot of interpolation has to be done to determine the new output
value, then the prediction should be assessed as less accurate.

The average distance used to determine the con�dence measure is
computed as a weighted sum of the relative distances of the �ve nearest
neighbors:

dconf =
5X

j=1

wrelj
� dj (15)

The largest possible value of the average distance can be calculated as:

dconfmax =

vuut
nX

i=1

(ncli
� 1)2 (16)

where ncli
is the number of classes used in the fuzzi�cation of the ith

input variable.

Finally, the con�dence is evaluated as:

conf = 1:0�
dconf

dconfmax
(17)

conf is a quality measure, i.e., a real{valued number in the range
[0:0; 1:0]. Values close to 1:0 denote a high con�dence in the prediction
made, whereas values close to 0:0 denote a very low con�dence in the
forecast. In the presentation, examples shall be presented of how this
information is being used in practice.

MIXED QUANTITATIVE AND QUALITATIVE

MODELING AND SIMULATION

Once a qualitative triple of an output variable has been predicted, it
can be converted back to a quantitative signal using defuzzi�cation.



Once this has been done, the so converted signal is conceptually no
di�erent from a quantitatively simulated variable, and can be used as
an input to any quantitative model.

Hence fuzzi�cation, in a mixed quantitative and qualitative model,
assumes the role of an A/D converter in a sampled data model, whereas
defuzzi�cation assumes that of a D/A converter. However, this is where
the similarity ends. Whereas sampled data models use deterministic
reasoning about a large number of crisp levels, FIR models use fuzzy
reasoning about a very small number of coarse, yet fuzzy, levels. The
maybe most convincing application of FIR to mixed quantitative and
qualitative modeling found so far is a model of the cardiovascular sys-
tem, whereby the hemodynamics are described by a fairly large quan-
titative ODE model, whereas the central nervous control functions are
described by �ve qualitative FIR models operating in parallel. This
application was described in (Nebot, 1994, 1996).
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