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ABSTRACT

In this paper, qualitative simulation based on fuzzy measures is applied to reason induc-
tively about the behaviour of a quantitatively simulated B-747 aircraft model, to determine
when a structural malfunction occurs, to hypothesize about the nature of this malfunction,
and to decide upon a global strategy that allows to operate the quantitative aircraft model
under the modified flying conditions.

In an earlier paper [12], a crisp inductive reasoner had been employed for the same
purpose. The new paper demonstrates the enhanced discriminatory power and the improved
forecasting capability of the fuzzy inductive reasoner in comparison with the crisp inductive
reasoner when applied to this problem, Also, the fuzzy inductive reasoner allows to predict a
quasi-continuous response spectrum, whereas the crisp inductive reasoner is able to predict
discrete (class) values only.

1 INTRODUCTION

So-called intelligent systems operate in a discrete way and with a symbolic knowledge
representation, that is, as qualitative systems. In many cases, intelligent systems must interact
with the real physical world that is based on continuous time and space, or cooperate with
lower-level controllers that are realized by means of more classical quantitative signal and
systemn representations. The interaction between these two types of systems calls for a new
mixed qualitative/quantitative modeling paradigm that may well be able to compensate for
the shortcomings inherent in each of the two types of knowledge representation schemes
and may help to solve problems that are beyond the capabilities of either of these two
methodologies alone. : '

Over the past few years, several different methodologies for qualitative descriptions
of continuous-time processes have emerged. Some of these methodologies are knowledge-
based, such as the Naive Physics approach [4], and others are pattern-based, such as the
Inductive Reasoning paradigm [5] and the Neural Network methodology.

A major objective of cur own research is the development of a methodology to combine
the quantitative simulation of a continuous process with the qualitative simulation of an
automated supervisory control system. In this paper, qualitative simulation is applied to
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inductively reason about the behaviour of a quantitative simulation model representing
a B-747 airplane in high-altitude horizontal flight.

The quantitative simulation model of the aircraft offers the possibility to simulate various
types of malfunctions in the airplane behaviour without destroying any real equipment and,
even more importantly, without endangering a buman crew, The qualitative model can be
trained to determine when a malfunction occurs in the quantitative model, it can be made to
hypothesize about the nature of this malfunction, and may eventually be brought to suggest
a global control strategy that would allow to safely operate the quantitative aircraft model
under the modified flying conditions. It is hoped that the qualitatively operating, intelligent,
supervisory control umit can ultimately be made sufficiently robust so that it would still be
able to function properly when embedded in the control of a real aircraft.

Such an algorithm could eventally be implemented as a “watchdog autopilot,” i.e., as
an addition to a conventional autopilot that would allow the autopilot to remain operational
after a malfunction has taken place. On a shorter-term basis, such a system could be used
by a human pilot as an on-line automated advisor, i.e., a diagnostic aid and a consultation
system, that alerts the pilot to perceived problems, and offers advise as to how to deal with
them.

A previous research effort at the University of Arizona resulted in a crisp inductive
reasoner that was able to recognize, within a few seconds after a simulated malfunction had
taken place, that the aircraft had qualitatively changed its behaviour, which then triggered
a diagnostic engine that enabled the reasoner to distiguish between 10 different types of
malfunctions after stimulating the aircraft by adding a small amount of binary noise to the
input signals and examining the aircraft’s reaction. The results of this study were reported
in [12].

The current research effort extends the previous investigation by incorporating fuzzy
measures into the inductive reasoning process, and by modifying the algorithm for the eval-
uation of the quality factor of the qualitative (structural) relationships found by the inductive
reasoner. In this paper, the enhancement of the discriminatory power of a fuzzy inductive
reasoner over a crisp inductive reasoner will be demonstrated. While the previously used
reasoner had sometimes difficulties to discriminate between different types of malfunctions,
the fuzzy inductive reasoner is able to discriminate clearly and unambiguously between
different types of malfunctions that mdke the aircraft react in similar ways. Also, the fuzzy
inductive reasoner is often able to identify malfunctions in a shorter span of simulated time
of the quantitative model than its crisp counterpart.

2 DESCRIPTION OF THE APPLICATION

A number of publications on inductive reasoning have previously been published by the
same research group. The earliest paper describing the method can be found in [1]. Details
on the numerical aircraft model and the application of the crisp inductive reasoner to it can
be found in {11]. A compressed version of [11] was published in [12]. The fuzzy extension
of the inductive reasoning methodology was first discussed in [6], and was elaborated
upon in [2]. Finally, the combination of quantitative and qualitative simulations involving
a differential equation model for the quantitative subsystem and a fuzzy inductive reasoner
for the qualitative subsystem was first presented in [3]. In the interest of saving space, the
results that were presented in the aforementioned earlier publications will not be repeated
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Figure 1: Axes, angles, forces, and moments of the aircraft.

here. The interested reader is friendly invited to consult the earlier publications to familiarize
him or herself with the details of the methodology. The authors will be delighted to send
free reprints of the papers upon request.

In this section, a brief description of the quantitative and qualitative models will be
given, emphasizing the differences between the crisp and the fuzzy inductive reasoners, as
well as the importance of the chosen application.

2.1 The Quantitative Model.

A brief explanation of the mathematical aircraft modet is needed to introduce the variables
that will be used in the qualitative model. The mathematical aircraft model used in this study
reflects an essentially longitudinal flight restricted to longitudinal deviations from a trimmed
reference flight condition, which is characterized by the requirement that the resultant force
and moment acting on the aircraft center of mass are zero.

. The mode! uses the typical equations for the angle of atack o, the flight path angle
v, and the pitch angle 6. The relationship between the different variables is depicted in

figure 1.

The quantities affecting the airplane in flight are its weight W, the thrust T developed
by the engines, the aerodynamic forces Lift I and Drag I3, and the aerodynamic pitching
moment M, The weight of the aircraft will be considered constant. The thrust will be
considered as being a function of the flight velocity and of its own control variable 67, the
throttle opening. The aerodynamic forces I and I compose the force response of the aircraft
to the motion. The Lift is assumed as being the normal component of the aerodynamic force
with respect to the flight path, and the Drag is its tangential component. The model uses
the standard way of expressing the aerodynamic forces I and D, and the aerodynamic
momentum M, that is, through their non-dimensional aerodynamic coefficients Cp, Cr,
and Cyy. '

Tweo control laws are implemented in the model, one for the elevator deflection with
feedback on the pitch angle, the other for the thrust with feedback on the velocity:
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e = beppimn + K5(0 — Oirim) (1

Eirim

T = Tirim + Ku(u — Ugrim) )]

where 4, is the elevators deﬂection, T the thrust of the engines, and u the velocity in
the x-axis direction.

The parameters used in the model are those of a Boeing 747 aircraft in a cruise flight
at high altitude.

The numerical aircraft model has been coded in the continuous system simulation lan-
guage ACSL [8]. Some transients/accidents were built into the aircraft model in order to
alter its normal structural behaviour. These structural changes in the longitudinal flight are
simulated by modifying the original airplane parameters in a discrete event section of the
program that is executed at a randomly selected time instant. Once the event has been ac-
tivated, another random number is drawn to determine which of the accidents is supposed
to occur. The simulated emergencies are not neqessaﬁly realistic in terms of what might
happen to the real aircraft, but this is not essential to our goal. It is, however, important to
realize that the qualitative model is kept in the dark with respect to when the accident takes
place, and which of the accidents has been selected.

2.2 The Qualitative Model.

The practicality of combining qualitative and quantitative simulation models of contimions-
time processes using fuzzy inductive reasoning techniques has been demonstrated in [3]. The
construction of the qualiiative model itself is also described in detail in the same reference.
In this section, only a brief description will be given in order to show the differences between
the crisp and the fuzzy inductive reasoner, since these differences will be elaborated upon
later in the paper.

The data extracted from the numerical ACSL simulation constitute the “measurement
data” of the qualitative model. The execution of the quantitative model, and the extraction
of the measurement data matrix were done under the control of MATLAB [7]. The mea-
surement data matrix is a real-valued matrix in which each column represents one recorded
variable, and each row represents one complete data record collected at one time instant.

These data must then be discretized to enable the qualitative reasoning process. In the
language of inductive reasoning, the discretization of data is referred to as “recoding” [5].
The recoding module converts continuous signals into multivalued discrete signals. In the
fuzzy case, a fuzzy membership value is appended to the recoded (class) value. In the fuzzy
systems literature, the process of discretization is usually referred to as “fuzzification” [9].

The inductive reasoner operates exclusively on the qualitative class values and reasons
about qualitative spatial and temporal relationships without proposing a single quantitative
relationship and, in fact, without even knowing that they exist. The discretized variables
are used to find the most plausible qualitative relationship among theml, which is called the
optimal mask. This optimal mask will in turn be used to qualitatively forecast the behaviour
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Figure 2: Qualitative input and output variables

of other variables. This process is called qualitative simulation through inductive reasoning.
The forecasting can be viewed as a temporal inference engine.

From the resulting qualitative variables, continuous signals can then be “regenerated”
that can subsequently be used as inputs to other quantitative or qualitative submodels.
In the context of fuzzy systems, the regeneration process is known as “defuzzification,”
and represents the inverse process of recoding. The fuzzifiers/defuzzifiers act as interfaces
between the qualitative and the quantitative submodels.

To build the qualitative model of the aircraft, not all of the variables that were obtained
by the numerical simulation were used, but only a subset of five variables that capture the
main characteristics of the aircraft during high altitude longitudinal cruise flight.

Figure 2 depicts the two input and three output variables included in the optimal mask
analysis, namely the differential elevator deflection §,, the differential thrust é7, the lift L,
the drag D, and the flight path angle ~.

The process to build the qualitative model is the following:

- The numerical model is randomly excited. In this way, the recorded data are rich in
information about the reaction of the system to input stimulation at all frequencies.
This mode of operating the aircraft is called the “shaken flight.”

- The numerical model is excited once more, this time with harmonic functions of
fairly long periods. In this way, a more realistic but still dynamic flight simulation
results. This step is used to determine the limits that the variables can realistically
assume.

- The optimal masks obtained from the first excitation and the landmarks obtained
from the second are used to forecast the future behaviour of the plane under any
flight condition, prodided that these flight conditions have previously been observed
by the qualitative model.

- A threshold error alarm is incorporated to decide when a structural change has taken
place.

2.3 Differences Between a Crisp and a Fuzzy Inductive Reasoner

There exist two main differences between the previously reported crisp inductive reasoning
methodelogy and the cumrently employed fuzzy inductive reasoning apprach. The first lies
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Figure 3: Typical membership functions used by SAPS

in the computation of the quality measure of the masks, and the second lies in the utilization
of the available fuzzy measures in the forecasting process.

a) The Quality Factor.

The quality of a structural relationship, i.e., a mask, is primarily determined through the
Shannon entropy of its state transition matrix, which determines its forecasting power over
a single step. However, it is not practical to use the Shannon entropy exclusively in the
performance index that evaluates the quality of a mask. The reason is that, with growing
mask complexity, the number of discrete states the system can be in grows, Since the total
number of observations remains constant, the observation frequencies of the observed states
become smaller and smaller, until eventually every state that has ever been observed has
been observed precisely once. Thus, all observed state transitions are totally deterministic,

. and the forecasting power over a single step is maximized. However, the predictiveness of
the model over several steps will nevertheless be poor, since already the next predicted state
will, in all likelihood, have never been observed before, which will bring the forecasting
process to an immediate halt.

The previcusly employed methodologyy used the complexity of the mask, that is, the
number of relationships among variables, in the performance index. However, the mask
complexity is only an indirect measure of the number of legal states. The currently employed
methodology uses the observation ratio, a quality measure that reduces the mask quality if
there exist states that have been observed less often than five times. This leads to a better
selection of the optimal mask. '

b) Fuzzy Measures.

The crisp inductive reasoner worked with crisp landmarks in the recoding of the mea-
surement data. These rigid landmarks were responsible for a loss of valuable information
about the system that could no longer be exploited by the qualitative model, and this in
turn led to a reduction in its forecasting capabilities, which diminishes the discriminatory
power of the tool in the application at hand.

Fuzzy measures were introduced as a technique to deal with the uncertainty of landmarks.
Instead of saying that a variable belongs to the class “normal” for values above a certain
landmark, and to the class “low” for values below that landmark, a fuzzy measure allows
to specify that, as we pass the landmark in the negative direction, the answer “normal”
becomes less and less likely, whereas the answer “low” becomes more and more likely.

Figure 3 depicts the fuzzy membership functions used by SAPS-II, the inductive reasoner
employed in this research. They are normal distributions with values 1.0 at the arithmetic
mean of any two neighboring landmarks, and 0.5 at the landmarks themselves.
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The fuzzy membership functions allow to recode each numerical value into a qualitative
triple composed of the class value (as in the previous methodology), the fuzzy membership
value, which is a measure of the likelihood of the class value, and the side value ‘which
indicates whether the quantitative value is to the left or to the right of the maximum of the
fuzzy membership function. No information is lost in the recoding process. The original
real-valued measurement data can be regenerated exactly from the qualitative tripie. The
forecasting process must now predict, for a given set of inputs, not only the class value of
the output, but also-its membership and side values. Thereby, the numerical information is
indirectly preserved, which in turn makes it possible to regenerate real-valued output signals
from the qualitative model with a surprisingly good accuracy.

The fuzzy membership functions allow to preserve more quantitative information in the
reasoning process, whereas the class values can still be used to process the available informa-
tion in a qualitative fashion. Thus, the qualitative analysis allows to generate quickly a rough
qualitative response, while the fuzzy membership functions can then be used to smoothly
interpolate between the qualitative class values to obtain a quasi-continuous response spec-
trum. In the application at hand, the fuzzy membership functions serve to enhance the
discriminatory power of the event classifier.

3 THE CONTINUOUS MONITORING SYSTEM

Modern control technology makes it possible to build highly automated control systems
for very complex processes such as jet cruisers, nuclear power plants, space stations, etc.
However, no automatic control technigue presently available is able to adapt itself to unpre-
dicted structural changes in the system. Man-in-the-loop systems have been the answer to
this problem until now. However, when the degree of system complexity increases, human
operators are being overloaded by the amount of information they are provided with. To
address this problem, monitoring systems are needed that mimic the human situation assess-
ment process, that are able to identify specific events, learn how the system behaves, and
come up with a new control strategy for the system once it has been structurally modified.

In other words, the inductive reasoning functions are used to qualitatively and inductively
reason about the measurement data taken from the ACSL simulation run. The quantitative
data will be used to build a qualitative model that represents the behaviour of the airplane in
the vicinity of a steady-state trajectory. If a sndden structural change occurs, the qualitative
model will receive inputs that have never been seen before, which means that it will ne
longer be able to predict the future behaviour of the system, which, in turn, trips off an’
alarm indicating that an accident has happened.

In a separate libary, other qualitative models are stored that represent a variety of
structural changes of the aircraft. Once the original model is no longer able to predict the
system behaviour, these models are consulted in order to identify the one that best predicts
the new behaviour of the aircraft. As each of these models represents a particular type of
accident, this information can then be used to conclude what type of accident has happened,
i.e., to discriminate between different types of accidents. In the very moment when a library
model has become capable of correctly predicting the behaviour of the structurally modified
system, the contimious monitor is able to know what accident has taken place, and with
this information, it can decide upon an appropriate corrective action to be taken
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Figure 4: Differences between the same forecast points without and with fuzzy measures

3.1 Structural Changes of the Aircraft,

The criginal aerodynamic parameters of the Boeing 747 airplane at cruise flight were mod-
ified to obtain four different models with which a library was constructed. These models
represent structural changes of the original plane, and were thought to be sufficiently rep-
resentative to be considered as accidents.

The four models were obtained in the same way as the original one, following the

sequence of steps presented in section 3.2. The main characteristics of these models are:

o Model B4 is the original model that represents a Boeing 747 in cruise flight at high
altitude. Its aerodynamic parameters are considered as reference values for the other
models.

e Model 747 represents a Boeing 747-300 in cruise flight. The values for the Lift L,
Drag D, aerodynamic momentum M, and the pitch angle ¢ are changed in comparison
with the B4 model.

o Model BS represents a change of the original B4 model, in which the aerodynamic
parameters L and D are increased, whereas M and 8 are decreased.

e Model B13 represents another change of the B4 model. Here, L, D, and @ are
increased, whereas M is decreased.

¢ Model B14 is very similar to the B4 Model. The only difference is that M and ¢ are
a litde increased.
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Figure 5: Differences between crisp and fuzzy threshold error alarms for the detection of
the accident

3.2 - Detection of the Accident.

The detection of accidents proceeds as follows: the failure detector implemented in the
qualitative model forecasts the future behaviour of the system and then compares this
forecast with the actually measured data. As the forecast is based on past behaviour of the
system, it is somewhat adaptive to slow changes in system parameters or a slow drift in the
steady-state, but a sudden structural change is immediately detected since the behaviour of
the system can no-longer be forecast with the optimal masks that have been evaluated for
the system under observation.

The failure detector works through a threshold error alarm that counts the incorrect
forecasts within a given period of time, and trips the alarm whenever the accumulated
number of incorrectly predicted future states surpasses a threshold that is built into the
detector. At such time, the inductive reasoner initiates a search for another qualitative model
that correctly represents the gualitative behaviour of the structurally modified system.

3.3 Recognition of the Type of Accident.

The recognition of the type of accident starts when the qualitative model initiates the search
for another set of optimal masks that represent the behaviour of the new system. The process
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Figure 6: Differences between crisp and fuzzy threshold error alarm for the recognition of
the type of accident

errors varies consistently between 3% and 12% when the correct qualitative model is being
used. This permits a reduction in the threshold value used by the monitor. Furthermore, an
incorrect forecast often led to an entire chain of consequence errors, which would immedi-
ately trip the alarm if the accumulation window was selected too narrowly. The new system
doesn’t exhibit this problem any longer. False alarms are no longer caused by error chains,
is very similar to that of the failure detection. For each qualitative model (optimal mask) in
the data base, the forecast values of this new qualitative model are compared with the true
measured (and recoded) values of the quantitative model of the structurally modified plant.
If the error surpasses the threshold, the currently investigated qualitative model does not
represent the behaviour of the system, and another qualitative model must be chosen from
the library. Exactly one qualitative model should pass the test, irrespective of when the error
occurs during the simulation. If no qualitative model is able to pass the test, the threshold
value has been chosen too stringently, whereas multiple models passing the test indicate
poor failure discrimination. It is hoped that the range of acceptable threshold values is wide,
i.e., the correct accident can be identified using a fairly small threshold value, whereas all
other optimal masks will call for a considerably higher threshold value before they pass the
test as well. Once the new model is identified, the monitoring system acts exactly as before
the accident. Figure 6 depicts the differences in the threshold error alarm for the recogmnon
of the accident with and without fuzzy measures.

4 CONCLUSIONS

The main advantage of the improved methodology is a significant reduction of the number
of forecasting errors. The previously used system as described in [12] had between 25%
and 33% errors in the forecasting points, while with the new system the percentage of
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and therefore, the accumulation window of the threshold error- alarm can be made much
shorter, which allows the structural change to be detected several points earlier than using
the old system. With respect to the recognition of the accident itself, the B4 to B747 transi-
tion is identified seven sampling intervals earlier than before, and the B4 to B13 transition
is identified three sampling intervals earlier.

The other main advantage is the unambiguous identification of the post-accident steady
state, i.e., the new set of optimal masks that correctly describe the post-accident behaviour.
Using the new algorithm, the former confusion between the BS and B13 post-accident
states [12] is completely avoided, in spite of them exhibiting very similar post-accident
behaviours, '

In this paper, it was shown that adding fuzzy measures to an inductive reasoner can sig:
nificantly improve its qualitative simulation accuracy, and thereby its discrimination power.
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