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ABSTRACT

In this paper, the problem of human overload in monitoring the many sensors of a
complex industrial plant is addressed. A hierarchical automated fault monitoring and analysis
system for high-level decision making is presented. The monitoring system operates in
parallel with the traditional channels. It has no effect other than being able to display its
findings to the human operator, and to point out potential problems and their perceived
causes. The prospects as well as difficulties in realizing such a monitoring system are
analyzed by discussing a prototypical implementation of such a system on a sophisticated
quantitative large-scale model of a nuclear power plant.

1  INTRODUCTION

Fault diagnosis in large-scale systems is a difficult and controversial issue. Operators of such
systemns usually insist on being presented with many more sensors and controls than they
can safely and reasonably handle. For example, the cockpit of the Space Shuttle contains
more than 3000 different sensors and controls. Similarly, the operating room of a nuclear
power plant is equipped with thousends of plant status indicators (sensors), and the operators
can influence the behaviour of the plant by means of hundreds of different plant set point
selectors {controls). It is not reasonable to assume that, in an emergency situation, a smalil
number of human pilots/operators would be capable of reliably monitoring all of these
sensors and manually operating all of these controls properly and adequately {101,

Psychological tests have revealed that the average human, after being presented with a
number of facts such as given in a news broadcast, can recall approximately 10 of these
facts from short-term memory when asked to remember what had been said. While there
exists a noticeable variation in individual human capabilities, psychologists tend to agree
that most humans cannot reliably and safely tend to more than 10 different items at a
time before they begin to misjudge some of the circumstances and make serious mistakes.
Consequently, it makes little sense to provide the operator of a complex plant with hundreds
of status indicators simultaneously, and expect him or her to monitor them reliably and react
to them adequately. In the case of a minor problem, it is quite likely that a lone trouble
indicator somewhere on the operator console will go unnoticed for quite some time. In
the case of a major disaster, it is very likely that many subsystems will signal problems
almost instantaneously, and it will be very difficult for the human operator to discern the
true causes from their consequences, i.e., to know which subsystem experienced problems
first [13].
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Autométed fault monitoring can be decomposed into four stages [8] and [9]:

a) Fault detection: During this stage, the fault monitoring system detects that the plant
behaviour is abnormal. '

b) Fault diagnosis: During this stage, the fault monitoring system traces observed
symptoms back to hypothesized failures that might have caused them.

c) Fault analysis: During this stage, the fault monitoring system reasons about possible
remedies for the previously diagnosed faults.

d) Fault reporting: During this stage, the fault monitoring systém reports its findings
back to the human operators of the plant.

Any fault monitoring system (FMS) uses a combination of knowledge-based and pattern-
based approaches to achieve its goal. Stage (a) of the FMS is naturally pattern-based. It
can consist of simple threshold detectors, or time-window detectors [19], or more involved
demonized routines called “watchdog monitors” [4].

Stage (b) can be purely pattern-based, e.g. using statistical techniques, or purely
knowledge-based, e.g. using a rule-based (expert system) diagnostic engine, or a mix-
ture of both, e.g. using a model-based deep reasoner [13]. Model-based approaches seems
to be the most powerful among them. The knowledge can be captured using either de-
ductive techniques employing available meta-knowledge and reasoning on the basis of first
principles, or inductive techniques such as neural networks or inductive reasoners.

Stage (c) of the FMS is in all likelihood predominantly knowledge-based. An automated
knowledge acquisition system can be used to generate a data base that relates symptoms
and failures back to previously successful repair activities [18] and [12]. Stage (d) of the
FMS is usually straightforward. More refined systems may carry a model of the human
operator [5] to decide on the extensiveness and explicitness of the required fault report.

One of the major problems in FMS design is the possibility of the occurrence of unfore-
seen faults in a system. A fail-safe FMS must be able to cope with incomplete knowledge
[6] and [7]. On these grounds, an inductive reasoning approach is most promising. Inductive
reasoners are not yet widely used for such purposes, but they have some striking properties
that may make them quite atractive for use in stages (a) and (b) of the FMS [17].

In this paper, the use of a decentralized hierarchical fuzzy inductive reasoning archi-
tecture for fault discovery and diagnosis will be presented by demonstrating a prototypical
implementation of such a system applied to a sophisticated quantitative large-scale model
of a Boiling Water Nuclear Reactor.

2 THE LARGE-SCALE MODEL

The quantitative (numerical) nuclear reactor model is a complex differential equation model
containing approximately 500 variables, a model that is very detailed in the nuclear kinetics
and in the core thermohydraulics. It includes point kinetics with main feedback mechanisms
(Voids, Doppler, and Scram) and with six delayed neutron precursoss. The heat generation
process is represented by four radial nodes modeled by finite difference approximations
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Figure 1: Simplified scheme of the nuclear reactor model

including the residual heat. The thermohydraulics are simulated using a unidimensional axial
model that takes into account all boiling phases and two phase flows, and which corsiders
one average fuel element. The heat conduction model has one axial node associated with
each axial node of the thermohydraulics and is composed of two radial nodes, one for the
fuel and the other for the cladding. The simulation includes the steam separators, the jet
pumps, the recirculation pumps, the feedwater pumps, the steam line with all its security
valves, and the reactor protection system. Figure 1 shows a simplified model of the reactor
vessel. :

The plant simulator can be used during all phases of plant operation (start-up, steady-
state, and shutdown), and it can also be used for both normal and abnormal plant operation,
i.e., during so-called “transients.” Details of the nuclear plant simulator were previously
published in [15], [16]. :

3 THE QUALITATIVE MODEL

As stated before, dny fault monitoring system uses a combination of knowledge-based and
pattern-based approaches to achieve its goals. In the here advocated methodology, a model-
based fuzzy inductive reasoner is used. The qualitative representations of the subsystems are
predominantly pattern-based models. However, the structural representation that is encoded
in the so-called optimal masks represent a form of knowledge. Also, the interactions between
the qualitative models of the subsystems and the propagation of information to the higher-
level executive reasoners are knowledge-based. In this paper, only a brief description will
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Figure 2: Forecast data using SAPS vs. real data

be given of how the fuzzy inductive reasoners work. Some additional details as well as a
complete set of related references are given in a companion paper presented by the same
researchers and published in the same volume. The fuzzy inductive reasoning methodology
is quite involved, and space considerations do not permit to repeat a detailed description of
the technology in every paper published about the subject matter.

An inductive reasoning model, constructed on the basis of measurement data, quali-
tatively represents the input/output behaviour of the modeled device in the vicinity of an
operating point or operating trajectory. A fuzzy inductive reasoning model preserves fur-
thermore numerical information about the plant in the form of fuzzy membership values
that can be used to regenerate pseudo-continuous output signals, '

Inductive reasoners, like all other qualitative reasoners, base their reasoning on discrete
(qualitative) variables. To this end, it is necessary to discretize contingous input signals
into discrete (class) values. This process is called “recoding” in the inductive reasoning
literature, “classification” in the statistical literature, and “fuzzification” in the fuzzy systems
literature. The inductive reasoner then uses the class values of the input variables to infer
class values of the output variables. This inference can be performed efficiently, since the
search for optimal inference rules is limited to a discrete search space. The fuzzy forecasting
algorithm furthermore infers fuzzy membership values for the output variables from the
fuzzy membership values of the inputs. The class values of the output variables together
with their fuzzy membership values can then be used in a process of defuzzification to
regenerate pseudo-continuous output signals,

Figure 2 shows a comparison between the numerical model of a subsystem of the nuclear
reactor and the forecast behaviour obtained with the qualitative model during a recirculation
pump slowdown transient.
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The previously mentioned limitation on the number of input variables that a human
can simultaneously process is shared by most automated reasoning algorithms. A single
sequential reasoning algorithm turmns slow and unwieldy when being requested to cope
with too many facts at the same time. Inductive reasoners (like neural networks) may be
quite efficient once they are properly trained because they are inherently parallel in nature,
but their re-learning abilities degenerate quickly as the number of input variables (i.e., the
dimension of their reasoning space) grows. It is therefore very important to select a minimum
set of variables that meaningfully represent the system to be reasoned about, and that can
be handled by the inductive reasoner in an efficient manner.

3.1 Variable Selection.

Inductive reasoners cannot deal simultaneously with the large number of varables that a
large-scale system includes. To solve this problem, a variable selection technique based on
optimal mask analysis [2] has being implemented to identify clusters of related variables
that can be isolated as subsystems. Structural knowledge of the physical system can also
help in this endeavor, but the subsystems that are identified using optimal masks do not
necessarily coincide with physical subsystems. The variables making up one subsystem
are selected on the basis of similarities in their frequency characteristics and statistical
correlation rather than on the basis of geometric topology. Optimal mask analysis allows to
identify the behaviour of each subsystem in qualitative terms. The purpose of the optimal
masks may simply be to connect the most important of the variables from the input to the
output, whereby the selection of the most important variable may be context dependent, i.e.,
may depend on the qualitative behaviour of any or all of the input variables. If no dominant
variable can be identified in a given situation, several inputs may be fused into one output
that carries the most important characteristics of all the fused inputs, but filters out some
of the less important characteristics. The most important variables of each subsystem can
then be propagated to the next stage of the reasoner to determine the qualitative behaviour
of the composite system located at the next higher hierarchical level.

Working with a large-scale model of the characteristics shown in section 2 means that
the process of properly identifying the subsystems will easily turn out to be one of the most
important and difficult problems to be sclved on the way of designing the Fault Monitoring
System. If the chosen set of variables is not representative enough of the characterized
subsystem, the resulting optimal masks will have few interactions among their variables,
which in turn will lead to poor propagation of information up the hierarchical ladder.
Interestingly enough, the same can be observed if the chosen variables are too strongly
correlated, since, in this case, the complexity of the search space is enhanced without
augmenting the amount of available informaton significantly. Also, the selected subsystems
should complement each other in an optimal manner. Subsystems that are too independent
of each other show few interactions, so that the higher hierarchical levels of the overall
architecture don’t contribute significantly to the reasoning process, but simply accumulate
and propagate further the findings of subordinate reasoners. On the other hand, a duplication
of reasoning capabilities within different subsystems located at the same hierarchical Ievel
simply enhance the complexity of the search space of the supervisory reasoner without
providing it with additional information that would justify the enhancement of its complexity.

The variables and subsystems selected to represent, in a qualitative way, the nuclear
reactor are the following:
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Figure 3: Hierarchical organization of identified subsystems

o Subsystem T, .. Its inputs are: the lower plenum flow W,, the total reactivity pr, the
power fraction o, and the feedwater enthalpy h.,. Its output is the core temperature
TTL‘UC'

¢ Subsystem W,... Its inputs are: the feedwater flow W,,, the pressure drop in the
recirculation pump ,p, and the suction flow Wi, Its output is the recirculation flow

Wrec-

o Subsystem W4,. Its inputs are: the feed water flow W,,, the lower plenum flow
Wi, and the reference turbine pressure Pr,..s. Its output is the steam flow leaving
the reactor Wyim.

o Subsystem X,;,. Its inputs are: the feedwater flow W,,, the lower plenum flow Wp;,
and the steam flow leaving the reactor Wygy, . Its output is the water level inside the
reactor X, .- :

e Executive POT and Fy,,. Its inputs are the outputs of the first three subsystems. Its
outputs are: the total percentage power of the reactor POT, and the dome pressure
Pim.

Natice that the subsystems are closely related. Some of the input variables are used in
more than one subsystem, and one output variable is used to feed more than one module.

3.2 Hierarchical Levels of Masks.

The Fault Monitoring System (FMS) contains a hierarchy of fuzzy inductive reasoners
(FIRs). The executive FIR uses as inputs the output signals of the subsystem FIRs. Thus,
the role of the subsystem FIRs is that of sensor fusion [14] and [11], i.e., to concentrate
the information available through the large number of sensors to a much smaller number
of signals that the executive FIR can be expected to handle correctly and efficiently, The
executive FIR will report the discovered problem to the operator, while pointing out to him
or her, which of the subsystem FIRs is most closely related to the problem. The operator
can then trn to that FIR to receive more detailed information.

Each FIR is composed of an optimal mask that represents the behaviour of an identified .
subsystem. For the nuclear power plant model, four subsystems and one executive subsystem
have been identified. These systems are hierarchically organized in the way depicted in
figure 3.
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As can be seen, there are two different hierarchy levels. The executive FIR uses the
outputs of the first three subsystem FIRs. The fourth module, which uses the output of the
third subsystem as its input, is located at the same hierarchy level as the executive FIR. It
serves as a useful additional discriminatory tool, because the reactor level is characteristic
~of each transient.

4 THE FAULT MONITORING SYSTEM

There are.three major problems that must be addressed when building a FMS. The first
problem is the previously stated variable selection and subsystem identification process.

The second problem is an extension of the first. It copes with the variable selection and
subsystem identification for the post-accident conditions. Most of the so-called “operational
transients” related to a nuclear power plant end with a reactor emergency procedure which
may result in a reactor shutdown. Once an emergency procedure has been initated, there
occurs a dramatic change in the meaningful minimum set of variables needed to represent
the system, i.e., the valid set of variables used to describe the system prior to the transient
is not the same set that is needed to represent the system during and following the transient.

“The third problem relates to the excitation of the numerical model needed for the iden-
tification of the optimal masks of the subsystems. It is (fortunately!) quite impossible to
excite a sophisticated nuclear reactor (or even its quantitative model) in such a way that all
frequencies are richly represented in the input/output behaviour of the excited subsystem
for the purpose of the best possible identification of an optimal mask for the subsystem.
The problem is one that has haunted for decades the researchers who are working in the
identification of control systems. When identifying a subsystem within a feedback structure,
it is desirable to break the system open, since otherwise, it is never fully clear whether it is
really the subsystem itself that has been identified, or whether it might not be the feedback
loop around the subsystem that, by its own nature, constitutes another subsystem with the
same extraneous variables but exchanged inputs and outputs, or maybe a combination of
both. However, inductive models are only valid within a limited range around an operating
point or operating trajectory. By opening up the feedback loop, the subsystem is likely to
exhibit behavioural patterns that resemble little those of the closed-loop operation. Thus,
‘the “learned” qualitative model will be of little or no use for predicting the behaviour of the
subsystem in closed-loop operation. It is thus essential that the feedback loops are kept intact
when identifying the subsystems. Consequently, the modeler has to live with the aforemen-
tioned difficulties. However, reality is even more grim than that. Nuclear reactors (and their
quantitative models) are built for maximum safety. Small deviations in expected behaviour
will be interpreted as anomalies that could trigger an emergency process, which may even-
tually lead to a shutdown of the reactor. The reactor will then behave quite differently due
to the tramsient in comparison with its behaviour under normal operating conditions. The
very test signals that are needed to excite the quantitative model for the identification of
its qualitative counterpart are easily interpreted as transients by the reactor simulator. The
quantitative reactor model trips over its own shoe-lace, so to speak.

The idea of building a fully integrated fault monitoring system for the nuclear reactor was
abandoned. Serious. transients often call for a decision to initiate an emergency procedure
within a few seconds. There is no way that the inducdve reasoner could possibly aid tne
decision making process at such a time scale given the current state of the technology. Since
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plant safety is and must always be given highest priority, serious transients will invariably
lead to the initiation of an emergency procedure. Therefore, while an on-line early warning
and transient discovery system is meaningful, an on-line transient characterization system
makes little sense in the current state of affairs. Therefore, the FMS was decomposed into
tWO parts:

(1) A semi-continuous fault monitoring system with functions for early warning (some
potential problems can be discovered before they become emergencies) and a semi-
continuous transient discovery system for quick detection of an eveolving emergency.
The transient discovery system will often be able to point out which of the subsystems
is causing the problem, but will not be able to analyze the precise nature of the
anomaly. The on-line system operates exclusively with the optimal masks of the
properly functioning plant.

(2) An off-line transient characterization and identification system used for post-mortem
analysis. Once an emergency procedure has been initiated, it will take days for the
reactor to completely shut down. During this time period, it would be beneficial to
have a system that can probe the reactor and reason about the possible causes of the
emergency in order to come up with a complete analysis of the emergency as early
as possible, )

4.1 The Semi-Continuous Monitoring System

Due to the reasons stated in the preceding section, we will simulate what is known in the
nuclear terminology as small operational transients, in which the variables selected for each
identified subsystem remain unchanged before, during, and after the incident.

The FMS will detect that a transient is taking place because the optimal masks no longer
represent correctly the behaviour of the system. An error threshold alarm matrix detects that
the executive FIR’s forecasting process contains too many errors. The comparison between
the numerical variables and the forecast variables provide the values for the error matrix.
The alarm matrix reads those values and triggers the alarm if a combination of consecutive
incorrect forecasts and saturated states occurs. Once the executive FIR’s alarm is triggered,
the FMS proceeds downward to the next hierarchical level and checks the alarm matrices of
the subsystems to try to determine which of them might have caused the transient to occur.
Once a transient has been detected, the FMS will stop its regular monitoring activity, and
will start to collect data for the post-mortem analysis. ' '

If a single subsystem FIR triggers an alarm that is not picked up by the executive FIR’s
alarm matrix as well, the FMS is facing a small failure that eventually could cause the
executive FIR to start the general alarm. This failure should be presented to the operators
as an early warning to avoid the possibility of an operational transient later on, that might
then lead to an unnecessary reactor shutdown.

The transient selected to demonstrate, in this paper, the detection capabilities of the FMS
is a Recirculation Pump Slowdown, an incident known to be a small power transient, ie.,
a transient that, at least initially, does not trigger an emergency procedure. This transient
produces a reduction in the recirculated flow of aproximately 50% with an inertial time of
8 to 10 seconds, and the following effects in the subsystems variables:
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step\*%"  errorPOT  ervorPam alarm
150 0 0 0.
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Figure 4: Error and alarm matrices of the executive FIR,

o A reduction in the forced water flowing into the core, and consequently, a reduction
in the steam flow leaving the reactor.

¢ A reduction of the reactor pressure due to a low steam flow.
e A power decrease from 100% to 65%.
o An increase of the core temperature due to a reduction in the refrigerant flow.

o Oscillations of the reactor water level.

4.2 The Transient Characterization System

The off-line transient characterization system works in similar ways as the on-line fault
monitoring system. Once the transient has begun, the FMS will consult the transient library
for a new set of optimal masks that describes the transient behaviour. Once found, these
optimal masks will drive the qualitative model not just through the transient, but into the
post-accident steady state. However, rather than operating in parallel and in real-time with
the quantitative model, the transient characterization system cperates on previously collected
data in a post-mortem mode of operation. Real-time considerations are of no importance
here, and consequently, it is possible to maintain an extensive list of transient and posi-
transient optimal masks in the library.

5 RESULTS

A recirculation pump slowdown was initiated, in the numerical model, at time step 155.
As can be seen in figure 4, the POT (thermal power) variable of the executive FIR error
matrix detects the anomaly two time steps later, however, no alarm is trigger since the
other variable Fy,, (reactor pressure) reacts very slowly in the recirculated flow. Thus, the
threshold built inte the construction of the alarm matrix is not immediately reached by the
observed anomalv.
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Figure 5: Error and alarm matrices of the W.... subsystem.

The transient was first detected by the W,.. (recirculated flow) subsystem. This subsys-
tem is directly related to the transient through the ,, (pressure drop) and W, (suctioned
flow) variables in the recirculation circuit. In the given situation, the W, (feedwater flow)
variable did not affect the reaction of the module in a significant way. Figure 5 shows
that once three incorrect forecasts have been detected, i.e., three consecutive errors have
occurred in the error matrix, the alarm is triggered. At this moment, the subsystem.has
discovered the beginning of a malfunction. If the transient would have stopped at this point,
i.e., the magnitude of the reduction in the recirculated flow would have been of such a
limited magnitude that no other subsystem alarm were triggered as well, the FMS would
have reported its finding to the operators in the form of an early waming message.

The subsystem Wa,,, (Steam produced) detects the malfunction through the W; vari-
able. The lower plenum flow is the sum of W,,. and W,.. It can be observed in figure 6
that the incident is first detected at time steps 157 and 158, and then an obviously bad
forecast accidentally produced a “good forecast” (a 0 error condition), still impedeing the
. three consecutive errors needed to start the general alarm, which is finally triggered at time
step 163. At this instant, the executive FIR detects that two of its subsystem FIRs have
triggered their alarms, and proceeds to trigger its own alarm.

Figure 7 shows how the alarm of subsystem T, (fuel temperature), that includes also
the W,,; variable, remains untriggered during the 10 seconds post-accident monitoring time.
This is due to the influence of its other three input variables ¢, pr, and hea, which are
weakly coupled to the recirculation circuit. The fuel temperature does decrease, but at a very
small rate. If the on-line monitoring system were allowed to continue its operation beyond
the time where the general alarm is triggered, it could be seen that a T}, subsystem alarm
would occur at time step 179.

The behaviour of the simulated reactor subsystems is a good aproximation of what
would be observed in a real reactor under similar circumstances. In a BWR nuclear reactor
confronted with such a transient, W,... drops dramatically down to even negative values,
i.e., reverse flow in the recirculation circuit. The power POT reacts immediately while the
pressure Py, and the produced steam W4, decrease much more slowly. The temperature
of the core remains almost unchanged during the whole transient, a fact that is reflected by
the behavior of the third subsystem in the simulation. It can be noticed that this was the
last subsystem to trigger an alarm.
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6 CONCLUSIONS

In this paper, a prototypical implementation of a hierarchically structured fault monitor-
ing system for muclear reactors based on fuzzy inductive reasoning was presented. It was
indicated that such a fault monitoring system can be meaningfully used in two different
modes: (i) as an on-line fault detection and early warning system, and (ii) as an off-line
post-mortem fault diagnosis and analysis system. The functioning of the former of these
two FMS applications was furthermore demonstrated with a concrete example.

The difficulties in constructing such an FMS were also stated. They relate to the problems
of identifying the subsets of variables to be used in subsystems, and the difficulties that
stem from the need to identify subsystems in a closed-loop environment. These problems
have by no means all been overcome yet. While we were able to successfully identify
a set of subsystems that was able to recognize the envisaged scenario of a recirculation
pump slowdown, we cannot claim that we have solved the problem of building even a
prototypical FMS that could be used to discover and report a wide palette of different
operational transients. Moreover, the algorithm used to identify the subsystems is still utterly
experimental and by no means fully automated.

The research effort will continue. While there remain many problems yet to be addressed,
we are quite excited about the possibilities of the chosen approach. We believe strongly that
fuzzy inductive reasoning offers great opportunities in tackling a number of “hot” issues in
AL, difficult issues that other A.L techniques have not been able to master so far and that
have hampered the progress in A.l. research.
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