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ABSTRACT1 
 
In this research, a new platform for the Fuzzy Inductive 
Reasoning (FIR) methodology has been designed and 
developed under the Matlab environment. The new tool, 
named Visual-FIR, allows the identification of dynamic 
systems models in a user-friendly environment. FIR offers a 
model-based approach to modeling and predicting either 
univariate or multivariate time series. Previous uses of FIR 
had demonstrated the high potential of this qualitative 
modeling and simulation methodology in effectively dealing 
with applications from various areas such as control, 
biology, and medicine. However, the available 
implementation of FIR was such that new code had to be 
developed for each new application studied, reducing 
considerably the interest in this methodology for the 
occasional user, and making it tedious even for expert 
programmers. Visual-FIR resolves this limitation, and offers 
a high efficiency implementation of the FIR methodology. 
Furthermore, the Visual-FIR platform adds new features to 
previous implementations, increasing the overall 
capabilities of the FIR methodology. 
 
Keywords: Fuzzy Systems, Inductive Reasoning, qualitative 
modeling of dynamical systems. 
 
INTRODUCTION 
 
FIR is a pattern-based modeling methodology operating on 
observations of system behavior rather than structural 
knowledge. It is able to derive causal qualitative relations 
between the variables of a system, and to infer future 
behavior of that system from observations of its past 
behavior.  It is therefore a useful tool for modeling and 
simulating systems, for which no a priori structural 
knowledge is available, including systems from soft 
sciences [Gómez et al., 2001; Jensen et al., 1999; Nebot et 
al., 1998].  

                                                           
1 The research presented in this paper was supported 
by the DPI2002-030225 CICYT project 

 
The FIR software kernel is coded in C.  Since FIR operates 
on data matrices, it is natural to embed the FIR software in a 
Matlab toolbox for enhancing the ease, with which the 
software can be used.  In the past, the FIR toolbox was 
designed around the classical Matlab programming 
interface.  When using FIR, the modeler had to write M-
functions, in which the various FIR modules were called 
one after the other.  Since FIR can be used in many different 
ways, the user interface was kept at a relatively low 
software level.  Consequently, FIR programs often 
consisted of hundreds of lines of Matlab code.  This 
approach was error prone, and consequently, users found it 
difficult to make use of the FIR methodology. 
 
In the research effort described in this paper, a new platform 
for the FIR methodology was designed and developed under 
the Matlab environment. The new tool, named Visual-FIR, 
allows the identification of dynamic systems models in a 
user-friendly form-driven environment. 
 
Experiences with the previous user interface have shown 
that many application programs vary relatively little one 
from another.  They differ in where they draw the data 
from, how many data files are being used as inputs, and 
how many output data points are to be predicted.  Hence it 
seemed reasonable to design a table-driven user interface 
that offers sufficient flexibility to be used in many different 
applications, yet protects the users from having to design 
and debug programs of their own. 
 
THE FIR METHODOLOGY 
 
The FIR methodology is composed of four main processes, 
namely: fuzzification (recoding), qualitative modeling 
(optimal mask search), qualitative simulation (prediction), 
and defuzzification (regeneration).  
 
Fuzzification  
FIR is fed with data measured from the system under study 
that are then converted to fuzzy information by means of the 
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recode function. The recode function converts quantitative 
values into qualitative triples, i.e., class, fuzzy membership, 
and side values. The class value represents a discretization 
of the original real-valued variable. The fuzzy membership 
value denotes the level of confidence expressed in the class 
value chosen to represent a particular quantitative value. 
Finally, the side value tells us whether the quantitative value 
is to the left, to the right, or in the center of the peak value 
of the membership function.  The side value, which is a 
peculiarity of the FIR methodology, since it is not 
commonly introduced in fuzzy logic, is responsible for 
preserving the complete knowledge in the qualitative triple 
that had been contained in the original quantitative data 
value. 
   
In order to convert quantitative values to qualitative triples, 
it is necessary to provide to the recode function the number 
of classes into which the definition domain of each variable 
is going to be divided, as well as the landmarks that separate 
neighboring classes from each other.  Once this information 
has been provided, the recode engine of FIR is capable of 
automatically fuzzifying the quantitative data values using 
either Gaussian or triangular fuzzy membership functions. 
 
Qualitative Modeling 
The optimal mask function of the FIR methodology is 
responsible for finding causal spatial and temporal relations 
between variables that offer the best likelihood for being 
able to predict the future system behavior from its own past, 
thereby obtaining the best model (called a mask in the FIR 
terminology) that represents the system. 
 
At this point, the continuous trajectory behavior recorded 
from the system has been converted to an episodical 
behavior (qualitative data) by means of the recode function. 
In the process of modeling, it is desired to discover causal 
relations among the variables that make the resulting state 
transition matrices as deterministic as possible. A mask 
represents a possible relation among the qualitative 
variables. Let us introduce the concept of a mask by means 
of a simple example composed of two inputs, u1 and u2, and 
one output, y. 
 

 u1 u2 y 
t-2δt -1 0 -2 
t-δt 0 -3 0 
t -4 0 +1 

 
Figure 1: Example of a FIR mask 

 
The negative elements in the matrix of figure 1 are referred 
to as m-inputs (mask inputs), which denote input arguments 
of the qualitative functional relationship. They can be either 
inputs or outputs of the system to be modeled, and they can 
have different time stamps. The above example contains 
four m-inputs. The sequence in which they are enumerated 

is immaterial. The single positive value denotes the m-
output, and the zero elements represent unused connections. 
In the above example, the first m-input corresponds to the 
input variable u1 two sampling intervals back, u1(t-2δt), 
whereas the second m-input refers to the output variable y 
two sampling intervals into the past, y(t-2δt), etc. 
 
A mask denotes a dynamic relationship among qualitative 
variables. It has a certain number of rows, the depth of the 
mask. It represents the temporal domain that can influence 
the output.  Each row is delayed relative to its successor by 
a time interval of δt representing the time lapse between two 
consecutive samplings. How is a mask found that, within 
the framework of all allowable masks, represents the most 
deterministic state transition matrix? This mask will 
optimize the predictiveness of the model.  In the FIR 
methodology, the concept of a mask candidate matrix has 
been introduced. A mask candidate matrix is an ensemble of 
all possible masks, from which the best is chosen by a 
mechanism of exhaustive search. Some other search 
strategies, such as genetic and classical search tree 
algorithms, have also been implemented.  
 
The optimal mask function searches through all legal masks 
of complexity two, i.e., all masks with a single m-input, and 
finds the best one; it then proceeds by searching through all 
legal masks of complexity three, i.e., all masks with two m-
inputs, and finds the best of those; and it continues in the 
same manner until the maximum complexity has been 
reached. In all practical examples, the quality of the masks 
will first grow with increasing complexity, then reach a 
maximum, and then decay rapidly. Each of the possible 
masks is compared to the others with respect to its potential 
merit. The optimality of the mask is evaluated with respect 
to the maximization of its forecasting power that is 
quantified by means of a quality measure, based mainly on 
the Shannon entropy. 
  
Qualitative Simulation 
Once the best model (mask) has been identified, it can be 
applied to the qualitative data matrices that were previously 
obtained in the recoding process, resulting in a pattern rule 
base that, in the FIR terminology, is called the behavior 
matrix.  Once the behavior matrix and the mask are 
available, a prediction of future output states of the system 
can take place using the FIR inference engine.  This process 
is called qualitative simulation. 
 
The FIR inference engine is based on a variant of the k-
nearest neighbor rule, i.e., the 5-NN pattern matching 
algorithm is the core of the FIR inferencing process. The 
forecast of the output variable is obtained by means of the 
composition of the potential conclusion that results from 
firing the five rules, whose antecedents best match the 
actual state. 
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Figure 2: Qualitative simulation process diagram 

 
The prediction procedure is presented in the diagram of 
figure 2 (with an example containing three inputs and one 
output). The mask is placed on top of the qualitative data 
matrix in such a way that the m-output matches with the 
first element to be predicted. The values of the m-inputs are 
read out from the mask, and the behavior matrix (pattern 
rule base) is used to determine the future value of the m-
output, which can then be copied back into the qualitative 
data matrix. The mask is then shifted further down by one 
position to predict the next output value. This process is 
repeated until all the desired values have been forecast. The 
qualitative simulation process predicts an entire qualitative 
triple from which a quantitative variable can be obtained 
whenever needed. The prediction process works as follows, 
the membership and side functions of the new input state 
(input pattern in figure 2) are compared with those of all 
previous recordings of the same input state contained in the 
behavior matrix. For this purpose, a normalization function 
is computed for every element of the new input state, and a 
distance formula is used to select the 5 nearest neighbors, 
the ones with the smallest distances, that are used to forecast 
the new output state. Several normalization and distance 
functions are available in the implementation of the FIR 
methodology. 
 
The contribution of each neighbor to the estimation of the 
prediction of the new output state is a function of its 
proximity. This is expressed by giving a distance-weight to 
each neighbor, as shown in figure 2. The new output state 
values can be computed as a weighted sum of the output 
states of the previously observed five nearest neighbors. 
 
Defuzzification 
Regeneration is the inverse function of recode. It converts 
qualitative triples into quantitative values. As has been 
mentioned earlier, no information is lost in the process of 
fuzzification. The qualitative triple contains exactly the 
same information as the original quantitative value, and it is 
thus possible to regenerate the quantitative value from the 
qualitative triple precisely. For a deeper insight of the FIR 
methodology, the reader is referred to [Cellier et al., 1996]. 

 
VISUAL FUZZY INDUCTIVE REASONING 
PLATFORM (Visual-FIR) 
 
In this section, the Visual-FIR platform is described by 
means of an application from biology, concerning shrimp 
farming. The goal is to identify growth models for 
occidental white shrimp (Penaeus vannamei) in semi-
intensive farming. A growth model is essential to 
predicting, how the shrimp will grow, and therefore, to plan 
the best seeding and harvesting strategies that will optimize 
the profit obtained. In this paper, data collected from a farm 
in Sinaloa (Mexico) during the summer rainy season is used 
to identify the FIR models and to validate them.  
 
The main screen of the new platform is invoked by means 
of the Visual-FIR command issued from within the Matlab 
environment. The four main processes of the FIR 
methodology, i.e. recode, optimal mask, prediction, and 
regeneration, described earlier, are then displayed as shown 
in figure 3.  
                  

 
 

Figure 3: Visual-FIR main screen 
 
The upper half of figure 3 represents the model 
identification phase, whereas the lower half corresponds to 
the prediction phase, during which the model that had 
previously been identified is used to estimate the future 
behavior of the system. 
 
Model identification phase 
In order to identify the best model from the recorded data, 
the following steps need to be performed sequentially: 
configuration of the parameters, loading of the training 
data, recoding the data, and identification of the optimal 
mask. Each of these steps corresponds to a specific button 
in the main screen that is enabled sequentially following the 
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course of the events. Once all these steps have been 
completed, the full FIR model composed of the optimal 
mask matrix and the pattern rule base can be displayed 
pushing the model button.  
 

 
 

Figure 4: Training data screen 
 
Parameter setting: When the parameters button is pushed, a 
screen with a set of 12 global parameters is displayed. All of 
the parameters can be modified, thereby enabling different 
execution options of the FIR methodology, e.g. Gaussian vs. 
triangular shaped membership functions, proximity vs. 
similarity confidence measure, different prediction distance 
measures and weight equations, different ways to compute 
the quality of the mask, different optimal mask search 
algorithms, etc. There is also a miss_data parameter that 
allows the user to indicate the presence of missing data in 
the set of available records. Visual-FIR is able to deal with 
data that contains missing elements effectively and 
efficiently. All parameters have associated default values 
that allow non-expert users to proceed without changing 
any of them. Notice that the parameters will be accessible 
from all screens, yet, only those parameters will be enabled 
at any one time that are related to the stage of the modeling 
and simulation life cycle, in which the parameters button 
has been activated. 
 
Training data: Before starting with the model identification 
phase, the training data set(s) need(s) to be loaded. This step 
is accomplished by using the training button. The data-
loading screen presented in figure 4 is then displayed. 
Initially, the only options enabled are the loading of the 
training data file (input file button) and change the name of 
the output file. In the shrimp farming application, the file 
“dadesTest1_15.mat” contains the complete set of training 
data. Seven variables are loaded from that file, i.e., Density 
(shrimp/m²), Feed (%), Oxygen (ppm), Salinity (ppt), 
Temperature (°C), Visibility (cm), and Weight (kg). The 
user selects the input and output variables that are then 

displayed at the right-top boxes of the screen. In this case, 
the input variables are density, feed, oxygen, salinity, 
temperature and visibility, whereas the output variable is the 
weight of the shrimp. 
 
Once the input and output variables have been defined, they 
can be plotted, one by one, in the central graph of the 
training data screen.  In the figure, the output variable is 
displayed.  18 separate growth periods were used for 
training.  They are presented to FIR as a single data stream 
with missing data blocks separating the individual growth 
periods.  Before exiting, the data need to be saved using the 
save file button.  
 

 
 

Figure 5: Recode screen 
 
Recode: The data is now ready to be fuzzified (converted 
from quantitative to qualitative data). The fuzzification box 
is displayed when the user pushes the recode button in the 
Visual-FIR main screen. Figure 5 presents the configuration 
of the new screen. The first thing to be done is load the data 
that has been saved in the previous step. In order to do so, 
the read button needs to be pressed. The list of all the 
variables (inputs and output) is then displayed in the left 
half of the screen. All of these variables have associated, by 
default, three classes and the equal frequency interval 
(EQ_FREQ) discretization algorithm. However, a large 
number of discretization (clustering) algorithms, both 
hierarchical and non-hierarchical, are offered to the user as 
shown in the right half of the screen. When an algorithm is 
selected, the parameters required by that algorithm are 
enabled in the parameters box. In figure 5, the equal 
frequency interval algorithm is selected. This algorithm 
permits only a single parameter, namely that determining 
the number of classes, to be changed by the user. 
 
Each system variable listed on the left hand side of the 
recode data screen can be discretized separately, using any 
of the clustering algorithms listed on the right hand side of 
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the screen, allowing an ad hoc discretization of each 
variable. The construction of datagrams and dendograms are 
options offered to the user in order to facilitate the process. 
Once all the variables have their own clustering strategy 
defined, the generate output button computes the number of 
classes and its corresponding landmarks (borders between 
neighboring classes), information that is needed by the 
recode function. Then, the recode button performs the 
conversion of the quantitative data into qualitative triples, 
generating the class, membership, and side value for each of 
the quantitative data entries in the training data set. The 
screen can then be closed using the quit option. For the 
application at hand, the default values have been used in the 
recode process.  
 
Optimal mask: Once the data has been recoded, the 
qualitative modeling process (optimal mask search) can take 
place. This is accomplished by pushing the optimal mask 
button on the main screen. The screen displayed in figure 6 
is then shown. 
 

 
 

Figure 6: Optimal mask screen 
 
As described previously, the optimal mask search starts 
from the definition of a mask candidate matrix. In this 
screen, the maximum complexity of the mask and the mask 
depth need to be set, in order for Visual-FIR to be able to 
generate a mask candidate matrix. A complexity of 5 and a 
depth of 3 are the values chosen by default. Once these 
parameters have been set, the mask candidate matrix is 
displayed (as can be seen in figure 6). Forbidden 
connections (zero values) can be introduced to the mask 
candidate matrix in suitable places. Once the mask 
candidate matrix is ready, the mask search starts by pressing 
the mask search button. The exhaustive search is the 
default algorithm used; however, more efficient algorithms 
(such as genetic algorithms or decision trees) can be chosen 

using the parameters screen, if the estimated computational 
time (see figure 6) is larger than desired.  
 
Once the optimal mask search process has been completed, 
the list of the best masks found for each complexity together 
with their quality measures is presented in the lower part of 
the screen. The user can then delete unsuitable sub-optimal 
masks by pushing the delete from the list button. There is 
also available the option to compute the quality of any mask 
by introducing it in the “mask” box and pressing the 
computation button. Once the mask that the user wants to 
explore as part of the system model is selected, the save 
mask button needs to be used. At this moment, the mask is 
used to extract the pattern rule base from the recoded 
training data. The mask selected plus the pattern rule base 
(behavior matrix) compose the FIR model of the system. To 
quit the optimal mask search screen, the quit button is 
available. In the current application, the mask selected by 
the user is the sub-optimal mask of complexity 3 with two 
m-inputs, w(t-δt) and Te(t), and with an associated quality 
measure of 0.782. 
 
Prediction phase 
Once the FIR model is available, the user can proceed to its 
validation by using the model to predict a test data set. Once 
the model is validated, it can be used to predict the future 
behavior of the system. The prediction phase is composed 
of four steps using Visual-FIR’s main screen (see figure 3), 
i.e., loading the test data, prediction of the system behavior, 
data regeneration, and result visualization. 
 
Test data: In order to load the test data, the test button needs 
to be pressed. The same screen presented in the training 
data step is then displayed (see figure 4). Now, the input 
variables and output variable are selected automatically 
following the selection that the user had made for the 
training data set. The functioning of this screen is exactly 
the same as explained earlier in the training data step; 
however, when the save file button is pushed, the test data is 
discretized using the same parameters as defined in the 
recode process.  
 
Prediction: Once the qualitative test data is available, the 
prediction can take place. To this end, the prediction button 
of the main screen must be pushed. The forecasting 
algorithm described in the previous section is then executed 
using the options selected in the global parameters window.  
 
Regeneration: The next step on the Visual-FIR main screen 
is the regeneration of the predicted test data. This is 
accomplished by pressing the regeneration button of the 
main screen of figure 3. Figure 7 is then displayed, and the 
defuzzification (inverse process of fuzzification) is 
computed, when the regenerate button of this screen is 
pushed. The user can exit the screen using the quit button. 
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The last thing to be done is visualize the results. This is 
done in the next step. 
 

 
 

Figure 7: Regeneration screen  
 

 
 

Figure 8: Visualization screen 
 
Result visualization: At this point all of the prediction and 
regeneration processes have been completed, and therefore, 
the user can visualize the results and check the error 
obtained when using the FIR model for forecasting future 
behavior of the system. To this end, the visualization button 
on the Visual-FIR main screen needs to be pushed. The 
visualization screen presented in figure 8 is then displayed. 
As can be seen from figure 8, the user can visualize the real 
output signal, the predicted signal and the difference 
between the two signals. Each time the user pushes one of 
these options, the corresponding signal is added to the 
display area. If needed, the overall plot can be deleted using 
the delete button. The mean square error (mse) in 
percentages computed between the real and the predicted 
values is also shown. For the application at hand, the real 
(continuous) and predicted (dashed) weight signals are 
displayed. The mse error obtained with the FIR model is 

2.897%, an excellent result if compared with the 20% 
obtained for the same problem with classical statistical 
techniques [Carvajal and Nebot, 1998]. 
 
CONCLUSIONS 
 
In this paper, the Visual-FIR platform has been presented. 
This new tool offers access to the Fuzzy Inductive 
Reasoning methodology in an effective and user-friendly 
manner. The FIR methodology offers a model-based 
approach to predicting dynamical systems with very good 
results when applied to soft sciences applications. Visual-
FIR has the advantage, in comparison with previous FIR 
implementations, that no code needs to be developed for 
each new application studied. Visual-FIR offers a table-
driven environment that provides an intuitive and easy-to-
use access to the FIR methodology.  Clearly, a price has to 
be paid for this enhanced user comfort.  A table-driven user 
interface can never offer the complete flexibility of a 
programming interface. Yet, the Visual-FIR platform should 
be flexible enough for most applications.  It is hoped that 
the new interface will open up the FIR methodology to new 
users, as it makes it much easier to apply the methodology 
to new applications, and as it makes it much faster to try out 
different algorithms on one and the same application, 
something that hitherto always required a substantial 
amount of reprogramming. 
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