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Abstract. The feasibility of mixed quantitative and qualitative simulation is demonstrated by means
of a simple hydraulic control system. The mechanical and electrical parts of the control system are
modeled using differential equations, whereas the hydraulic part is modeled using fuzzy inductive
reasoning. The mixed quantitative and qualitative model is simulated in ACSL, and the simulation
results are compared with those obtained from a fully quantitative model. The example was chosen as
a simple to describe, yet numerically demanding process whose sole purpose is to prove the concept.
Several practical applications of this mixed modeling technique are mentioned in the paper, but their

realization has not yet been completed.

Keywords. Modeling; simulation; mixed quantitative and qualitative models; inductive reasoning;
forecasting theory; fuzzy systems; learning systems; artificial intelligence.

INTRODUCTION

Qualitative simulation has recently become a fashionable
branch of research in artificial intelligence. Human rea-
soning has been understood as a process of mental simu-
lation, and qualitative simulation has been introduced as
an attempt to replicate, in the computer, facets of human
reasoning.

Qualitative simulation can be defined as evaluating the
behavior of a system in qualitative terms (Cellier, 1991b).
To this end, the states that the system can be in are lumped
together to a finite (discrete) set. For example, instead of
dealing with temperature as a real-valued quantity with
values such as 22.0°C, or 71.6°F, or 295.15 K, qualitative
temperature values may be characterized as ‘cold,’ ‘warm,’
or ‘hot.’

Qualitative variables are variables that assume qualita-
tive values. Variables of a dynamical system are functions
of time. The behavior of 2 dynamical system is a descrip-
tion of the values of its variables over time. The behavior
of quantitative variables is usually referred to as trajectory
behavior, whereas the behavior of qualitative variables is
commonly referred to as episodical behavior. Qualitative
simulation can thus be defined as the process of inferring
the episodical behavior of a qualitative dynamical system
or model.

Qualitative variables are frequently interpreted as an
ordered set without distance measure (Babbie, 1989). It is
correct that ‘warm’ is “larger” (warmer) than ‘cold,’ and
that ‘hot’ is “larger” (warmer) than ‘warm.’ Yet, it is not
true that

‘warm' ~ ‘cold’ = ‘hot’ — ‘warm’ (1)

or, even more absurd, that
‘hot’ = 2  ‘warm’ — ‘cold’ (2)

No ‘—’ operator is defined for qualitative variables.

Time, in a qualitative simulation, is also frequently
treated as a qualitative variable. It is then possible to
determine whether one event happens before or after an-
other event, but it is not possible to specify when precisely
a particular event takes place.

The most widely advocated among the qualitative sim-
ulation techniques are the knowledge-based approaches
that were originally derived from the Naive Physics Mani-
festo (Hayes, 1979). Several dialects of these types of qual-
itative models exist (de Kleer and Brown, 1984; Forbus,
1984; Kuipers, 1986). They are best summarized in (Bo-
brow, 1985).

The purpose of most qualitative simulation attempts is
to enumerate, in qualitative terms, all possible episodical
behaviors of a given system under all feasible experimental
conditions. This is in direct contrast to quantitative sim-
ulations that usually content themselves with generating
one single trajectory behavior of a given system under one
single set of experimental conditions.

MIXED MODELS

In the light of what has been explained above, it seems ques-
tionable whether mixed quantitative and qualitative models
are feasible at all. How should a mixed quantitative and
qualitative simulation deal with the fact that the quan-
titative subsystems treat the independent variable, time,
as a quantitative variable, whereas the qualitative subsys-
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tems treat the same variable qualitatively? When does a
particular qualitative event occur in terms of quantitative
time? How are the explicit experimental conditions that
are needed by the quantitative subsystems accounted for in
the gualitative subsystems?

Quiie obviously, a number of incompatibility issues ex-
ist between quantitative and qualitative subsystems that
must be settled before mixed simulations can be attempted.
In a mixed simulation, also the qualitative subsystems must
treat time as a quantitative variable. Furthermore, the pur-
pose of qualitative models in the context of mixed simula-
tions is revised. It is no longer their aim to enumerate
episodical behaviors. Instead, also the qualitative models
are now used to determine a single episodical behavior in
response to a single set of qualitative experimental condi-
tions.

Do so revised qualitative models make sense? It is cer-
tainly illegitimate to request that, because human pilots
are unable to solve Riccati equations in their heads to de-
termine an optimal flight path, autopilots shouldn’t tackle
this problem either. It is not sufficient to justify the exis-
tence of qualitative models by human inadequacies to deal
with quantitative information.

Two good reasons for dealing with information in qual-
itative ways are the fsllowing:

1. Guantitative details about a (sub)system may not be
available. For example, while the mechanical properties
of a human heart are well understood and can casily be
described by differential equation models, the effects of

many chemical substances on the behavior of the heart
are poorly understood and cannot easily be quantified.
A mixed model could be used to describe those por-
tions of the overall system that are well understood by
quantitative differential equation models, while other
aspects that are less well understood may still be rep-
resentable in qualitative terms.

2. Quantitative details may limit the robustness of a
(sub)system to react to previously unknown experimen-
tal conditions. For example, while a human pilot is
unable to compute an optimal flight path, he or she
can control the airplane in a much more robust fashion
than any of today’'s autopilots. Optimality in behavior
can be traded for robustness. A fuzzy controller is an
example of a qualitative subsystem that is designed to
deal with a larger class of experimental conditions in
suboptimal ways.

Mixed quantitative and qualitative models may be used. to
address either or both of the above applications. However,
in order to do so, it is necessary to devise qualitative mod-
eling and simulation capabilities that are compatible with
their quantitative counterparts and that can be used to
represent qualitative subsystems as those mentioned above
appropriately and in terms of knowledge available to the
system designer at the time of modeling.

It is the purpose of this paper to describe one such
mixed modeling and simulation methodology. In the advo-
cated approach, the qualitative subsystems are represented
(modeled) by a special class of finite state machines called
fuzzy optimal masks, and their episodical behavior is in-
ferred (simulated) by a technique called fuzzy forecasting.
The overall process of qualitative modeling and simulation
is referred to as fuzzy inductive reasoning.

FUZZY RECODING

Recoding denotes the process of converting a quantitative
variable to a qualitative variable. In general, some infor-
mation is lost in the process of recoding. Obviously, a tem-
perature value of 97°F contains more information than the
value ‘hot.’ Fuzzy recoding avoids this problem. Figure 1
shows the fuzzy recoding of a variable called “systolic blood
pressure.”.
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Figure 1. Fuzzy recoding.

For example, a quantitative systolic blood pressure of 135.0
is recoded into a qualitative value of ‘normal’ with a fuzzy
membership function of 0.895 and a side function of ‘right.’
Thus, a single quantitative value is recoded into a triple.
Any systolic blood pressure with a quantitative value be-
tween 100.0 and 150.0 will be recoded into the qualitative
value ‘normal.” The fuzzy membership function denotes
the value of the bell-shaped curve shown on Fig.1, always
a value between 0.5 and 1.0, and the side function indicates
whether the quantitative value is to the left or to the right
of the maximum of the fuzzy membership function. Obvi-
ously, the qualitative triple contains the same information
as the original quantitative variable. The quantitative value
can be regenerated accurately from the qualitative triple,
i.e., without any loss of information.

Due to space limitations, details of how quantitative
variables are optimally recoded into qualitative triples will
not be given in this paper. These details are provided in
(Li and Cellier, 1990; Cellier, 1991a).

FUZZY OPTIMAL MASKS

A mask denotes relationship between different variables.
For example, given the followihg raw data model consist-
ing of five variables, namely the inputs u, and uz and the
outputs ¥y, y3, and y;3 that are recorded at different values
of time. :

time Yy U2 Y1 Y3 Ys

0.0

113

2.8t

3.6t &)

(e — 1) - 8¢

Each column of the raw data model contains one qualitative
variable recorded at different values of time, and each row
contains the recordings of all qualitative variables at one
point in time. The raw data matrix is accompanied by a
fuzzy membership matrix and a side matrix of the same
dimensions.

A mask denotes a relationship between these variables.
For example, the mask

\* w U Y1 Y2 Vs
t~2tf 0 0 0 0 -1
t -6t 0 -2 -3 0 0 (4)
t (—4 0 +1 0 0

denotes the following relationship pertaining to the five
variable system

30(8) = E(salt - 266), 1t — Bt (- 88), () (5)

Negative elements in the mask matrix denote inputs of the
qualitative functional relationship. The example mask has
four inputs. The sequence in which they are enumerated
is immaterial. They ‘are usually enumerated from left to
right and top to bottom. A positive element in the mask
matrix denotes the output. Thus, Eq.(4) is simply a matrix



representation of Eq.(5). The mask must have the same
number of columns as the raw data matrix. The number
of rows of the mask matrix is called the depth of the mask.
The mask can be used to flatten a dynamic relationship
out into a static relationship. The mask can be shifted over
the episodical behavior. Selected inputs and outputs can
be read out from the raw data matrix and can be written
on one row next to each other. Figure 2 illustrates this
process.
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Figure 2. Flattening dynamic relationships through masking.

After the mask has been applied to the raw data, the for-
merly dynamic episodical behavior has become static, i.e.,
the relationship is now contained within a single row

o1(t) = £(ia (1), ia(t), ia(t), ia(t)) (6)

The resulting matrix is called input/output matriz.
How is the mask selected? A mask candidate matriz
is constructed in which negative elements denote potential
inputs, and the single positive element denotes the true

output of the mask. A good mask candidate matrix for the
previously mentioned five variable system might be

\* W U2 Y1 Y2 Y3
t-26t (-1 -1 -1 -1 -1
t - 4t -1 -1 -1 -1 -1 ()
t -1 -1 +1 0 0

A mask candidate matrix is an ensemble of all acceptable
masks. The optimal mask selection algorithm determines
the best among all masks that are compatible with the mask
candidate matrix. The mask of Eq.(4) is one such mask.
The optimal mask is the one mask that maximizes the fore-
casting power of the inductive reasoning process, i.e., the
mask that results in the most deterministic input/output
matrix.

Due to space limitations, the details of how the opti-
mal mask selection algorithm works are omitted from this
paper. These details are also provided in (Li and Cellier,
1990; Cellier, 1991a).

FUZZY FORECASTING

Once the optimal mask has been determined, it can be ap-
plied to the given raw daia matrix resulting in a particular
input/output matrix. Since the input/output matrix con-
tains functional relationships within single rows, the rows
of the input/output matrix can now be sorted in alphanu-
merical order. The result of this operation is called the
behavior matriz of this system. The behavior matrix is a
finite state machine. For each combination of input values,
it shows which output is most likely to be observed.

Forecasting is now a straightforward procedure. The
mask is simply shifted further down beyond the end of the
raw data matrix, future inputs are read out from the mask,
and the behavior matrix is used to determine the future
output, which can then be copied back into the raw data
matrix. In fuzzy forecasting, it is essential that, together
with the qualitative output, also a fuzzy membership value

and a side value are forecast. Thus, fuzzy forecasting pre-
dicts an entire qualitative triple from which a quantitative
variable can be regenerated whenever needed.

In fuzzy forecasting, the membership and side functions
of the new input are compared with those of all previous
recordings of the same qualitative input contained in the
behavior matrix. The one input with the most similar mem-
bership and side functions is identified. For this purpose, a
cheap approximation of the regenerated quantitative signal

d =1+ side x (1 — Memb) (8)

is computed for every input variable of the new input set,
and the regenerated d; values are stored in a vector. This
reconstruction is then repeated for all previous recordings of
the same input set. Finally, the £2 norms of the difference
between the d vector of the new input and the d vectors of
all previous recordings of the same input are computed, and
the previous recording with the smallest £; norm is iden-
tified. Its output and side values are then used as forecasts
for the output and side values of the current state.

Forecasting of the new membership function is done a
little differently. Here, the five previous recordings with the
smallest £ norms are used (if at least five such recordings
are found in the behavior matrix), and a distance-weighted
average of their fuzzy membership functions is computed
and used as the forecast for the fuzzy membership function
of the current state.

More details of fuzzy forecasting are provided in (Cel-
lier, 1991a).

AN EXAMPLE

In the remainder of this paper, an example will be presented
that demonstrates, for the first time, the process of mixed
quantitative and qualitative simulation using fuzzy induc-
tive reasoning. The example was chosen simple enough to
be presented in full, yet complex enough to demonstrate the
generality and validity of the approach. However, it is not
suggested that the chosen example represents a meaningful
application of mixed quantitative and qualitative simula-
tion. The example was chosen to prove the concept and to
clearly illustrate the procedure, not as a realistic applica-
tion of the proposed technique.

Figure 3 shows a hydraulic motor with a four-way servo
valve.

Po Py Po
Servo- VJTE(—,MﬁI -
valve qu qllj’u qa' — x
| !
g

/

= .

!
Hydraulic| Py
Motor_1
s
(—
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Figure 3. Hydraulic motor with a four—way servo valve.

The flows from the high-pressure line into the servo valve
and from the servo valve back into the low—pressure line
are turbulent. Consequently, the relation between flow and
pressure is quadratic

@ = k(2o +2)VPs —p1 (9a)
g = k(zo —z)v/p1 — Fo (98)
g2 = k(zo + 2)v/p2 — Po (9¢)
9 = k(zo —z)v/Ps — p2 (94)
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The change in the chamber pressures is proportional to the
effective flows in the two chambers

1 = ea(Qr1 = & — do1 — Gind) (10a)
P31 = c1(Gina + % — €ez — Gz2) (108)

where the internal leakage fiow, g;, and the external leakage
flows, g.; and ge3, can be computed as '

¢ =c¢ - pr=c(ph—Pa) (11a)
gr =Ce Py (118)
de3 = Ce " P2 (llc)

The induced voltage, gind, is proportional to the angular
velocity of the hydraulic motor, wp,

Gind =¥ - Wm (12)

and the torque produced by the hydraulic motor is propor-
tional to the load pressure, pr

Tm='/"PL=¢(P1_p?) (13)

The hydraulic motor is embedded in the control circuitry
shown on Fig.4

L >
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Figure 4. Hydraulic motor position control ciruit.

An ACSL program (MGA, 1985) was written that simulates
the control system over 2.5 seconds. A binary random input
signal was applied to the input of the system, 6,.;, and the
values of the the control signal, u, the angular velocity,
wm = Oy, and the torque, Ty, of the hydraulic motor were
recorded for later reuse.

For demonstration purposes, it is now assumed that no
knowledge exists that would permit a description of the hy-
draulic equations by means of a differential equation model.
All that is known is that the mechanical torque, Tjn, of the
hydraulic motor somehow depends on the control signal, u,
and the angular velocity, wy,.

In a mixed quantitative and qualitative simulation, the
mechanical and electrical parts of the control system will be
represented by differential equation models, whereas the hy-
draulic part will be represented by a fuzzy inductive reason-
ing model. The mixed simulation results will be compared
with the previously obtained purely quantitative simulation
results for validation purposes.

Optimal recoding would suggest that the three van-
ables v, wn,, and T}, be sampled once every 0.025 seconds
if a mask depth of 3 is chosen. This value is deduced from
the slowest time constant (eigenvalue of the Jacobian) to
be covered by the mask. A more detailed explanation is
provided in (Li and Cellier, 1990; Cellier, 1991a). Unfor-
tunately, fuzzy inductive forecasting will predict only one
value of T,; per sampling interval. Thus, the overall con-
trol system will react like a sampled—data control system
with a sampling rate of 0.025. Thereby, the stability of the
control system is lost. From a control system perspective,
it is necessary to sample the variables considerably faster,
namely once every 0.0025 seconds.
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Therefore, it was decided to choose the following mask
candidate matrix

‘\: u Wm Tm
t—206t /-1 -1 -1
t—19ty 0 0 O
t— 116t 0 0 0
£-108t| -1 —1 -1 (14)
t - 96t 0 o0 -0

t -t 0 0 0
t -1 -1 +1

of depth 21. As mandated by control theory, the sampling
interval 6t is chosen to be 0.0025 seconds. Yet, as dic-
tated by the inductive reasoning technique, the mechanical
torque, Ty, at time ¢ will depend on past values of u, wp,,
and Ty, at times ¢ — 0.025 and ¢ — 0.05.

The optimal mask found with this mask candidate ma-
trix is

\" U Wy Tm
t — 206t 0o -1 -2
t — 196t 0 0 0
t — 114t 0 0 0
t—106tel o o o (15)
1 -~ 96t 0 0 0
t— &8t 0 0 Q
t -3 0 +1
In other words
Tn(t) = f(wm(t — 0.05), T (t — 0.05), u(t)) (16)

The first 900 rows of the raw data matrix were used as
past history data to compute the optimal mask. Fuzzy
forecasting was used to predict new gualitative triples for
T, for the last 100 rows of the raw data matrix. From
the predicted qualitative triples, quantitative values were
then regenerated. Figure 5 compares the true “measured”
values of T,, obtained from the purely quantitative simu-
lation (solid line) with the forecast and regenerated values
obtained from fuzzy inductive reasoning (dashed line).

Simulated and Forecast Behavior Compared

Torque [Nm}

.28 2.30 2.3% 2.40 2.45 2.%0
Time [sec])

Figure 5. Simulated and forecast torque trajectories compared.

The results are encouraging. Quite obviously, the optimal
mask contains sufficient information about the behavior of
the hydraulic subsystem to be used as a valid replacement
of the true quantitative differential equation model. Notice
that the fuzzy inductive reasoning model was constructed
solely on the basis of measurement data. No insight into
the functioning of the hydraulic subsystem was required
other than the knowledge that the torque, Tr,, dynamically
depends on the control signal, u, and the angular velocity,
W

In a mixed quantitative and qualitative simulation, the
fuzzy inductive reasoning model was then used to replace
the former differential equation model of the hydraulic sub-
system while the electrical and mechanical subsystems were
described using differential equations as before. The mixed
model is shown on Fig.6.
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Figure 6. Mixed model of the hydraulic system.

The quantitative control signal, u, is converted to a qualita-
tive triple, ©*, using fuzzy recoding. Also the quantitative
angular velocity, wm, of the hydraulic motor is converted
to a qualitative triple, w},. From these two qualitative sig-
nals, a qualitative triple of the torque of the hydraulic mo-
tor, I, is computed by means of fuzzy forecasting. This
qualitative signal is then converted back to a quantitative
signal, T}y, using fuzzy signal regeneration. The mechanical
parts of the hydraulic motor are simulated by means of a
differential equation model. The same holds true for the
measurement dynamics.

Forecasting was restricted to the last 100 sampling in-
tervals, i.e., to the time span from 2.25 seconds to 2.5 sec-
onds. Figure 7 compares the angular position, 6,,, of the
hydraulic motor from the purely quantitative simulation
(solid line) with that of the mixed quantitative and quali-
tative simulation (dashed line).

Hydraulic System
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Figure 7. Comparison of quantitative and mixed simulations.

As was to be expected, the mixed model behaves like a
sampled—data control system. The mixed simulation ex-
hibits an oscillation amplitude that is slightly larger and
an oscillation frequency that is slightly smaller than those
shown by the purely quantitative simulation. Surprisingly,
the damping of the mixed model is slightly larger than that
of the purely quantitative model.

CONCLUSIONS

The example demonstrates the validity of the chosen ap-
proach. Mixed simulations are similar in effect to sampled—
data system simulations. Fuzzy recoding takes the place of
analog—to—digital converters, and fuzzy signal regeneration
takes the place of digital-to—analog converters. However,
this is where the similarity ends. Sampled-data systems
operate on a fairly accurate representation of the digital
signals. Typical converters are 12-bit converters, corre-
sponding to discretized signals with 4096 discrete levels. In
contrast, the fuzzy inductive reasoning model employed in
the above example recoded all three variables into qualita-
tive variables with the three levels ‘small,” ‘medium,’ and
‘large.” The quantitative information is retained in the
fuzzy membership functions that accompany the qualita-
tive signals. Due to the small number of discrete levels, the
resulting finite state machine is extremely simple. Fuzzy
membership forecasting has been shown to be very effec-

tive in inferring quantitative information about the system
under investigation in qualitative terms.

Due to the space limitations inherent in a publication
in conference proceedings it was not possible to provide,
in this paper, any details of the programs used for sim-
ulation. Fuzzy inductive reasoning is accomplished using
SAPS-II (Cellier, 1987), a software that evolved from the
General System Problem Solving (GSPS) framework {Klir,
1985, 1989; Uyttenhove, 1979). SAPS-II is implemented as
a (FORTRAN-coded) function library of CTRL-C (SCT,
1985). A subset of the SAPS-II modules, namely the recod-
ing, forecasting, and regeneration modules have also been
made available as an application library of ACSL (MGA,
1986), which is the software used in the mixed quantitative.
and qualitative simulation runs. More details will be pro-
vided in an enhanced version of this paper that is currently -
being prepared for submission to a journal.
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