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The analysis of the human cardiovascular system by means of modeling and simulation method-
ologies is of relevance from a medical point of view because it allows doctors to acquire a better
understanding of cardiovascular physiology, offer more accurate diagnostics, and select better suited
therapies. The cardiovascular system is composed of the hemodynamical system and the central ner-
vous system (CNS). In this work, two generic models of the CNS for patients with coronary diseases
are identified by means of the fuzzy inductive reasoning (FIR) methodology. One of the models is
generic only in its structure, whereas the other one is a fully generic model. It is very useful for doctors
to have available a generic CNS model for a group of patients with common characteristics because
this model can be used to predict the future behavior of new patients with the same characteristics.
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1. Introduction

The human cardiovascular system consists of two parts,
the hemodynamical system and the central nervous system
(CNS). The hemodynamical system operates essentially
like a hydro-mechanical pump, and consequently, its struc-
ture and functioning are well understood. This is why a

|
|
|
|

SIMULATION, Vol. 79, Issue 11, November 2003 648-669
©2003 The Society for Modeling and Simulation International

DOI: 10.1177/0037549703038883

considerable number of accurate quantitative hemodynam-
ical system models can be found in the open literature [1-4].
The central nervous system is in charge of controlling the
hemodynamical system. In contrast to the hemodynamical
system, the functioning of the CNS is of high complexity,
and the structural mechanisms responsible for the control
actions are not very well known. The analysis of the regu-
lation done by the CNS controllers to the hemodynamical
system and its application to patients with coronary dis-
eases are of high importance for the diagnosis and selection
of better suited therapies.
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Fuzzy inductive reasoning (FIR), a qualitative method-
ology based on fuzzy logic, is chosen in this article as the
modeling and simulation tool for dealing with the CNS.
Previous studies have demonstrated that the FIR method-
ology is capable of capturing the dynamic behavior of the
CNS control for a specific patient [5, 6]. In these publica-
tions, it was shown that the FIR models synthesized were
more robust and accurate than the models obtained using
NARMAX and neural network (NN) inductive approaches.
However, these models were obtained and validated using
data from a single patient, and therefore, a deep study (with
more patients) is required to confirm these preliminary
results.

The main goal of this research is the identification of
generic models of the CNS for a set of patients with similar
characteristics. By generic models, we mean models that
are not useful for a single patient but useful for a group
of patients with common characteristics. In this way, the
generic models can be used to predict the behavior of new
patients who belong to that specific group.

An important effort is spent on the validation process
of the generic CNS models. On one hand, the generic CNS
models obtained are validated in an open loop using test
data sets not used in the identification process. On the other
hand, the cardiovascular system is simulated as a whole
(closed loop) to prove that the generic CNS models ob-
tained perform an accurate control to the hemodynamical
system of specific patients.

To this end, two particular tasks were established. The
first one is to infer a generic model of the CNS control for
the set of available patients. Two different approaches were
considered. On one hand, a generic-structure FIR model
is obtained by choosing the structure of the single-patient
model that performs best from a prediction point of view.
In this case, the structure of the model (called mask in FIR
nomenclature) is one and the same for all patients and is the
basis of the generic model, whereas the rule base (called
behavior matrix in FIR nomenclature) is specific for each
patient. The idea behind this approach is derived from the
common generalization strategy carried out by paramet-
ric modeling methodologies (i.e., NARMAX) [7]. In this
case, the structure of the NARMAX models (the linear and
nonlinear terms) are the same, but their parameters are spe-
cific for each patient. On the other hand, a fully generic FIR
model is inferred from all the data obtained from the dif-
ferent patients. Both types of generic models inferred are
validated and compared from a prediction accuracy point
of view.

The second objective of the study consists of closing
the loop between the hemodynamical system, modeled by
means of differential equations (quantitative model), and
the CNS control, modeled in terms of the FIR methodol-
ogy (qualitative model). The mixed quantitative/qualitative
generic model of the cardiovascular system is vali-
dated using real physiological data obtained from cardiac
catheterization.

2. The Cardiovascular System

As mentioned previously, the cardiovascular system is
composed of the hemodynamical and the central nervous
system (CNS) subsystems. Figure 1 shows a schematic di-
agram of the cardiovascular system. The cardiovascular
system is a dynamic complex system in which several ac-
tions must be considered: ventricle filling in and emptying
out, blood flow through the entire organism, control actions
made by the central nervous system, and the interaction of
the cardiovascular system with other body systems.

The main task of the hemodynamical system is to ensure
the continuous flow of blood in the human body to carry
the oxygen and the necessary metabolic substances to the
tissues, as well as to eliminate the oxidation products. The
main task of the central nervous system is to control the
hemodynamical system by generating the regulating sig-
nals for the blood vessels and the heart. These signals are
transmitted through the sympathetic and parasympathetic
nerves, producing stimuli in the corresponding organs and
other body parts.

As shown in Figure 1, the CNS is considered to be com-
posed of five controllers: heart rate, myocardiac contrac-
tility, peripheric resistance, venous tone, and coronary re-
sistance. All of them are single-input/single-output (SISO)
models driven by the same input variable, namely, the
carotid sinus pressure.

The hemodynamical system has been widely studied,
and its mechanisms are in compliance with the laws of
fluid mechanics. The acquired knowledge of the structure
and functioning of the hemodynamical system has allowed
the development of fairly accurate quantitative models [1–
3, 8]. These are based on models of the arterial, vein,
and cardiac systems. One of the most detailed quantitative
hemodynamical models was developed by Vallverdú and
is reported in Vallverdú, Crexells, and Caminal [4]. In this
model, the heart is composed of four chambers, modeled
from the relations between pressure, volume, and elasticity
variables.

Vallverdú’s quantitative hemodynamical model [4] has
been adopted in this study since it offers a fairly high degree
of internal validity. The model is described through a set
of highly nonlinear ordinary differential equations.

The functioning of the central nervous system is not
fully understood, and because of that, many of the cardio-
vascular system models developed so far have been de-
signed without taking into account the effects of CNS con-
trol. Quantitative models for each of the hypothesized con-
trol mechanisms have been postulated by various authors
[9–11]. However, these models offer a considerably lower
degree of internal validity in comparison with the models
used to describe the hemodynamical system.

The use of inductive modeling techniques (e.g., FIR
methodology), with flexibility for properly reflecting the
input/output behavior of a system, offers an attractive al-
ternative to the differential equation models [5, 6]. Further-
more, FIR offers a self-assessment capability that makes
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Figure 1. Simplified diagram of the cardiovascular system model

these models more robust than the differential equation
models.

The identification and validation data used in the present
research are the same set of signals used in Vallverdú [7],
where a NARMAX model of the cardiovascular system
was identified and validated. These data sets were obtained
from the simulation of a differential equation model of
the central nervous system that represents an enhancement
of many individual previous research efforts described by
various authors [1–4, 8] and is therefore one of the most
complete deductive CNS descriptions currently available.
The differential equation model has been tuned to represent
five specific patients suffering from different percentages
of coronary arterial obstruction by making the four differ-
ent physiological variables—right auricular pressure, aor-
tic pressure, coronary blood flow, and heart rate—of the
simulation model agree with the measurement data taken
from each patient.

3. Fuzzy Inductive Reasoning Methodology

In this section, an overview of the fuzzy inductive reason-
ing methodology is presented. A deep explanation of the
methodology is presented in the appendix. FIR is based
on the general system problem solver (GSPS) [12], a tool

for general system analysis that allows one to study the
conceptual modes of behavior of dynamical systems. FIR
is a data-driven methodology based on systems behavior
rather than structural knowledge. It is able to obtain good
qualitative relations between the variables that compose
the system and to infer future behavior of that system.
It is therefore a very useful tool for modeling and sim-
ulating systems for which no previous structural knowl-
edge is available (e.g., biomedical systems). FIR method-
ology is composed of four main processes—namely, fuzzi-
fication, qualitative modeling, qualitative simulation, and
defuzzification.

FIR is fed with data measured from the system under
study, converted into fuzzy information by means of the
fuzzification function. In the fuzzification process, quanti-
tative values are fuzzified (discretized) into a fuzzy triple,
consisting of the class, the membership, and the side (cf.
the appendix). The side function gives information about
the position of the quantitative value with respect to the
maximum of the membership function of the chosen class.
It is important to notice that the same information is con-
tained in the qualitative triple as in the quantitative value,
and hence no information is lost in the fuzzification pro-
cess. To convert quantitative values into qualitative ones, it
is necessary to provide to the function the number of classes
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into which the space is going to be discretized and the land-
marks that separate neighboring classes from each other.
The qualitative modeling process of the FIR methodology
is responsible for finding spatial and temporal causal re-
lations between variables and, therefore, for obtaining the
best model (composed by the mask and the behavior ma-
trix) that represents the system. The qualitative modeling
process evaluates the possible masks and concludes which
among them has the highest quality from the point of view
of an entropy reduction measure. Then the mask is used to
obtain the behavior matrix (rule base) associated with the
data registered from the system. An example of a mask is
presented in equation (1):

t\x Input1 Input2 Output

t − 2δt
t − δt

t

(
0 −1 0

−2 0 −3
−4 0 +1

)
.

(1)

Negative entries in the mask are called m-inputs (mask
inputs). They denote causal relations with the output (i.e.,
they identify those m-inputs that are most useful for ex-
tracting information about the output). The single positive
entry denotes the output. The number of nonzero elements
is called the complexity of the mask. The number of rows
in the mask is called the depth.

In the above example, the Output at time t is said to be a
function of Input2 at time t − 2δt , of Input1 at time t − δt ,
of the Output itself at time t − δt , and of Input1 at time t .

The mask candidate matrix (see equation (2)) describes
the set of all possible masks that the qualitative modeling
process needs to consider when determining the best one
(i.e., the optimal mask).

t\x Input1 Input2 Output

t − 2δt
t − δt

t

(−1 −1 −1
−1 −1 −1
−1 −1 +1

)
(2)

The negative elements in the mask candidate matrix rep-
resent potential causal relations with the output. If previous
knowledge of the system is available—for example, if it is
a priori known that some variables are not or only poorly
related with the output—this information can be incorpo-
rated into the mask candidate matrix by introducing zero
elements that block the investigation of a causal relation
between that specific m-input and the selected output.

Once the best mask has been identified, it can be applied
to the qualitative data obtained from the system, resulting
in a particular rule base (behavior matrix).

Once the rule base and the mask are available, a pre-
diction can take place using FIR’s inference engine. This
process is called qualitative simulation. The FIR inference
engine is a specialization of the k-nearest neighbor (k-NN)
rule, commonly used in pattern recognition. The adapta-
tion of the generic k-NN rule to a variant of a five-nearest-

neighbors (5-NN) method has proven very successful in
the past, leading usually to good results when applied to
biomedical systems [5, 13].

Defuzzification is the inverse process of fuzzification.
It allows conversion of the qualitative-predicted output to
quantitative values that can then be used as inputs to an
external quantitative model. The reader is referred to the
appendix for a more detailed understanding of the FIR
methodology.

4. Generic-Structure FIR Model

This section describes how the generic-structure FIR
model of the CNS is inferred from the five patients avail-
able. Before that, some general considerations need to be
addressed.

As mentioned earlier, the five CNS controllers are SISO
models driven by the same input variable, the carotid si-
nus pressure (see Fig. 1). The five output variables of the
controller models are not directly amenable to a physio-
logical interpretation, except for the heart rate controller
variable, which is the inverse heart rate, measured in sec-
onds between beats. The input and output signals of the
CNS controllers, for all patients, are recorded with a sam-
pling rate of 0.12 seconds from simulations of the purely
differential equation model [4].

Each CNS control model is validated by using it to fore-
cast six data sets not employed in the training process.
Each one of these six test data sets, with a size of about
600 data points each, contains signals representing specific
morphologies, allowing the validation of the model for dif-
ferent system behaviors. Data set 1 represents two consecu-
tive Valsalva maneuvers of 10 seconds duration separated
by a 2-second break, data set 2 shows two consecutive
Valsalva maneuvers of 10 seconds duration separated by
a 4-second break, and data set 3 exhibits two consecutive
Valsalva maneuvers of 10 seconds duration separated by
an 8- second break. Data set 4 shows a single Valsalva ma-
neuver of 10 seconds duration with an intensity (pressure)
increase of 50% relative to the previous three data sets.
Data set 5 describes a single Valsalva maneuver of 20 sec-
onds duration with nominal pressure. Data set 6 is called
the reference data set since it represents a standardized
Valsalva maneuver from which all the other variants are
derived by modifying a single parameter. Figure 2 shows
the six heart rate controller test data sets for patient 1.

The Valsalva maneuver, described in 1704 by Antonio
de Valsalva, is a useful test in cardiology because it causes
important hemodynamical changes in a short time span,
can be carried out easily and painlessly by any patient,
and does not have any undesirable side effects. It consists
of attempting a brisk exhalation with the nose and mouth
closed, blocking the passage of air and thereby provoking
the increase of intrathoracic and intra-abdominal pressures.

In the modeling process, the normalized mean square
error (in percentages) between the simulated output, ŷ(t),
and the system output, y(t), is used to determine the
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Figure 2. Heart rate controller test data sets for patient 1

validity of each of the control models. The error equation
is given in (3).

MSE = E[(y(t) − ŷ(t))2]
yvar

· 100%, (3)

where yvar denotes the variance of y(t).
For FIR to find the best model that represents the system,

the user must provide the number of classes into which each
system variable is to be discretized, as well as the depth of
the mask candidate matrix. Usually, both values are cho-
sen heuristically by the modeler. However, it is necessary
to take into account that the mask should cover the largest
time constant of importance of the system under study [14].
Therefore, the depth can be computed by means of equa-
tion (4).

depth = round(
∆t

δt
) + 1, (4)

where ∆t represents the largest time constant, and δt rep-
resents the sampling rate, respectively.

If the physical system itself is available for experimenta-
tion, a Bode diagram of the system can be obtained through
measurement to determine the shortest and largest time

constants of concern. From there, the sampling rate can
be determined as 1/2 of the shortest time constant, and the
depth of the mask candidate matrix can then be determined
in accordance with equation (4). However, if the physical
system is not amenable to experimentation, such as in the
case of biomedical systems involving humans, the modeler
may have to rely on expert opinion as to what these time
constants may be. In the present study, no information re-
lated to the time constants is available from the doctors.
Therefore, it was decided to use the information derived
from the distribution of the data (histograms) to estimate
the optimal number of classes, as well as the information
obtained from the study of the existence of Markov proper-
ties to determine the optimal depth of the mask candidate
matrix.

Figure 3 describes the FIR process of obtaining a qual-
itative model of the CNS for each patient when using
Markovian models and data distribution analysis to en-
hance the prediction capability of FIR models.

The first step is to compute the histogram of the training
data for each system variable. The histogram provides in-
formation about the distribution of data helping the mod-
eler to decide the number of classes into which the sys-
tem variables are to be discretized and to determine the
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landmarks (limits between classes) of each class. Once
the number of classes and the landmarks have been deter-
mined, the fuzzification process of the FIR methodology
can take place. How this is done will be shown in due
course by means of an example.

The second step is to compute the single-dependency
Markovian models of variable order that can help to iden-
tify the depth of the mask and to extract as much informa-
tion as possible about the temporal relations of the input
and output variables.

The information provided by this method allows the in-
clusion of a priori knowledge about the system into the
mask candidate matrices, thus reducing their complex-
ity and, therefore, making the search space smaller. Con-
sequently, the time spent by the FIR qualitative model-
ing process to find the optimal mask is considerably re-
duced. However, it is important to notice that the single-
dependency Markovian models provide relevant temporal
relations for a single variable only and not between differ-
ent variables, which would be of much interest.

Once the best mask is found, it is applied to the qualita-
tive data obtaining a behavior matrix. Together, the mask
and the behavior matrix constitute the system model.

Let us now focus on obtaining a generic-structure CNS
model. The idea derives from the common generalization
strategy embraced by most parametric modeling method-
ologies, such as NARMAX [7]. In Vallverdú [7], the struc-
ture of the NARMAX models (the linear and nonlinear
terms) is identical for all patients, but their parameter val-
ues are different for each patient. In the FIR methodol-
ogy, the mask can be viewed as the structure of the model,
whereas the rule base (behavior matrix) can be considered
specific for each patient because it is derived from its own
measured data. Therefore, there is an analogy between the
mask of the FIR methodology and the number and types of
terms used in the NARMAX equations, as well as between
behavior matrices and the parameter values.

How is the structure (mask) of the generic CNS model
obtained? To identify a mask that best represents the com-
mon structure of all patients, it is decided to choose the
patient- specific mask that exhibits the best performance
from the prediction point of view. The mask of the patient
with the lowest cumulative prediction error is selected as
the generic structure for all the patients with similar char-
acteristics. Therefore, to identify the best patient-specific

mask from the prediction accuracy perspective, it becomes
necessary to obtain CNS models for each of the five pa-
tients available.

To this end, specific models are obtained for each patient
(5) and each controller (5), resulting in 25 different FIR
models. The same inference procedure is used to obtain
each of the 25 FIR models. As an example, this process
is described for only one of these controllers, namely, the
heart rate of patient 4.

4.1 Heart Rate Controller

As described in Figure 3, to determine the number of
classes and the landmarks associated with each class, it
is necessary to compute the histogram of the training data
for each system variable. Figure 4 presents the histogram
obtained for the carotid sinus pressure (input variable) for
patient 4.

The distribution of the data defines four separate groups
in a natural way. The first one corresponds to the inter-
val [55 90]. The second, third, and fourth are associated
with the intervals [90 130], [130 163], and [163 205],
respectively. Consequently, the input variable for all the
controllers of patient 4 was discretized into four classes
(named C1, C2, C3, and C4 in Fig. 4), with landmarks
as defined above. The same procedure was used to obtain
the number of classes and landmarks of the output vari-
able. In this case, the heart rate controller was discretized
into three classes. With the information extracted from the
histograms, the fuzzification procedure is applied for the
input and output variables, obtaining a qualitative data set.

The next step is to apply the Markov property test to
the input and output signals of the heart rate controller.
The upper part of Figure 5 shows the result of applying
a Markov test to the carotid sinus pressure (CSP: input
variable). In the lower part of the same figure, the result of
applying the same Markov test to the heart rate controller
(HRC: output variable) is presented.

The peaks of Figure 5 represent strong temporal rela-
tions with respect to the same variable at the present time.
Consequently, the lower part of Figure 5 shows that the
HRC at present time is highly dependent on the values of
the same signal 1, 6, 12, and 17 steps back in time. In
the same way from the upper part of Figure 5, it becomes
evident that the CSP signal at the present time is most
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strongly dependent on the same signal 1, 6, 13, 19, and 25
steps back in time. This information was used to define the
mask candidate matrix associated with the heart rate con-
troller for patient 4 in the way described in equation (5).

t\x CSP HRC

t − 25δt
...

t − 19δt
...

t − 17δt
...

t − 13δt
t − 12δt

...
t − 6δt

...
t − δt

t



−1 0
...

...
−1 0
...

...
0 −1
...

...
−1 0

0 −1
...

...
−1 −1
...

...
−1 −1
−1 +1



(5)

The mask candidate matrix was chosen in this way to
speed up the qualitative modeling process. Evidently, the
proposed algorithm only picks up linear or linearizable
dependencies between variables, and in some cases, it may
be necessary to augment the mask candidate matrix with
additional −1 entries to obtain a satisfactory model of the
process.

With the mask candidate matrix available, the qualita-
tive modeling process of the FIR methodology is used to
obtain the optimal mask for the heart rate controller subsys-
tem. The best mask obtained is presented in equation (6).

t\x CSP HRC

t − 25δt
...

t − 19δt
...

t − 17δt
...

t − 13δt
t − 12δt

...
t − 6δt

...
t − δt

t



0 0
...

...
−1 0
...

...
0 −2
...

...
−3 0

0 −4
...

...
−5 −6
...

...
−7 −8

0 +1



(6)

The mask of equation (6) can be interpreted as follows:
the heart rate controller at the current time t depends on
the values of the carotid sinus pressure at 0.12, 0.72, 1.56,

and 2.28 seconds in the past and also on its own values at
0.12, 0.72, 1.44, and 2.04 seconds in the past.

The optimal mask can be written as

HRC(t) = f̃(CSP (t − 19δt),

HRC(t − 17δt), CSP (t − 13δt),

HRC(t − 12δt), CSP (t − 6δt),

HRC(t − 6δt), CSP (t − δt),

HRC(t − δt)),

(7)

where f̃ denotes a qualitative relationship. The FIR quali-
tative modeling engine picked a mask of high complexity
in this case, which is rather unusual in the case of a two-
variable system. It indicates that the carotid sinus pressure
indeed contains a lot of information about the heart rate
controller variable and points to the fact that much mea-
surement data were available to warrant the selection of a
high-quality model.

The optimal mask is then applied to the qualitative data
(see Fig. 13, presented later) to determine the associated
behavior matrix. The heart rate controller model (mask
and behavior matrix) identified for patient 4 is validated
by predicting the six test data sets available for that patient
and that controller by using FIR’s qualitative simulation
process. The average prediction error (MSE) obtained is
7.3e − 5%, presented in the first row/fourth column of
Table 1.

Figures 6 and 7 show the prediction results of two of
the six test data sets (MV4 and REF, respectively) used
for the validation of the model. In the upper plot of these
figures, the real and the predicted output signals are plotted
together. Both signals are indistinguishable due to the high
accuracy of the prediction. The lower plot of those figures is
included to show the prediction errors obtained (real minus
predicted values) to provide an example of the amazing
precision of the predictions made.

As demonstrated, the FIR model is capable of properly
forecasting both the low- frequency and the high-frequency
behaviors of these signals. The MSE (in percentages) for
the MV4 test data set is 2.6e − 6%, whereas this error is
0.0321% for the REF test data set.

The same procedure was used to infer optimal models
of the other controllers for the same patient and all CNS
controller models for the remaining patients. The average
MSE errors (in percentages) obtained for the six test data
sets for all controllers and patients are summarized in Ta-
ble 1. Each column corresponds to one patient, and each
row contains the average MSE error obtained for the six
validation data sets for each particular controller.

The results presented in Table 1 show that the FIR ap-
proach is indeed capable of capturing in a reliable way the
dynamic behavior of the system under study for all pa-
tients. The average errors obtained for the five controllers
of the five patients are very low. It is interesting to notice
that the venous tone controller model for patient 5 does not
perform as accurately as the other models. However, the
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Table 1. Average MSE errors of the HRC, PRC, MCC, VTC, and CRC FIR models for the five patients (in percentages)

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

HRC 5.0e-4 4.6e-3 1.0e-3 7.3e-5 7.0e-4
PRC 9.0e-4 3.0e-4 4.9e-5 7.0e-4 3.3e-4
MCC 2.6e-3 2.0e-3 1.0e-4 7.6e-6 1.4e-4
VTC 7.3e-3 3.0e-4 4.7e-3 7.9e-4 4.9
CRC 8.0e-4 2.0e-4 6.8e-3 3.0e-4 4.4e-5

Note. MSE = mean square error; HRC = heart rate controller; PRC = peripheric resistance controller; MCC = myocardiac contractility
controller; VTC = venous tone controller; CRC = coronary resistance controller; FIR = fuzzy inductive reasoning.
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Figure 6. Heart rate control of patient 4: Prediction MV4 test data set

error obtained in that case is 4.9%, which is still very low
if compared with the error obtained when other modeling
techniques, such as NARMAX [5] or either time-delayed
or recurrent neural networks [6], are used.

Once all CNS controllers for each of the five available
patient data sets are modeled, the process of obtaining a
generic-structure model can take place. The identification
of a generic-structure model for a given controller is done
by choosing the mask that is associated with the lowest
MSE error from the set of masks of all the patients that
represent the specific controller. As illustrated in Figure 8,
the mask of patient 1 (mask 1) is used together with the be-

havior matrices of every patient to predict the test data sets
associated with that patient for a given controller. From the
errors obtained for each patient (MSE i), the average error
that represents the prediction performance of that mask is
computed. The same procedure is done for the masks of
patients 2, 3, 4, and 5. Finally, the mask of the patient that
exhibits the lowest average error is the mask chosen to
represent generically the structure of that controller.

Equation (8) describes the chosen mask for the heart rate
controller. From the computed histograms, it was decided
to discretize the input variable into four classes, whereas
the output variable was discretized into three classes.
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Figure 7. Heart rate control of patient 4: Prediction REF test data set
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The mask chosen in equation (8) is now used to ob-
tain the specific behavior matrices for each patient (see
the appendix). Once the generic mask and the behavior
matrices are available, the different test data sets of all
five patients are predicted. Notice that the structure of the
model (the mask) is identical in all predictions, whereas
the behavior matrix is specific for each patient. Therefore,
the generic model obtained is not fully generic but generic
in its structure only. The procedure of identifying a generic
HRC model is fully applicable to the other CNS con-
trollers. The peripheric resistance controller (PRC), my-
ocardiac contractility controller (MCC), and venous tone
controller (VTC) variables were also fuzzified into four
classes, whereas the coronary resistance controller (CRC)
variable was discretized into three classes. Equations (9)
through (12) describe the best masks identified by the
FIR representing the optimal generic structure of the PRC,
MCC, VTC, and CRC controllers, respectively.

t\x CSP PRC

t − 16δt
...

t − 8δt
...

t − 6δt
...

t − 2δt
t − δt

t



−1 0
...

...
−2 0
...

...
0 −3
...

...
0 −4

−5 −6
0 +1



(9)

t\x CSP MCC

t − 13δt
t − 12δt

...
t − 7δt

...
t − δt

t



−1 0
0 −2
...

...
−3 −4
...

...
−5 −6

0 +1


(10)

t\x CSP V T C

t − 14δt
...

t − 7δt
t − 6δt

...
t − δt

t



−1 0
...

...
−2 0

0 −3
...

...
−4 −5

0 +1


(11)

t\x CSP CRC

t − 16δt
...

t − 10δt
...

t − 8δt
...

t − 2δt
t − δt

t



−1 0
...

...
0 −2
...

...
−3 0
...

...
0 −4

−5 −6
0 +1



(12)

The generic structures (masks) of these controllers are
used to obtain the patient-specific behavior matrices. The
generic structure models are then used to predict the test
data sets of all five patients.

The results obtained are summarized in Table 2. Each
row contains the average error of the 6 test data sets associ-
ated with one specific patient for each CNS controller. The
last row shows the global average errors of the 30 test data
sets for each controller. It can be observed that the average
errors for all the controllers are lower than 2.0e − 3%, an
impressively good result. Therefore, the generic-structure
models identified for each controller capture in a reliable
way the common behavior of this set of patients. The next
step is to study the feasibility of obtaining a reliable fully
generic model of the CNS.

5. Fully Generic FIR Model

Encouraged by the good results obtained when forecasting
using a generic- structure CNS model, it was decided to
go a step further and try to identify a fully generic CNS
model. The same five patients used in the previous section
are also the subjects of this study. For each of the five
controllers, 35,000 data points (7000 for each patient) are
used in the identification process. The generic models are
validated by forecasting the 30 test data sets available for
each controller (6 test data sets for patient and controller).

Figure 9 describes the process of obtaining a fully
generic model of the CNS control. The identification data
used for inferring the generic model of a specific con-
troller are obtained by merging the individual identification
data streams of all patients. However, it is necessary to be
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Table 2. Average MSE errors of the HRC, PRC, MCC, VTC, and CRC generic-structure models induced by FIR (in percentages)

HRC PRC MCC VTC CRC

Test patient 1 1.9e-5 6.8e-7 9.5e-4 4.2e-3 3.5e-4
Test patient 2 1.8e-5 6.0e-5 1.95e-4 3.3e-4 1.7e-5
Test patient 3 9.9e-4 4.6e-5 5.0e-5 2.6e-4 1.6e-5
Test patient 4 4.5e-5 2.6e-8 1.6e-10 2.7e-4 9.1e-6
Test patient 5 1.3e-4 3.3e-4 7.3e-8 1.3e-3 4.4e-5
Average error 2.4e-4 8.7e-5 2.4e-4 1.3e-3 8.7e-5

Note. MSE = mean square error; HRC = heart rate controller; PRC = peripheric resistance controller; MCC = myocardiac contractility
controller; VTC = venous tone controller; CRC = coronary resistance controller; FIR = fuzzy inductive reasoning.
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Figure 9. Identification process of a fully generic model of the central nervous system (CNS) control

cautious because if the data stemming from one patient are
placed immediately adjacent to the data stemming from
another patient, fake causal relationships would be created
at the seam of the two data streams, causing a severe degra-
dation of the forecasting power of the derived FIR model.
Therefore, it is necessary to add gaps of missing data be-
tween neighboring data streams stemming from different
patients. This is not a problem for the FIR methodology,
which is able to deal with missing data records.

At this point, a data set of the available 35,000 data
records padded by gaps of missing data is ready to be used
for the identification of a fully generic model of one of the
five CNS controllers. The quantitative data are converted to
qualitative data by means of the FIR fuzzification process.
As explained before, in this conversion, it is necessary to
provide the number of classes into which the space is going
to be discretized. To this end, the histogram of the training
data is computed for each system variable, as was already
done in the identification of single-patient CNS models.
Once the landmarks and the training data set are avail-
able, the fuzzification function converts the quantitative
data into fuzzy triples. The next step is the identification
of the generic model by means of the qualitative modeling
process of the FIR methodology. A prestudy of the data,
based on single-dependency Markovian models of variable

order, is also done in this case.
The procedure just described and illustrated in Figure 9

is used for inferring the fully generic FIR models of the five
controllers that compose the CNS (i.e., HRC, PRC, MCC,
VTC, and CRC). Equation (13) describes the best mask ob-
tained by the qualitative modeling function of FIR that rep-
resents the heart rate controller. From the histograms com-
puted for each system variable, it was decided to fuzzify
the carotid sinus pressure (input variable) into three classes,
whereas the heart rate control signal (output variable) was
discretized into four classes.
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Equation (14) describes the best mask inferred by FIR
that represents the peripheric resistance controller. The his-
togram computed for the output variable suggested dis-
cretizing it into six classes.
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Equations (15) through (17) represent the best masks
obtained for the myocardiac contractility, venous tone,
and coronary resistance controllers, respectively. The his-
tograms computed for the three output variables suggested
classifying each of them into five classes.
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These masks are then used to obtain the behavior matri-
ces (rule bases) for each controller. As mentioned earlier,
each of the five fully generic FIR models identified is val-
idated by forecasting 30 different data sets not used in the
identification process that represent specific morphologies.

The MSE errors (see equation (3)) obtained for each gen-
eral controller are presented in Table 3. The columns and
rows of this table are the same as in Table 2. It can be ob-
served that the average errors for all controllers are below
2.5%. These results are very good if we take into account
that the five models inferred are completely generic and
have been validated with test data sets stemming from dif-
ferent patients. The MCC, VTC, and CRC models behave
very well for all patients, with associated errors of less than
1%. This is not the case for the HRC and PRC models. It is
clear that the HRC model is able to predict more accurately
the behavior of patients 4 and 5, whereas the PRC model
predicts more accurately patients 1 and 5. However, the
biggest errors obtained are still below 6%, a very remark-
able result in comparison with the errors obtained when
using other modeling methodologies such are NARMAX
[7] or neural networks [15].

The results obtained when the generic-structure model
identification process is used are much better than the ones
obtained by means of the fully generic CNS controller
model. However, the generalization power of the generic-
structure models, which have a component that is directly
associated with a specific patient, is lower than the gener-
alization achieved through the fully generic models.

The second objective of the study consists of closing
the loop of the cardiovascular system to validate the over-
all model using real physiological data. The next section
describes this work in detail.

6. The Cardiovascular Closed-Loop System

In this section, the loop between the hemodynamical sys-
tem, modeled by means of differential equations, and the
central nervous system control, modeled in terms of in-
ductive modeling techniques, is closed (see Fig. 1). The
complex behavior of the overall cardiovascular system is
now studied.

Real physiological data obtained from cardiac catheter-
ization are used for this study. These data were obtained
from the hemodynamical division of the Hospital de la
Santa Creu i de Sant Pau in Barcelona. The data stem from
patients with coronary arterial obstruction of at least 70%.
The measured physiological variables are as follows: right
auricular pressure, PAD(t); aortic pressure, PA(t); coronary
blood flow, FC(t); and heart rate, HR(t). The physiolog-
ical variables were recorded during all five phases of the
Valsalva maneuver.

From the trajectories of the right auricular pressure, aor-
tic pressure, coronary blood flow, and heart rate, mean
values were computed for each of the five phases of the
maneuver. PADM denotes the average right auricular pres-
sure during a given phase, PAM stands for the mean aor-
tic pressure, FCM is the average coronary blood flow, and
HRM signifies the average heart rate during any one of the
phases.

The measurement results obtained through cardiac
catheterization for all five patients are summarized in
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Table 3. Average MSE errors of the HRC, PRC, MCC, VTC, and CRC fully generic controller models inferred by FIR

HRC PRC MCC VTC CRC

Test patient 1 1.58 0.10 0.17 0.22 0.15
Test patient 2 3.51 5.95 0.08 0.05 0.03
Test patient 3 2.70 3.45 0.25 0.12 0.08
Test patient 4 0.02 2.30 0.10 0.03 0.39
Test patient 5 0.05 0.17 0.14 3.50 0.05
Average error 1.57 2.39 0.15 0.78 0.14

Note. MSE = mean square error; HRC = heart rate controller; PRC = peripheric resistance controller; MCC = myocardiac contractility
controller; VTC = venous tone controller; CRC = coronary resistance controller; FIR = fuzzy inductive reasoning.

Table 4. Measurement results obtained through cardiac catheterization for the five patients studied

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

PADM Pre-V 2 4 4 3 5
II 54 38 40 45 38
IV 2 5 4 3 5

PAM Pre-V 84 107 107 113 119
II 104 99 107 117 113
IV 86 119 107 116 125

FCM Pre-V 112 123 148 123 113
II 89 106 82 81 87
IV 126 118 147 128 121

HRM Pre-V 70 77 73 80 72
II 75 82 78 83 75
IV 66 70 73 78 70

Table 4. Only the mean values computed for the pre-
Valsalva phase, Valsalva phase II, and Valsalva phase IV
are shown in the table because these are the most significant
data from a medical point of view.

The mean values presented in Table 4 were obtained
from real measurements. They will subsequently be used
as reference values in the model validation process. For
a model to pass the acceptance test, none of the four key
variables—that is, average right auricular pressure (PADM),
mean aortic pressure (PAM), mean coronary blood flow
(FCM), and average heart rate (HRm)—may deviate from
the reference values by more than ±10% during any of the
three key phases of the Valsalva maneuver.

At this point, the question to be raised is whether a mixed
model of the cardiovascular system—whereby the hemo-
dynamical subsystem is described by means of differential
equations, and the CNS control is described using a FIR
model—generates results inside the ±10% error margin
that is permitted and can therefore be considered a valid
model.

The differential equation model of the hemodynamical
system was implemented using the advanced continuous
simulation language (ACSL) [16], a convenient software
tool for the description of ordinary differential equation-
based state-space models. A simplified scheme of the sim-
ulation structure is shown in Figure 10.

The hemodynamical system, modeled and simulated in
a strictly quantitative fashion, is implemented in full within
ACSL. Its differential equations are implemented as a con-
tinuous process to be integrated across time using one of
the standard integration algorithms offered by ACSL. The
CNS control, on the other hand, is implemented inside the
ACSL program as a discrete process to be executed once
every 0.12 seconds.

The simulation process operates in the following way.
The hemodynamical system generates a continuous-time
trajectory representing the carotid sinus pressure (CSP).
This variable is sampled by the discrete process once ev-
ery 0.12 seconds and is immediately being fuzzified into
three qualitative classes using the FIR fuzzification engine
that is coupled to the ACSL through an interface routine.
The discrete process then calls five times on the FIR qual-
itative simulation routine to predict qualitative values of
the five controller outputs. These five qualitative triples are
then defuzzified into quantitative (real-valued) controller
outputs using the FIR defuzzification engine. The defuzzi-
fied signals are then made available to the hemodynamical
system for use within the differential equation model.

Both the generic-structure and the fully generic CNS
controller models were used to simulate the overall car-
diovascular system. The simulation results obtained from
the mixed quantitative/qualitative cardiovascular system
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Figure 10. Schematic showing the structure of the cardiovascular system simulation program

model using generic-structure and fully generic CNS-FIR
models are presented in Tables 5 and 6, respectively. The
positive and negative values (in parentheses) in the tables
indicate the deviations from the data obtained through car-
diac catheterization.

Analyzing the results of the mixed cardiovascular sys-
tem model with the generic-structure CNS control (Ta-
ble 5), it is found that the largest negative relative devia-
tions from the measurement values are −1% for patient 1,
−4% for patients 2 and 3, −3% for patient 4, and −2%
for patient 5. The largest positive relative deviations are
+2% for patient 1, +4% for patient 2, +2% for patient 3,
+4% for patient 4, and +2% for patient 5. Thus, all the
indicators are within the requested ±10% margin, and in
accordance with the requirements, this generic model is to
be accepted as a valid representation of reality. The aver-
age relative deviations from the measurement values are
0.83% for patient 1, 2% for patient 2, 1.42% for patient 3,
1.25% for patient 4, and 1% for patient 5.

Performing the same analysis for the mixed cardiovas-
cular system model with fully generic CNS control (Ta-
ble 6), it can be seen that the largest negative relative devi-
ations from the measurement values are −2% for patient
1, −4% for patients 2 and 3, and −6% for patients 4 and 5.
The largest positive relative deviations are +3% for patient
1, +6% for patients 2 and 3, +4% for patient 4, and +3%
for patient 5. Hence, all the indicators are again within
the requested ±10% margin; therefore, the fully generic

model is to be accepted as a valid representation of reality
for the task at hand. The average relative deviations from
the measurement values are 1.41% for patient 1, 2.83%
for patient 2, 2.17% for patient 3, 1.83% for patient 4, and
2.25% for patient 5.

Clearly, the mixed cardiovascular system model with
generic-structure CNS control shows better results than
the model that includes a fully generic CNS control model.
The average relative deviations are lower for all patients,
and the largest negative and positive deviations, in absolute
terms, are also lower (−6% vs. −4% and +6% vs. +4%).
Therefore, it can be concluded that the mixed cardiovas-
cular system model, composed of a differential equation
model that represents the hemodynamical system and a
generic- structure FIR model representing the central ner-
vous system control, is the overall model that better fits the
real system. However, both mixed cardiovascular system
models are considered acceptable from a medical point of
view.

7. Conclusions

This article deals with the human cardiovascular system,
which is composed of the hemodynamical and the cen-
tral nervous subsystems. The modeling and simulation of
the overall cardiovascular system is of great importance in
the medical domain because it allows, among other things,
one to acquire a deeper knowledge of the cardiovascular
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Table 5. Results obtained from the mixed cardiovascular system with a generic-structure central nervous system
(CNS) model

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

PADM Pre-V 2 4 4 3 5
II 56(+2) 38 40 45 38
IV 2 5 4 3 5

PAM Pre-V 84 110(+3) 103(-4) 117(+4) 117(-2)
II 103(-1) 101(+2) 105(-2) 118(+1) 114(+1)
IV 88(+2) 119 109(+2) 116 124(-1)

FCM Pre-V 113(+1) 119(-4) 144(-4) 120(-3) 111(-2)
II 89 110(+4) 84(+2) 83(+2) 88(+1)
IV 127(+1) 122(+4) 147 130(+2) 122(+1)

HRM Pre-V 70 73(-4) 75(+2) 80 73(+1)
II 76(+1) 80(-2) 77(-1) 81(- 2) 74(-1)
IV 68(+2) 71(+1) 73 79(+1) 72(+2)

Table 6. Results obtained from the mixed cardiovascular system with the fully generic central nervous system (CNS)
model

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

PADM Pre-V 2 4 4 3 5
II 57(+3) 40(+2) 38(-2) 45 38
IV 2 5 4 3 4(-1)

PAM Pre-V 83(-1) 111(+4) 113(+6) 110(-3) 116(-3)
II 104 104(+5) 107 116(-1) 111(-2)
IV 85(-1) 117(-2) 107 115(-1) 119(-6)

FCM Pre-V 113(+1) 119(-4) 152(+4) 126(+3) 109(-4)
II 92(+3) 108(+2) 87(+5) 85(+4) 84(+3)
IV 125(-1) 124(+6) 143(-4) 122(-6) 117(-4)

HRM Pre-V 73(+3) 74(-3) 73 81(+1) 72
II 73(-2) 78(-4) 74(-4) 82(- 1) 71(-4)
IV 68(+2) 72(+2) 74(+1) 80(+2) 70

physiology and furthers a better understanding of the con-
trol of the CNS over the hemodynamical system.

The work presented in this study is oriented toward the
identification of a generic CNS model for patients with
coronary arterial obstruction of at least 70%. Data stem-
ming from five different patients were used to preform the
study.

Two different approaches were used to infer a generic
model of the CNS control. On one hand, a generic-structure
FIR model was proposed. In this approach, the structure of
each controller model is identical for all patients, whereas
the rule base is specific for each patient. On the other hand,
a fully generic FIR model was identified. Both types of
generic models were validated predicting six test data sets
available for each of the patients who had not been used
in the modeling process. The prediction errors obtained
when using the fully generic CNS models are larger than
the ones obtained using the generic-structure CNS mod-
els. This is reasonable since the generalization power of
the generic-structure model, having one component that is

directly associated with a specific patient, is lower than the
generalization achieved from the fully generic model. The
errors obtained with both generic models are significantly
lower than the errors obtained when using other method-
ologies such are NARMAX [7] or neural networks [15].

The final goal of the study consisted of closing the loop
between the hemodynamical system, modeled by means
of differential equations, and the CNS control, modeled in
terms of the FIR methodology. The overall cardiovascu-
lar system model was validated using real physiological
data obtained from cardiac catheterization from the five
patients under study. Two complete cardiovascular system
models were tested, one containing the generic- structure
CNS models and the other incorporating the fully generic
CNS models. From the validation of both models, it can be
concluded that the cardiovascular system model, composed
of a differential equation model representing the hemody-
namical system and a set of generic-structure FIR models
representing the central nervous system, is the one that
better fits the real cardiovascular system. However, both
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Figure 11. Schematic representation of the four primary tasks of the fuzzy inductive reasoning (FIR) methodology

mixed cardiovascular system models are considered ac-
ceptable from a medical point of view.

8. Appendix

8.1 Basics of Fuzzy Inductive Reasoning
Methodology

Figure 11 shows the four main tasks of the FIR methodol-
ogy in a schematic way—namely, fuzzification, qualitative
modeling, qualitative simulation, and defuzzification.

The fuzzy inductive reasoner is fed with data that are
measured from the system under study. These are usu-
ally quantitative—that is, real-valued, time-stamped data,
such as blood pressure, body temperature, and so forth.
However, FIR bases its decisions on qualitative (i.e., dis-
cretized) data. Consequently, the measurement data must
first be converted from quantitative to qualitative data
streams. In order not to lose information in this process,
the discretization is done in a fuzzy, not crisp, sense. In
Figure 11, this process is called fuzzification.

The predictions made by the qualitative simulation en-
gine of FIR are qualitative predictions. It may be desirable
to use these predictions subsequently as driving functions
(inputs) to a quantitative model. To this end, the qualita-
tive predictions need to be converted back to quantitative
data streams. This is accomplished by the defuzzification
engine shown in Figure 11.

The four engines that comprise the FIR methodology
are described in more detail in the subsequent sections of
this appendix.

8.2 Fuzzification

The fuzzification process converts quantitative values into
qualitative triples. The first element of the triple is the class
value, the second element is the fuzzy membership value,

and the third element is the side value. The class value rep-
resents a coarse discretization of the original real-valued
variable. The fuzzy membership value denotes the level of
confidence expressed in the class value chosen to repre-
sent a particular quantitative value. Finally, the side value
indicates whether the quantitative value is to the left or to
the right of the peak value of the associated membership
function. The side value, which is a specialty of the FIR
technique since it is not commonly used in fuzzy logic,
is responsible for preserving, in the qualitative triple, the
complete knowledge that had been contained in the origi-
nal quantitative value. Figure 12 illustrates the process of
fuzzification by means of an example. A temperature of
23◦C would hence be fuzzified into the class normal with
a side value of right and a fuzzy membership value of 0.89.

In the current implementation of the FIR methodology,
in the form of a Matlab [17] toolbox, class values are rep-
resented by positive integers—for example, in the above
temperature example, by the numbers 1 representing cold,
2 denoting fresh, 3 symbolizing normal, 4 standing for
warm, and 5 mapping hot. Similarly, the side values are
implemented as −1 meaning left, 0 representing center,
and +1 corresponding to right.

8.3 Qualitative Modeling

The qualitative behavior is stored in a qualitative data
model. It consists of three matrices of identical sizes—one
containing the class values, the second storing the member-
ship information, and the third recording the side values.
Each column represents one of the observed variables, and
each row denotes one time point (i.e., one recording of all
variables) or one recorded state.

In the process of modeling, it is desired to discover
finite automata relations among the class values that make
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Figure 12. Fuzzy inductive reasoning (FIR) fuzzification of a temperature value of 23◦C

the resulting state transition matrices as deterministic as
possible. If such a relationship is found for every output
variable, the behavior of the system can be forecast by
iterating through the state transition matrices. The more
deterministic the state transition matrices, the higher the
likelihood that the future system behavior will be predicted
correctly.

A possible relation among the qualitative variables of
a five-variable system example could be of the following
form:

y1(t) = f̃(y3(t − 2δt), u2(t − δt), y1(t − δt), u1(t)),
(18)

where f̃ denotes a qualitative relationship. Notice that f̃
does not stand for any (known or unknown) explicit for-
mula relating the input arguments to the output argument
but only represents a generic causality relationship that, in
the case of the FIR methodology, will be encoded in the
form of a tabulation of likely behavior patterns (i.e., a state
transition matrix).

In FIR, equation (18) is represented by the following
so-called “mask” matrix:

t\x u1 u2 y1 y2 y3

t − 2δt
t − δt

t

(
0 0 0 0 −1
0 −2 −3 0 0

−4 0 +1 0 0

)
.

(19)

The negative elements in this matrix are referred to as m-
inputs, which denote input arguments of the qualitative
functional relationship. They can be either inputs or outputs
of the subsystem to be modeled, and they can have different
time stamps. The above example contains four m-inputs.
The sequence in which they are enumerated is immaterial.
They are usually enumerated from left to right and top
to bottom. The single positive value denotes the m-output.
The terms m-input and m-output are used to avoid potential

confusion with the inputs and outputs of the system. In
the above example, the first m-input, i1, corresponds to the
output variable y3 two sampling intervals back, y3(t −2δt),
whereas the second m-input refers to the input variable u2

one sampling interval into the past, u2(t −δt), and so forth.
In the FIR methodology, such a representation is called a

mask. A mask denotes a dynamic relationship among quali-
tative variables. A mask has the same number of columns as
the qualitative behavior to which it should be applied, and
it has a certain number of rows, the depth of the mask. The
mask can be used to “flatten” dynamic relationships into
“pseudo-static” relationships. This process is illustrated in
Figure 13. The left-hand side of Figure 13 shows an excerpt
of the class value matrix, one of the three matrices belong-
ing to the qualitative data model. It shows the numeri-
cal rather than the symbolic class values. In the example
shown in Figure 13, the first and second variables, u1 and
u2, were discretized into two classes, whereas the remain-
ing variables—y1, y2, and y3—have been discretized into
three classes each. The dashed box symbolizes the mask
that is shifted downwards along the class value matrix. The
round shaded “holes” in the mask denote the positions of
the m-inputs, whereas the square shaded “hole” indicates
the position of the m-output. The class values are read out
from the class value matrix through the “holes” of the mask
and are placed next to each other in the behavior matrix
that is shown on the right-hand side of Figure 13. Here,
each row represents one position of the mask along the
class value matrix. It is lined up with the bottom row of
the mask. Each row of the behavior matrix represents one
pseudo-static qualitative state or qualitative rule. For ex-
ample, the shaded rule of Figure 13 can be read as follows:
If the first m-input, i1, has a value of 2 (corresponding to
“medium”); the second m-input, i2, has a value of 1 (cor-
responding to “low”); the third m-input, i3, has a value of
2 (corresponding to “medium”); and the fourth m-input,
i4, has a value of 2 (here corresponding to “high”), then
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the m-output, o1, assumes a value of 3 (corresponding to
“high”).

The qualitative rules can be invoked during qualitative
simulation to predict new qualitative outputs. Clearly, these
rules can be written in any order (i.e., the sequencing of
the rows of the behavior matrix has become irrelevant).
They can be sorted alphanumerically. The sorted behavior
matrix is called the state transition matrix.

From the way in which the state transition matrix is
constructed, it is clear that the same input pattern, a so-
called input state, can be associated with different output
values (i.e., a different output state). If the relationship
between input states and output states is nondeterministic,
there will be uncertainty associated with predictions made.
Thus, it is advantageous to make the state transition matrix
as deterministic as possible.

How is a mask found that, within the framework of all
allowable masks, represents the most deterministic state
transition matrix (i.e., optimizes the predictiveness of the
model)? In FIR, the concept of a mask candidate matrix
has been introduced. A mask candidate matrix is an ensem-
ble of all possible masks from which the best is chosen
by either a mechanism of an exhaustive search of expo-
nential complexity or by one of various suboptimal search
strategies of polynomial complexity, as described in Nebot
and Jerez [18] and Jerez and Nebot [19]. The mask can-
didate matrix contains −1 elements where the mask has
a potential m-input, a +1 element where the mask has its
m-output, and 0 elements to denote forbidden connections.
Thus, a good mask candidate matrix to determine a predic-

tive model for variable y1 in a five-variable system example
might be the following:

t\x u1 u2 y1 y2 y3

t − 2δt
t − δt

t

(−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 +1 0 0

)
.

(20)

Corresponding mask candidate matrices are used to find
predictive models for y2 and y3.

Each of the possible masks is compared to the others
with respect to its potential merit (i.e., the degree of de-
terminism associated with the state transition matrix con-
structed from it). The optimality of the mask is evaluated
with respect to the maximization of its forecasting power.

The Shannon entropy measure is used to determine the
uncertainty associated with forecasting a particular output
state given any legal input state. The Shannon entropy rel-
ative to one input state is calculated from the following
equation:

Hi =
∑
∀o

p(o|i) · log2 p(o|i), (21)

where p(o|i) is the “conditional probability” of a certain
m-output state o to occur, given that the m-input state i
has already occurred. The term probability is meant in a
statistical rather than in a true probabilistic sense. It denotes
the quotient of the observed frequency of a particular state
divided by the highest possible frequency of that state.
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The overall entropy of the mask is then computed as the
following sum:

Hm = −
∑

∀i

p(i) · Hi, (22)

where p(i) is the probability of that input state to occur.
The highest possible entropy Hmax is obtained when all
probabilities are equal, and a zero entropy is encountered
for relationships that are totally deterministic.

A normalized overall entropy reduction Hr is defined as

Hr = 1.0 − Hm

Hmax

. (23)

Hr is obviously a real-valued number in the range be-
tween 0.0 and 1.0, where higher values usually indicate an
improved forecasting power. The masks with highest en-
tropy reduction values generate forecasts with the smallest
amounts of uncertainty.

One problem still remains. The size of the behavior ma-
trix increases as the complexity of the mask grows; con-
sequently, the number of legal states of the model grows
quickly. Since the total number of observed data records
remains constant, the frequency of observation of each
state shrinks rapidly, and so does the predictiveness of the
model. The entropy reduction measure does not account
for this problem. With increasing complexity, Hr simply
keeps growing. Very soon, a situation is encountered where
every state that has ever been observed has been observed
precisely once. This obviously leads to a totally determin-
istic state transition matrix, and Hr assumes a value of 1.0.
Yet the predictiveness of the model will be dismal since,
in all likelihood, already the next predicted state has never
before been observed, and that means the end of forecast-
ing. Therefore, this consideration must be included in the
overall quality measure.

From a statistical point of view, every state should be
observed at least five times [20]. Therefore, an observation
ratio, Or , is introduced as an additional contributor to the
overall quality measure:

Or = 5 · n5× + 4 · n4× + 3 · n3× + 2 · n2× + n1×
5 · nleg

, (24)

where

nleg = number of legal m-input states,
n1× = number of m-input states observed only once,
n2× = number of m-input states observed twice,
n3× = number of m-input states observed thrice,
n4× = number of m-input states observed four times,
n5× = number of m-input states observed five times
or more.

If every legal m-input state has been observed at least five
times, Or is equal to 1.0. If no m-input state has been

observed at all (no data are available), Or is equal to 0.0.
Thus, Or can also be used as a quality measure.

The overall quality of a mask, Qm, is then defined as the
product of its uncertainty reduction measure, Hr , and its
observation ratio, Or :

Qm = Hr · Or. (25)

The optimal mask is the mask with the largest Qm value.

8.4 Qualitative Simulation

Once the best model is obtained by means of computing
the quality measure presented above, future output states
can be predicted using the inference engine that is at the
heart of the qualitative simulation module inside the FIR.
The prediction procedure is presented in the diagram of
Figure 14. The mask is placed on top of the qualitative
data matrix in such a way that the m-output matches with
the first element to be predicted. The values of the m-inputs
are read out from the mask, and the behavior matrix (rule
base) is used to determine the future value of the m-output,
which can then be copied back into the qualitative data ma-
trix. The mask is then shifted further down one position to
predict the next output value. This process is repeated until
all the desired values have been forecast. The qualitative
simulation process predicts an entire qualitative triple from
which a quantitative variable can be obtained whenever
needed.

Using the 5-NN fuzzy inferencing algorithm, the mem-
bership and side functions of the new input are compared
with those of all previous recordings of the same qualita-
tive input. The input with the most similar membership and
side functions is identified. For this purpose, a normalized
defuzzification,

posi = classi + sidei · (1.0 − Membi ), (26)

is computed for every input variable of the new input set,
and these posi values are stored in a vector, pos. The index
i represents the ith input variable in the input state of the
current observation. Membi is the membership value, and
classi and sidei are the numeric class and side values asso-
ciated with those inputs, respectively. The position value,
posi , can be interpreted as a normalized defuzzification
of the ith input variable. Irrespective of the original val-
ues of the input variable, posi assumes values in the range
[1.0, 1.5] for the lowest class, [1.5, 2.5] for the next higher
class, and so forth.

The defuzzification is repeated for all previous record-
ings of the same input state:

posij = classij + sideij · (1.0 − Membij ), (27)

where the index j denotes the j th previous observation
of the same input state. Also, the posij values are stored
in a vector, posj. Then, the L2 norms of the difference
between the pos vector of the new input state and the posj
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vectors of all previous recordings of the same input state
are computed:

disj =
√√√√ N∑

i=1

(posi − posij )2, (28)

where N is the number of m-inputs.
Finally, the previous recording with the smallest L2

norm is identified. The class and side values of the out-
put state associated with this input state are then used as
forecasts for the class and side values of the new output
state.

Forecasting of the new membership function is done a
little differently. Here, the five previous recordings with the
smallest L2 norms are used (if at least five such recordings
are found in the behavior matrix), and a distance-weighted
average of their fuzzy membership functions is computed
and used as the forecast for the fuzzy membership function
of the current state. This is done in the following way.

The distances of each of the five nearest neighbors are
limited from below by ε, the smallest number that is dis-
tinguishable from 1.0; in addition,

dj = max([disj , ε]). (29)

sd is the sum of all dj values:

sd =
5∑

j=1

dj . (30)

Relative distances are then computed as

drelj = dj

sd

. (31)

Absolute weights are then computed as follows:

wabsj = 1.0

drelj

. (32)

Using the sum of the absolute weights,

sw =
5∑

j=1

wabsj , (33)

it is possible to compute relative weights,

wrelj = wabsj

sw

. (34)

The relative weights are numbers between 0.0 and 1.0.
Their sum is always equal to 1.0. It is therefore possi-
ble to interpret the relative weights as percentages. Using
this idea, the membership function of the new output can
be computed as a weighted sum of the membership func-
tions of the outputs of the previously observed five nearest
neighbors:

Memboutnew =
5∑

j=1

wrelj · Memboutj . (35)
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8.5 Defuzzification

The defuzzification process of the FIR methodology is re-
sponsible for converting each qualitative-predicted output
triple back to a quantitative output value. It is the inverse
operation of the previously described fuzzification engine.
Since the qualitative triples retain complete knowledge of
the quantitative variables they represent, the defuzzifica-
tion operation is unambiguous, as long as no fuzzy mem-
bership functions with horizontal flat roofs, such as trape-
zoidally shaped fuzzy membership functions, are being
used.
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