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ABSTRACT

In this paper, qualitative simulation is applied to reason induc-
tively about the behavior of a quantitatively simulated aircraft
model, to determine on-line when a malfunction occurs in the
quantitative model, to hypothesize about the nature of this
malfunction, and to decide upon a global strategy that allows
to operate (control) the quantitative aircraft model under the
modified flying conditions.

Such an algorithm could be utilized as an addition to a conven-
tional autopilot which would allow the autopilot to remain opera-
tional after a malfunction has taken place.

Pentti ). Vesantera and Francois E. Cellier
- Dept. of Electrical Engineering
University of Arizona, Tucson, AZ 85721

INTRODUCTION

With the continuous advances of technology in the area of
automatic control, automation has become increasingly popular
allowing us today to build highly complex control systems e.g. for
modern jet cruisers, nuclear power plants, space stations, etc.
Modern control technology allows systems analysis and control
through a variety of techniques in the time- and/or frequency-
domains. Lead-lag compensators, and state- and output-feedback
designed by means of techniques such as pole-placement or
parameter optimization by solving a matrix Riccati equation repre-
sent some of the techniques presently available. These are all well
understood and widely in use. Decision-making in clearly
predefined situations has also been successfully implemented with
decentralized control systems, expert systems, and rule-based con-
trol systems.

Even though all these techniques work perfectly well under nor-
mal, well defined conditions, they drastically fail when facing
a new, unforeseen (possibly emergency) situation such as a sud-
den, unexpected structural change in the system. Handling such
a situation is a task that still has to be performed by a human
operator with his/her inventiveness and capability of reasoning.
The human mind has the skill of learning from the system
behavior in the emergency, and the inventiveness of finding a
new control strategy for the new situation. No automatic con-
trol technique presently available is able to adapt to unpredicted
structural changes in the system.

Man-in-the-loop systems have been the answer to this problem
until now. However when the degree of system complexity in-
creases even further, human operators are being overloaded by
the amount of information they are provided with. The human
mind is incapable of taking many decisions instantaneously and
simultaneously when these decisions are.to be based on infor-
mation arriving in huge bundles all at once. The amount of data
to be processed is much too large for a human operator to act
reliably and efficiently. Among other reasons, this is due to the
fact that he loses his notion of temporal precedence of the arriv-
ing data items in the fast flowing sea of information that is formed.
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This disables the operator from distinguishing between causes and
effects as the emergency progresses, which is critical for his
decision-making process, and an erroneous decision becomes
likely. ’

We propose to address the stated problem by building an an-line
monitoring system that mimics the human global assessment pro-
cess, that identifies the event, learns the system behavior, and
comes up inductively with a new control strategy for the structur-
ally modified system. This on-line monitoring system will be an
automatic device that merges the best of both worlds: the human
inventiveness and the automatic controller’'s speed and
systematism.

General Systems Problem Solving (GSPS) [10] is a methodological
framework arising from General Systems Theory that allows the
user to define and analyze types of systems problems. In this
methodology, systems are defined through a hierarchically
arranged set of epistemological subsystems. Forecasting and
reconstruction analysis capabilities are two examples of the
capabilities of the GSPS methodological tools. An on-line monitor-
ing system can be implemented in the GSPS framework by using
its inductive inference capability to imitate the human learning pro-
cess. SAPS-II [1] is a software coded at the University of Arizona that
implements the basic concepts of the GSPS framework. SAPS-I has
been implemented as an application function library to the control
systems design software CTRL-C [13]. In terms of common A.I. ter-
minology, we can say that SAPS-Il employs CTRL-C as an Al shell.

Our stratagem was successfully implemented in SAPS-Il for a
longitudinal model of an aircraft in cruise flight. An intelligent
autopilot was implemented using the GSPS framework. It is able
to identify structural changes in the monitored system, and'to learn
enough about the new (unknown, modified, broken) system to
come up with a forecasting model that satisfactorily predicts future
behavior of this system.

The approach taken is depicted in Figure 1.

.
5 CTRL-C }
‘ Qualitative Model :
g (SAPS-II) — ;
U | SO S ) |
hVd
L] Quantitative Model
v (ACSL)

Figure 1. Block diagram of the experimental setup

A guantitative model of the airplane was coded in the continuous
system simulation language ACSL [12]. “Accidents” are built into
the aircraft model which alter the behavior of the aircraft. The data
extracted from the quantitative ACSL simulation is used as our
““measurement data.” The ACSL simulation is executed under con-
trol of CTRL-C (the CTRL-C/ACSL interface is made available
together with the CTRL-C software to customers who hold a valid
license for the ACSL software). SAPS-l functions are used to
qualitatively and inductively reason about the measurement data
taken from the ACSL simulation run, determine that an accident
has happened, find out when it occurred, hypothesize about the
nature of the accident, and decide upon an appropriate corrective
action to be taken.
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THE QUANTITATIVE MODEL

Flight stability can basically be studied through two independent

models: longitudinal and lateral. Longitudinal motions can be

modeled independently from the lateral ones if the following

simplifying assumptions are valid:

1. The airplane is perfectly symmetrical with respect to its median
longitudinal plane.

2. There are no gyroscopic effects of spinning masses (engine
rotors, airscrews, etc.) acting on the aircraft.

In this paper, we have adopted the above assumptions, and con-
sider the longitudinal model of a B747 aircraft in cruise flight at high
altitude.

A longitudinal flight is characterized by the absence of forces and
moments that would cause its lateral motion. Furthermore, the
aeroelastic nature of the airplane’s structure is neglected as well,
so that the rigid body equations of motion apply to the model.

The mathematical model described in this paper reflects an essen-
tially longitudinal flight restricted to longitudinal deviations from
a trimmed reference flight condition. This reference flight is
characterized by the requirement that the resultant force and mo-
ment acting on the aircraft’s center of mass are zero.

It is not the scope of this paper to provide full details about the
stability study of flight. To follow the reasoning process here
presented, one may consult specialized literature from that area
[34,7.9]. The model described in this paper is structurally similar
to the aircraft models that were given in [12,13]. The parameter
values were taken from [8].

The Reference Flight Condition

We will define a reference flight condition as being characterized
by a steady longitudinal and horizontal flight where the resultant
force and moment acting on the plane are zero. The headwind is
assumed to be constant and horizontal.

The Stability Axes

The theory presented in this paper is developed with respectto a
set of body-fixed axes named the stability axes. The origin of this
coordinate system is the center of gravity of the airplane: the x-axis
points in the direction of the motion of the airplane in the reference
flight condition, the z-axis points ‘downward’, and the y-axis runs
spanwise and points to the right.

The Reference Angles

Three angles are defined to describe the relative position of the
velocity vector of the center of gravity of the airplane with respect
to an earth-fixed reference frame and a fuselage-fixed refer-
ence frame.

« is the angle of attack (or incidence) of the airplane which
describes the inclination of the resultant velocity vector v to the
x axis of the body-fixed coordinate system (stability axes). The
usual notation of the velocity components in the stability axes
is u for the x-axis component and w for the z-axis component.
Hence

o = tan” () )

v is the flight path angle of the aircraft, representing the inclina-
tion of the velocity vector to the horizontal, ie., to the x-
component of the earth-fixed reference frame.

§ is the pitch angle, being the one that is best sensed by a human
pilot, for it represents the relative position between the two
reference frames. It is defined in terms of the previous angles
as follows:

0=y +« 2



The relationship between the different variables is graphically
depicted in Figure 2.
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Figure 2. The reference angles

Forces and Moments .
The tangential and normal components of the resultant force, and
the moment about the center of gravity of the airplane considered
as a rigid body, whose mass is constant over time, can be written
in terms of the reference angles v and 6 as:

Fo=m_ 9 33
dt
Foo=my 9 3b)
dt
&0
M, = 3
YT Y B9

The quantities affecting the airplane in flight are its weight W, the
thrust Tdeveloped by the engines, the aerodynamic forces Lift L
and Drag D, and the aerodynamic pitching moment M.

The weight of the aircraft will be considered constant (thus the
weight of the fuel consumed during the flight is neglected).

The thrust developed by the propulsive system will be considered
as being a function of the flight velocity and of its own control
variable &, the throttle opening. For reasons of simplicity, the
thrust line will be assumed to coincide with the x-axis of the stabil-
ity axes. The center of gravity, by definition, is in this axis, and
therefore, the thrust does not affect the moment directly.

The aerodynamic forces Land D compose the force response of
the aircraft to the motion. They act in the mean aerodynamic center
of the wing, causing the aerodynamic moment Mabout the center
of gravity which is defined to be positive for a nose down effect.
The Lift is defined as being the normal component of the
aerodynamic force with respect to the flight path, and the Drag is
its tangential component.

The forces and moments acting on the aircraft are graphically
depicted in Figure 3.

The Aerodynamic Reactions L, D, and M

The standard way of expressing the aerodynamic forces Dand L
and the longitudinal aerodynamic moment Mis through their non-
dimensional aerodynamic coefficients Cp,, C;, and Cy:

1
D= TpVZSCD “4a)
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Figure 3. Forces and moments acting on the airplane.
1
L=~ pv? SC, (4b
1
M =2—pv2757CCM 4o

which shows their direct dependence on the local air density p,
the square of the cruising speed v, and the size of the aerodynamic
surface S of the airplane.

Parameter 75 in the expression for the moment stands for the

characteristic length (for the nondimensional coefficients), taken
as half of the mean aerodynamic chord ¢ of the wing.

The Nondimensional Coefficients Cp,, C;, and C,

These three nondimensional coefficients express the aerodynamic
response of the airplane to variations in the following aerodynamic
variables:

1. « ,the angle of attack

2. §,, the elevator deflexion

3. &, the angle of attack rate
_ 4. g, the pitch rate

Equations (5a), (5b), and (50 below describe the nondimensional
aerodynamic coefficients expressed by a Taylor series expansion
around an initial value (subscript 0) for which «, 8,, @ and g
are zero:

C = +9Cy 4 85 4 3 100, (59
" Ba 3. da  9q
Cp = Cp, + 2C0a &)
da

Coyy=Cy + Chy + 3CM56 + a(;sz +6CMq (50
°  da 35, do aq

The Stability Derivatives

The aerodynamic reactions of the airplane can be represented ap-
proximately by means of stability derivatives, i.e., the coefficients
of the Taylor series expansion above.

Note that as Cp, is strongly influenced by the angle of attack, all
other influences can be neglected.

The « derivatives CLu/ Cp , and C, , describe how changes in the
o o
angle of attack affect the aerodynamic forces and moments. An in-
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crease in the angle of attack generally induces an increase in the
Lift, an increase in the Drag, and a decrease in the pitching
moment.

The § derivatives C;;_and C,,, describe the effect that a deflex-
jon of the elevator has on the Lift and on the pitching moment. A
positive elevator deflexion is defined as being elevator down,
which causes an increase in the Lift and a negative pitching mo-
ment increment.

The o derivatives C,;-, and C,, represent the adjustment of the

pressure distribution on the aerodynamic surfaces to sudden
changes in the angle of attack, as, for example, when sudden
changes in the incidence of the headwind occur.

The gderivatives C, Iq and CMq represent the aerodynamic effects

induced by a rotation of the airplane about its spanwise axis when
the angle of attack is kept constant, for example, keeping the
fuselage horizontal in an arbitrarily varying flight path.

These two rotational effects can be visualized considering a flight
along an arbitrary flight path: first with the fuselage of the plane
always tangential to the flight path (angle of attack kept zero), and
second with the fuselage always horizontal (pitch angle kept zero).

Finally, the nondimensional aerodynamic coefficients can be ex-
pressed by the set of equations:

c/2 .

c/2 .
Cy = CMO + CMaa + CMse‘Se + T[CM;"O[ + Cqu] 69

Note that the rotational derivatives C, . , Cly Cner and Cy, are
multiplied by €/2 . This comes from the fact that these deriva-

. . 1% . o acl2t 5
tives are, in fact, taken with respect to the quantity “—Cvlz—(or l%/l)

where Cis the mean aerodynamic chord of the wing and v is the
cruising velocity.
For example, consider C,, :

Cp = 25 (7a)

a acl
- 9G (7b)

&/ Bix
therefore

acC &
— = <Rz, Cra (8)

do v

Longitudinal Flight Control
Longitudinal flight control means control of the velocity vector v
acting on the center of gravity of the airplane. The two available
control elements are §, for the elevator deflexion and 67 for the
throttle control of the thrust.

The immediate response of the aircraft to a A§  at constant throt-
tle is a brisk rotation in pitch and a consequent change in both
angle of attack and Lift, followed by a curvature v of the flight path.
After this first fast transient, the new steady state flight is character-
ized by the new values of y ;. and ug,. The steady-state speed ug
is fixed by the value of CLss' which, in turn, is determined by é¢
(cf. [4], Sections 2.5 and 9.1).
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The immediate effect of a positive Ad ;with fixed 6, is essentially
a change in the velocity followed by a change in the flight path
angle y. However as a given 8 . fixes a constant steady state velo-
city, the final effect of opening the throttle will be a change in the
flight path angle without changing the speed.

The Overall Mathematical Model

Equations of Motion

We are now able to write down the equations of motion. This will
notbe done in the stability axes, but in the tangential and normal
axes with respect to the flight path, because this simplifies the
equations:

mv = Tcose— D — W siny (9a)
mvy = Tsina + L — Wcosy 9b)
Ig=M 99

§=gqg 9ad

Equation (2) reflects the relationship between the reference angles,
and the position of the airplane with respect to the ground is given
by the equations (10):

h = vsiny (10a)

{10b)

X = v cosy

Aerodynamic Equations

Equations (4a), (4b), and (4¢) specify the aerodynamic quantities
L, D, and M, and the nondimensional coefficients C;, Cp, and Cy,
are given by the equations (6a), (6b), and (6¢).

Closed Loop Equations

The two control laws implemented in the model are standard pro-
cedure in the control of flight stability [4,5]. Feedback of the pitch
angle deviation from its trimmed value (for which the airplane is
in steady horizontal reference flight) into the elevator deflexion sup-
presses effectively the phugoid mode of the airplane which is slow
and very lightly damped. The second control loop was similarly
implemented feeding back the velocity into the thrust.

6e = 5et,’,'m + K0 @ - etrim) (113

T= Ttrim + Ku (u - utrim) (11 b)
The subscript ;, refers to the trimmed value of the variable, and
u is the x-component of the velocity in the stability axes, or

U = v Ccosx (12)

Model Parameters

Listed below are all the values used for the flight related constants.
The airplane related physical data was chosen for a large commer-
cial/cargo Boeing 747 jet plane in cruise flight at an altitude of
20,000 ft and a speed of Mach .5 (= 500 ft/s).

The aerodynamic coefficients were adapted for a trimmed
reference flight with a given set of initial conditions which is
characterized by a horizontal steady flight at 500 ft/s, an altitude
of 20,000 ft, a zero angle of attack, an elevator deflexion of 1.6
degrees (0279 rad), and a constant thrust of 33,000 slugs. The in-
itial conditions were then set such that the flight would start
perfectly trimmed, since approximation errors in the aerodynamic
constants had still to be corrected.



Airplane Constants

I, =27,000,000.0

Y

W = 500,000.0

c =273

S =6,000.0
Physical Constants

g =322

p =0.0012

Aerodynamic Constants

Cp,= 0.036667

[b f2]
[slug]
{f
[f2]

[ft/s?]
[Ib/s?], at 20,000 ft

[1

From a systems theoretic point of view, this means that our ““source
system”” consists of the quintuple:

Sy = {Aé,,, ATuimL Dy} (13)

QUANTITATIVE SIMULATION

In the following experiment, the quanititative model was trimmed
around its operating point. We then evaluated the Jacobian of the
model at the working point to determine the eigenmodi of the
linearized system. These will be used later to determine an ade-
quate sampling rate for the qualitative simulation. Thereafter, we
applied differential step disturbances to the two control inputs of
the nonlinear continuous-time model one at a time, performed two
simulation runs in which the values of the two control inputs and
the three system outputs (under closed loop control conditions)
were recorded, and finally, the results of the two simulation runs
were plotted on top of each other,

The following CTRL-C code shows how the CTRI-C/ACSL inter-
face allows us to compute the eigenvalues and the time constants
of the linearized model.

Cp,= 0.26 [1/rad]
C,, = 0.5455 [ ]
C, =52 [1/rad]
Cy,= 0.36 [1/rad
Cp, = 2.0 [1/rad|
C, =55 [1/rad]
Chp = 0.039 [
Cu, = ~0.74 [1/rad)
Cug, = ~1.4 [1/rad)
Cp, = ~8.0 [1/rad)
CMq = ~22.0 [1/rad]
Feedback Gains
K, =0.25 [ 1]
K, =40.0 [Ib/s]
Initial Conditions

vp = 500.1375 [ft/s]
h, = 20,000.0 [ft)

X =0.0 [ft]

go =0.0 [rad/s]
oy = ~0.000055  [rad]
8, = —0.000055 [rad]
vo =0.0 [rad]
8¢, =0.027886 [rad]
To = 33,005.5 [slug]

INPUTS (CONTROLS) AND OUTPUTS

The “external”’ connections to our quantitative aircraft model are
shown in Figure 4.

—> L
AT >y

Figure 4. External connections to quantitative aircraft model

There are two control inputs, namely the differential elevator
deflexion Ade,,, (i.e., the deviation of the elevator deflexion from
its trimmed value), and the differential thrust A Tyim.

Three quantities are measured as outputs, namely the Lift I, the
Drag D and the flight path angle v. It is postulated that these three
quantities together with the two control inputs suffice to capture
the main characteristics of the aircraft during high altitude
longitudinal cruise flight.

[> ACSL(*SET TMX=0')
[> FREEZE(*X,H*)

[> START

[> o = JACOBIAN

A ' -

—2.6034 ©.98236 2.6137 0.0003
9.5538 ~0.7408 -2.8705 9.0201
9.0000 1.e000 ©.0000 2.0e000

-17.1213 9.0000 -—-15.0787 -2.0059

[> tombda = EIG(a)

LAMBDA -
~8.0850@ + @.0056i
—0.085@ — 9.00561
—2.59901 + ©.87221
—8.5901 - 0.8722]

[> tau = [ —-1/REAL(lambda(1)) ; —1/REAL(1ombda(3)) ]
TAU -

11.7648

1.6948
[> tsample = ROUND(tau/2)

TSAMPLE -

In the first statement (“[>" is CTRL-C’s prompt for interactive user
input), a value of 0 is passed from CTRL-C to the ACSL variable TMX
(denoting the final time of the simulation). The next statement
(““freeze(x,h’)") tells ACSL to eliminate the two state variables x
(the horizontal displacement) and h (the vertical displacement)
from the linearized model. This is necessary since both these state
variables are outputs of open-loop integrators that cannot be
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“trimmed.’ ACSLs “TRIM” command could have been used next
to trim the model to stationary initial conditions (where all state
derivatives are zero). However, this step was not necessary here
since the initial values had been picked carefully so that the model
would always start off from a trimmed initial state. The third state-
ment (“‘start’’) performs a “‘simulation” from time 0 to time TMX
(also 0) which is necessary to determine the linearized model. The
last statement ("“a=jacobian’’) tells ACSL to linearize the model
around the current (trimmed) state, and to export the resulting Jaco-
bian (the system matrix of the linearized model) back from ACSL
to CTRL-C. The following statements are regular CTRL-C statements
to determine the eigenvalues of the Jacobian, and to estimate the
time constants which will be required later. The slowest time con-
stant present in the model is 7; = 12 seconds.

The following two sets of CTRL-C/ACSL code were used to retrieve
the step input response of the system shown in Figures 5a and 5b:

[> ACSL('SET inpt=1, tmx=200, cint=.1')

[> ACSL('SET ddei=m—.001, tdeim1d’)

[> ACSL(*SET dde2=d, dde3ed, dtr1=@, dir2=0, dtr3=d')
[> [t.de,detrim,1,d,ga] = START;

[> SAVE >temp.dat

Here, the simulation is started from trimmed conditions at time
zero. It is being perturbed with a negative step of magnitude —.001
radians in the reference value of the elevator deflexion scheduled
attime t = 10 seconds. The time history of the perturbation step
8¢, and its effect on the elevator deflexion, Lift, Drag, and flight
path angle are temporarily saved.

The next code describes the simulation of the model with a per-
turbation step of magnitude §; = 3,000 slug in the thrust, again
scheduled to happen at time t = 10 seconds.

[> ACSL('SET Inpt=1, tmx=200, cintw.1°)

[> ACSL('SET dtri=3eee, ttri=10")

{> ACSL('SET dde1=d, dde2=8, dde3~d, dtr2=a, dtr3=d")

{> [tr.trtrim,1,d,go] = START;

{> ttr = 1; dtr = d4; gatr = ga;

{> CLEAR I 4 ga

[> LOAD 1 d ga <temp.dat

[> term = *4100';

[> wiNDOW('211°), PLOT(t,{de.detrim]),  XULABEL('TIME'), YLABEL('DE,DETRIM’)
[> wINDOW(’212°), PLOT(t,[tr,trtrim}), XUABEL('TIME'), YLABEL('TR,TRTRIM’)
[> // SCREENCOPY => Figure 5a.

[> ERAsE

[> WINOOW('211°), PLOT(R,[1,1tr]), XLABEL({'TIME'}. YLABEL{'LIFT*)

[> wINOOW(’212'), PLOT(t,[d.dtr]), XLABEL('TIME'), YLABEL('DRAG')

[> // SCREENCOPY => Figurs Sb. (flrst part)

[> ERASE ‘

[> WINDOW('211"), PLOT(t,[9a,9atr]), XUABEL('TIME'), YLABEL('g’,’g")

[> // SCREENCOPY => Figure 5b. (second part)

The outputs of the second simulation run are the perturbation step
input, and its effects on the thrust, Lift, Drag, and flight path angle.
The variables are renamed so that we can reload the time histories
of these same variables from the first simulation run.

The results of the two ACSL simulations are plotted using CTRL-
C’s (rather than ACSUs) graphical output processor. The results are
presented in Figure 5a (showing the two inputs for both simula-
tion runs), and Figure 5b (displaying the three outputs for both
simulation runs).

The solid-line plots represent the response of the system to a step
change in the elevator deflexion at fixed throttle opening, and the
dashed-line plots represent the response at fixed elevator deflex-
ion and a step change in the thrust. Both perturbations start from
the trimmed reference flight characterized by the initial conditions.

The Experimental Design
In order to take correct global decisions, we should learn as much
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as possible about the system under investigation. From classical
identification techniques commonly used by control engineers,
we know that we can learn the most about a system under investiga-
tion if we disturb (shake) it by exerting all frequencies equally. This
can best be achieved by applying random input streams to all in-
put variables.
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Figure 5a. Effect of the perturbations on the controls
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Figure 5b. System response to the perturbations

For our purpose, it proved most effective to apply random ternary
disturbancesto both control inputs, i.e., to assign a constant value
to each of the two control inputs during each communication inter-
val (CINT), a value which is either equal to the trimmed reference
value itself or equal to the reference value plus or minus a “unit”
step disturbance (001 radians for the elevator deflexion, and 3,000
slug for the thrust). The sign of the disturbance is randomly selected
between +1,0, and -1 once per communication interval.



GENERAL SYSTEMS THEORY
GSPS

General systems problem solving or analysis through General

Systems Theory starts by defining a region in the universe where
the system and the observer coexist and interact.

A system in this context can be interpreted as a set of relations be-

tween some objects that belong to that region of the universe and -

in which the observer is interested.

Therefore, the first step to problem solving, or analysis, is the defini-
tion of the system: what is it, that is of interest to us concerning the
problem under study? A set of variables to represent the system has
to be chosen, and this set is to be classified into input variables
and output variables, which is a natural classification of the
variables: input variables depend on the environment and control
the output variables.

Epistemological Hierarchy

The GSPS framework is a hierarchically arranged set of epistem-
ological subsystems. Starting at level zero, the amount of
knowledge in the systems increases as we climb up the epis-
temological ladder. The lower level subsystems are contained in
the ones that are at higher epistemological levels.

The Source System

At the lowest epistemological level, we find the Source System
which represents the system as it is recognized by the observer. The
amount of information present at this level represents the basic
description of the problem in which the observer is interested:
which variables are relevant to the problem, what causal relation-
ships are present among them (which are inputs and which are out-
puts to the system), and which are the states these variables can
possibly assume along their time-history.

To illustrate the definition, let us consider the first flying lesson of
afuture pilot in a B747 flight simulator. Let us assume the simula-
tion starts off from a stabilized (trimmed) longitudinal flight at high
altitude. The job of the would-be pilot is to bring the aircraft safely
down to the ground. So, he starts by playing around with all the
controls that he has available, very cautiously in the beginning. He
suddenly detects a control that makes the nose of the aircraft go
up and down with respect to the horizon (he ““senses” the flight
path angle). Then he gets curious about the velocity and checks
out the speedometer: the speed is around ““500.!” The number does
not mean much to him, since he does not even know the unit it
is coded in. But it is a reference value because the plane is flying
alright; so that must be a good value for the air speed. He tries the
controls again and observes the variation of the speed until he is
able to code the reading of the instrument to something like:
“somewhere near 500, “above 500" and “below 500.” Then he
moves to the other variables that he can find, and within his
capabilities of observation, he analyses them and codes them in
the way he understands and feels them. He builds a mental model
of the aircraft. When he gets enough confidence in his understan-
ding of the way things work in the cockpit, he starts to experiment
a little more aggressively. Things like “What happens if../’ start
crossing his mind, and he starts restricting his attention to certain
aspects of the flight, defining in this way an area of interest in that
sea of instruments and different sensations he is experiencing for
the first time. The knowledge that our aspiring pilot has now
acquired-a set of variables of interest and a set of states these
variables can potentially assume-is defined as a Source System
in GSPS.

The number of states, or levels, that each variable can potentially
assume is essentially problem dependent. It should be kept as low
as possible without unacceptable loss of information. Consider
again the speedometer with its needle at 500. Let us assume that

that is the standard cruise velocity for the airplane, and therefore,
in that region, the scale has a higher resolution with more subdivi-
sions. In his first experiments, our pilot was doing fine interpreting
the velocity as “about 500, “*high,” and ““low;” but now he may
wish to become a little more accurate because he wants to fly faster
and slower, and he decides that five levels are more appropriate
for his new task.

The Data System
The next epistemological level in the hierarchy is represented by -
the Data System. It includes the Source System and, additionally,
the time-history of all the variables of interest.

The Behavior System

One epistemological level higher we find the Behavior System
which holds, besides the knowledge inherent to both, Source and
Data Systems, a set of time-invariant relationships among the
chosen variables for a given set of initial or boundary conditions.
Behavior systems can be considered basic cells for yet higher
epistemological levels, the so called Structure Systems.

The time-invariant relationships among the variables are trans/a-
tion rules mapping these variables into their common spaces. They
can be used to generate new states of the variables within the time
span defined in the Data Model, allowing in this way an inductive
system modelling feature in the methodology. it is based on this
feature that a monitoring device for the system can be built to detect
structural changes in it. Due to this characteristic, Behavior Systems
are also called Generative Systems.

The Concept of a Mask

A Data Model in the GSPS framework is an n,.. x n,,, matrix
where n,is the number of recordings (data points) collected in
the time span covered by the Data Model, and n,,,, is the number
of variables present in the model. This is a matrix representation
of the time-history of the system, and the convention is that time
increases from the top to the bottom of the matrix.

A mask is a matrix representation of a translation rule for a given
Data Model, hence, it is a matrix representation of a Behavior
Model of the system. The dimensions of the mask are (d + 1) x
Ny, , where dis the depth of the mask representing the number
of sampling time units covered by the mask.

The active elements of a mask are called sampling variables, and

represent the variables that are to be considered in the translation

rule associated with the time instant they occur.

Generative masks include in their structure the notion of causality
among the variables. Elements of a generative mask are zero,
negative, or positive, meaning ‘neutral element,” “generating ele-
ment,” and “‘generated element,” respectively. For example, a
generative mask like

\l \%) V3 Vi Vs
t — 2At 0 0 -1 0 0

t— At -2 0 0 -3 oy
t 0 -4 0 0 +1

corresponds to the translation rule:
A (t) = f(V3 (t - 2At), V](t — At), Vi (t — At), Vs (t))
where v; () is the state assumed by the variable v;attime t = =

The Sampling Interval

Note that the Behavior Model above takes samples of the Data
Model at every Aty data point to predict the state of vs. Hence, At
is the sampling interval ¢, of the collected data set. There is not a
precise way of determining the most effective sampling interval to
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be used, but a good rule of thumb is that the mask should cover
the dynamics of the slowest mode in the model [2]. In the case of
the given example, the mask has depth 2 and the sampling inter-
val Atshould then be about half of the slowest time constant of the
model. In our case, the slowest time constant was found to be
71 = 12 seconds. Accordingly, we selected the sampling period
(CINT in the ACSL program) to be 6 seconds. Experimentation with
different sampling periods verified this to be a good choice.

Notice however that, as outlined in [2], selection of an appropriate
sampling rate is absolutely crucial to the success of our endeavor,
thus careful experimentation with this parameter is indicated under
all circumstances.

Converting Quantitative Data into Qualitative Data

In order to be able to qualitatively reason about the behavior of
our system, we need to convert the “measured”’ quantitative data
(i.e. continuous variables) into qualitative data(i.e. variables of an
enumerated type). GSPS calls this process the recoding of the
measurement data. SAPS-Il provides for various algorithms to
recode real variables into sets of integers.

The control inputs of the source model are the perturbations
Ab,,, and ATy, affecting the model through step changes in
the trimmed reference values of the elevator deflexion and of
the thrust developed by the engines. The shaken flight phase has
been implemented in the model such that these step changes
occur at every communication interval being randomly negative,
zero, or positive, and therefore, each of these variables can
assume three different states. These can naturally be recoded into
the set of integers {1 2 3}.

The output variables {L D+ } are truly continuous variables, and
an appropriate selection of the recoding procedure will decide over
success or failure of our endeavor. The number of recoding levels
to be used for each variable has, intuitively, to be odd if we want
to have a “normal”’ range of operation, and variations about it. Let
us try first to allow five different ranges for each output variable
denoting “very low,” “/low,” “average,” ‘’high,” and “very high”
represented in SAPS through the set of integers {12345 }. But
where should we draw the line between neighboring levels? Which
values are “low’’ as compared to ““very low’’? We could ask an ex-
pert’s opinion (which may frequently be the best solution).
However in many cases (such as the case of our likely crash pilot
in the flight simulator), there is no expert around. In this situation,
it seems intuitively most appealing to request each “class” (range)
to contain the same number of “members” (samples). This can best
be achieved by sorting each output variable separately (using the
standard CTRL-C sortfunction), thereafter split the resulting vec-
tor into five subvectors of equal size, and determine appropriate
elements for the from-matrix used in the recoding by looking at
the first and last elements of each subvector. The following
SAPS/CTRL-C code shows the recoding process.

[> [nr.av) = SIZE(data);

[> from = ZROW(1.,3):

{> raw = ZROW(nr,1);

{> FOR I=t:nv, ...

> [tog.d1] = SORT(dota(:,i)): ...

> fr{1,1) = d1(1); ...

[> 1r(2,1) = 8.5¢(d1(ROUND(nr/3)) + d1(ROUND(nr/3)+1)); ...
> fr(1,2) = fr(2,1); ...

> 1r{2,2) = 8.5¢(d1(ROUND(2onr/3)) + d1(ROUND(2enr/3)}+1}): ...
> r(1,3) = fr(2,2); ...

> fr(2,3) = di(ar); ...

> r = RECODE(data(:,1), DOMAIN® ,fr,1:3); ...

> raw = [raw,r]; ...
> from = {from;fr]; ...
> END

[> raw = row(:,2:nv+1);
[> from = from(2:2env+1,:);
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One last parameter still needs to be decided upon, namely the
number of recordings that we need for our GSPS analysis. From
classical statistical techniques, we know that each ‘“class” (that s,
each possible state) should contain at least five “members” (i.e.,
should be recorded at least five times) [11]. Therefore, if n,,,
denotes the number of variables, and if n,,,, denotes the number
of levels assigned to the variable v, after recoding, we can write
down the following (optimistic) equation for the minimum
necessary number of recordings (n,..):
Nyar
Nrec = 5 11 Njey; (13)
i=1

i.e., in our case:

Mec =5*3%3*5%5 %5 = 5625

Unfortunately, SAPS-! is currently limited to 2,000 recordings. For
this reason, it was decided to recode all five variables into three
levels only. However, it would have been perfectly feasible to
recode two of the three output variables into five levels, and only
one into three levels. There is always a conflict between the
demands of simplicity for the purpose of a strong forecasting power,
and an improved resolution for the purpose of a strong ex
pressiveness of the model. .

Recoding each variable into one level only results in an infinitely
“valid” model with no expressiveness whatsoever. On the other
hand, recoding each variable into a high number of levels (ignor-
ing for the moment the given limitations of SAPS-1I) will result in
a highly “expressive” model with little to no forecasting power.

Notice that we just came across a serious problem with our model-
ing methodology which drastically limits the applicability of the
proposed technique. Originally, we had believed that we could
detect a structural change in the model, and on-line identify a new
“model” (that is, generate a new set of masks) for the damaged air-
craft. Unfortunately, this is not so. Since the sampling rate cannot
be chosen freely but depends on the (structurally determined)
eigenvalues of the system, and since the number of recordings can-
not be chosen freely but depend on the complexity of the given
source system (i.e. the number of variables and the number of
levels), we can compute the minimum required total simulation
time (TMX) for the generation of a set of new masks as:

TMX = n . * At (14)
i.e., in our case:
TMX =~ 2500 * 6 seconds = 15000 seconds = 4 hours and 10 minutes

That is, we must fly the already damaged aircraft for more than four
hours before we can identify a new ““model”’ (set of masks) which
would enable us to take a global decision as to how to control the
future flight of the aircraft.

For the above reasons, our current study limits us to distinguishing
between different types of prerecorded‘‘accidents.” Such a deci-
sion can be taken much more rapidly, namely after approximately
5 minutes only.

The conclusion that something went wrong can be drawn even
faster, namely 30 seconds after the accident happened. (It is still
questionable whether our “intelligent”” autopilot would be granted
his ““flying license”” with the exhibited response time though!)

In order to be able to react more quickly, we would have to feed
more a priori knowledge into our qualitative simulator which
would make the simulator less generally applicable, but more



effective for the task at hand. E.g,, rather than letting the simulator
experiment with the controls at random, we could ask an expert
pilot what type of experiments he would perform under such cir
cumstances, namely e.g. to check which is the smallest radius of
a circle that the aircraft is still able to fly.

The Optimal Mask Analysis

Given a Data Model, any topologically compatible mask
associated with it is ““valid” since it denotes a representation of
a relationship among the sampling variables it contains. The ques-
tion now is ““How goodis the mask?/’ “How valid is the transla-
tion rule it represents?’” There are numerous possible masks that
can be written for one set of variables, and it is desirable to deter-
mine among all possible masks the one that shows the least uncer-
tainty in its generating capability, i.e., that maximizes the
forecasting power. This is exactly what the optmaskfunction of
SAPS-Il evaluates. The measure of uncertainty that is currently
employed by this function is the Shannon Entropy. SAPS-II requests
the user to specify a mask candidate matrix which contains the ele-
ment —1 for potential generating elements of the resulting optimal
mask, O for neutral elements, and +1 for generated elements of the
optimal mask.

We assume that the present states of the outputs do not affect each
other, whereas current states of the input variables may affect any
of the outputs instantaneously. The following set of mask candidate
matrices was used for the optimal mask evaluation:

The following CTRL-C/SAPS code evaluates the optimal masks:

[> mcont = —1«ONES(3.5);
[> mcan2 = —1sONES(3,5); mcon2(3,3:5) = [@.1,8];
{> mcan3 = —1+0NES(3,5); mcan3(3,3:5) = [8,0,1];
[> mask1 = OPTMASK{rowrec,mconi,5):
[> mask2 = OPTMASK{rawrec,mcan2,5):
[> mask3 = OPTMASK{rowrec,mcan3,5):

mcan1(3,3:5) = {1,0,0];

The following masks were found to best represent the aircraft under
normal (i.e. undisturbed) flying conditions:
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Forecasting

Now let us apply the generative systems represented by the optimal
masks just calculated, to see how well they are able to forecast
future behavior of the same system.

To do so, we will use a less shaken data model to represent a nor-
mal flight in a more natural way. A more realistic flight, but still a
dynamic one, can be represented by the model being driven by
harmonic functions of fairly long periods, which was implemented
by sinusoidal functions affecting the same trim values &, and
Twim- The amplitude of the functions is the same as the magnitude
of the respective pulses in the shaken flight: A §, = .001 rad and
AT = 3000 slug. In this flight phase, the frequency of oscillation can
be set by the parameters WDE for the elevator deflexion and WTR

for the thrust, but their default values: WDE = 0.1 and WTR = 005,
yielding periods of about 63 and 126 sec. respectively, were used
in the following run. The length of the flight will be 15600 seconds,
generating, at a sampling interval of 6 sec., a data model with 2601
recordings, out of which the first 2500 are used for the determina-
tion of the optimal masks while the final 107 values are used later
on for comparison with the forecast.

Recoding of the data model was done into three levels for all
variables. The input variables now need recoding as well, since
they are no longer discrete values. However, as both inputs are har-
monic, their recoding can be done evenly in their range of angular

variation:
level 1: [ : ﬂ.) rad
3

level 2: 27 Am rad
3 3

level 3: _437r_,27rEO> rad

Recoding of the output variables requires a little more insight. The
inner limits of the recoding levels that were used to recode the
shaken output data in the optimal mask analysis should be used
here as well, since we are going to use those masks. The outer limits
should be adjusted so that every measured data point belongs to
one level. This is important, since the recoding function will not
recognize values outside the limits specified in the from-matrices.

Now with the data model composed by the recoded data matrices
and the system’s optimal masks, we can use GSPS’s inductive
reasoning feature (the forecastfunction of SAPS) to see how wel!
it guesses which states the output variables will assume in the ten
following sampling intervals, given a certain set of inputs for those
data points.

We will use the user defined CTRL-C/SAPS function FRC (its code
has been listed in [2]) which is a forecasting function coded spec-
ially for this type of problem. It uses the standard SAPS-1] forecast-
function three times for every time instant, once with each optimal
mask, to forecast the state assumed by each output variable at that
time instant. Forecasting will only be terminated when states for
all three outputs have been forecast for the requested 100 steps;
the minimum acceptable probability associated with the
forecasting is set to zero.

Comparing an excerpt of the measured (and recoded) data
(FUTURE) with the same excerpt of the forecast data (FRCST) e.g.
for the data points 2551:2560, the following results are obtained:

future = 2, 2. 1, frest = 2. 2. 1. error = 9. 0. ©.
2. 2. 1, 2. 2. 1. 8. 9. o.
2 2. 2, 2. 2. 2. e. o. o.
2. 1. 2, 2. 1. 2. 8. e eo.
2. 1. 2, 2. 1. 1. 8. o. 1.
2 1. 1. 2. 1. 1. . 0. o.
2 1. 1. 2. 1. . e. o. o.
2 1. 1. 2. 1. 1. e. e. o.
2. 2. 1, 2. 2. 1. 9. @. o.
3. 3. 1. 3. 3. 1. 8. o. e.

Both the first and the second output variable were forecast without
a single error (within the resolution of the discretized values). Only
the third output variable (v) contains one incorrect prediction.

More details about the process of determining the best optimal
masks, and about the forecasting process are presented in [14].
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Forecasting Behavior of Open Integrator Variables

One of the major weaknesses and, paradoxically, also one of the
major strengths of the GSPS methodology is the fact that the
forecasting process will come to a stop as soon as a system state
has been reached that has never been seen before. In such a case,
GSPS has no way of predicting what the next state might lock [ike.

This creates considerable difficulties if one of the variables to be
predicted is the output of an open integrator (such as the altitude
of the aircraft in our example). The smallest disturbance will either
increase or decrease the cruise altitude of the aircraft, and thereby
jeopardize the forecasting capability of our tool.

This is a weakness since, all too often, the forecasting process in-
deed comes to an end, and we have to be quite inventive to con-
vince SAPS-]I to forecast any behavior beyond this point. This is
also a strength since the model validation process is an intrinsic
part of the simulation.

For comparison, consider Forrester’s World Model [6]. System
Dynamics, an alternative modeling methodology, has no scruples
whatsoever in “‘predicting’’ the behavior of Forrester’s ‘“World"’
ata pollution level which is 100 times higher than any value that
has ever been recorded on this planet. SAPS-! will strictly reject
succumbing to such a temptation.

There are several ways in which we can cope with this difficulty.
We may be able to circumvent the problem by selecting another
measurement variable into our source model as a replacement for
the open integrator variable. A good candidate might be the
derivative of the open integrator. Most engineering systems don’t
exhibit two open integrators in a row. Alternatively, the open in-
tegrator variable can be filtered prior to its further use. SAPS-II
allows to compute a pseudo-derivative of any variable through the
use of its difffunction which shifts through the measurement vec-
tor, and successively computes the difference between neighbor-
ing elements. Another filter might be to compute a moving average
of several elements in a measurement vector, and subtract this mov-
ing average from the measurement data. In SAPS-, this can be ac-
complished by use of the averagefunction. It was the latter ap-
proach that has been adopted in our example to get rid of problems
caused by altered steady-state levels,

THE BROKEN MODEL

The optimal mask analysis was repeated for a number of situations
where one or the other type of ““damage’” had occurred. For each
type of damage, we received one set of three optimal masks
representing the behavior of the aircraft under the influence of this
damage.

The ultimate idea was to simulate the occurrence of a damage in
full flight. Figure 6 shows an excerpt of the data recorded from such
an ACSL run for the flight path angle shortly before and shortly after
the accident occurred. Notice that the momentary mean value has
been subtracted already before this curve was drawn. The accident
is marked by a vehement shock from which the aircraft recovers
quickly. The recovery takes roughly 20 steps or 2 minutes. The
shape of the curve as shown for the next 5 minutes of flight follow-
ing the high frequency oscillation is an artifact resulting from the
way in which the moving average was constructed. In our program,
we used 50 steps (5 minutes) for the computation of the moving
average, i.e., the data are still distorted for the next 5 minutes after
the aircraft has already recovered from the accident.

Forahuman eye, the occurrence of the damage is quite visible from
the graph. However, this would not have been true, had we just
looked at the tabular values instead of the graph. Since that is really
what the computer algorithm does, it is not so obvious how we can
get our inductive reasoning mechanism to pick up and correctly
interpret the damage as soon as possible once it occurred.
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Figure 6. Excerpt of a trajectory in the neighborhood of the accident

The following approach was taken. By constantly comparing the
observed (and recoded) values with their forecast counterparts, we
should be able to register the accident since, following the acci-
dent, the mask no longer optimally represents the aircraft, and
therefore, we expect to see a mismatch between the registered and
the forecast values. The following CTRL-C code is used as a “‘data
filter’” applied to the error matrix between the ““measured” and
the predicted behavior of the aircraft.

[> error = ABS(future — frcst);
(> error = errorsONES(3.1);

[> smoothed = AVERAGE(error,3);

[> normed = 1.4Sesmoothed/6;

[> filter = ROUND(normed);

Figure 7 shows graphically the output of this data filter for two
separate time periods, namely for the neighborhood of the acci-
dent, and again a couple of minutes later after the aircraft has
stabilized itself.
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Figure 7. Output of the error signal data filter

The accident occurred at step 2452. As can be seen, the data filter
operates very effectively on the error signal, allowing us to con-
clude after very few steps only (about 5 steps, i.e., 30 seconds at
the latest) with certainty that something must have gone wrong
with the aircraft. During the initial phase after the accident (i.e.,
during the oscillatory period), the forecasting process fails entirely
(as expected). However, even after the aircraft has stabilized itself
again (i.e., during a period where the output of the aircraft looks -
quite similar to thé output from the period before the accident took
place, the forecasting procedure still picks up the difference in the
behavioral pattern that the aircraft now exhibits.

In the next step, we will, in parallel, apply all other previously
established optimal masks to the measured data to see whether
any of them produces a good match (i.e., a low signal at the out-
put of the data filter) with the measured (and recoded) data. If this
is the case, we reason that, with high probability, we have iden-
tified the type of accident that has occurred. If this is not the case,
we had better wake up the human pilot and ask him to take over
from there.

The set task has been accomplished with very good success. Ap-
plying the optimal mask analysis to the data after the aircraft has
recovered from the accident leads to a different set of optimal masks
than the one found for the original aircraft. Using this set of optimal



masks in the forecasting process leads to a good and reliable
prediction of the aircraft’s behavior under the fauity flight condi-
tions. Had this set of optimal masks been recorded beforehand,
it could have been used to correctly identify the cause of the pro-
blem. It takes roughly 50 steps (i.e. 5 minutes) to come up with a
decent hypothesis about the type of accident that has taken place.
This period is related to the recovery of the aircraft. We must wait
until the aircraft has stabilized itself again before we can success-
fully analyze the cause of the problem using our methodology.

Once a match has been found, we can do one of two things.

1. We can use this information to let the human pilot know what
we found out about the cause of the problem, i.e., we can use
this information for a ““consultation system,” or

2. we can use this information as an input to an “adaptive” con-
trol system which will exchange the previously used (conven-
tional) autopilot for another modified (but still conventional)
autopilot that has been optimized to fly the aircraft after an ac-
cident of the hypothesized type has occurred. From now on,
SAPS-Il will use the optimal masks for this type of damage to
compare the measured (and recoded) data from the quantitative
aircraft simulation with predicted qualitative values evaluated
by shifting the optimal mask over the measured data matrix.

CONCLUSIONS

While the proposed methodology does not lend itself yet to adap-
tive on-line control of unforeseen types of accidents (because of
the very long time delays that are imposed on the evaluation of a
new behavior model), it was possible to aid a conventional
autopilot in its global decision making process. This is quite feasi-
ble and practical, and could be adapted to a real autopilot of a real
aircraft.

In order to truly solve the on-line control problem, it would
however be necessary to feed the model search algorithm with
more specific information about the type of process (the aircraft)

that is to be controlled. In this way, the amount of time necessary
to come up with a new ““mental” model of the damaged aircraft
could be drastically reduced, and could hopefully be made similar
in length to the time needed by a human pilot to come up with
an appropriate action plan, '
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