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1. Introduction

An important objective of our research is the develop-
ment of a methodology combining the quantitative
simulation of a continuous process with the qualitative
simulation of an automated supervisory control system.
In this paper, qualitative simulation is applied to
inductively reason about the behavior of a quantitative
simulation model representing a B-747 airplane in high-
altitude horizontal flight. The qualitative model must be
capable of mimicking the human situation assessment
process, to learn how the system behaves, to identify
specific events, and to come up with a new control
strategy for the system once it has been structurally
modified.

A previous research effort at the Uruver31ty of Ari-
zona resulted in a crisp inductive reasoner that was able
to recognize within a few seconds after a simulated
malfunction had taken place that the aircraft had
qualitatively changed its behavior, which then triggered
a diagnostic engine that enabled the reasoner to distin-
guish between 10 different types of malfunctions after
stimulating the aircraft by adding a small amount of
binary noise to the input signals and examining the
aircraft’s reaction. The results of this study were re-
ported in this same journal in 1989{14].

The current research effort extends the previous
investigation by mcorporatmg fuzzy measures 1nto the

*This technical note is a reduced version of a conference paper presented at
the Qualitative Reasoriing and Decision Technologies Conference in
‘Barcelona, Spain; 1993.

**Partidlly supportéd by CONACyT, México.
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inductive reasoning process, and by modifying the
algorithm for the evaluation of the quality factor of the
qualitative (structural) relationships found by the
inductive reasoner. In this paper, the enhancement of
the discriminatory power of a fuzzy inductive reasoner
over a crisp inductive reasoner will be demonstrated. As
a consequence, the number of errors in the qualitatively
predicted states has been reduced from one third to less
than one tenth, and the error chains produced by those
errors have almost vanished. Also, it will be shown that,
while the previously used reasoner had sometimes
difficulties to discriminate between different types of
malfunctions, the fuzzy inductive reasoner is able to
discriminate clearly and unambiguously between
different types of malfunctions that make the aircraft
react in similar ways. Also, the fuzzy inductive reasoner
is able to identify malfunctions in a shorter span of
simulated time of the quantitative model than its crisp
counterpart. In addition, the fuzzy inductive reasoner
allows prediction of a quasi-continuous response
spectrum, whereas the crisp inductive reasoner is able to
predict discrete (class) values only.

2. Description of the Application

A number of publications on inductive reasoning
have previously been published by the same research
group. The earliest paper describing the method can be
found in[3]. Details on the numerical aircraft model and
the application of the crisp inductive reasoner to it can
be found in[13]. A compressed version of{ 13} was
published in[14]. The fuzzy extension of the inductive
reasoning methodology was first discussed in [7], and
was elaborated upon in[4]. The application of fuzzy
inductive reasoning to the aircraft model was presented
in[1]. Different defuzzification methods were compared
in[11]. Finally, the combination of quantitative and
qualitative simulations involving a differential equation
model for the quantitative subsystem and a fuzzy
inductive reasoner for the qualitative subsystem were
first presented in[5]; the construction of a qualitative
model itself is also described in the same reference. In
the interest of saving space, the results that were
presented in the aforementioned earlier publications
will not be repeated here. The interested reader is
invited to consult the earlier publications to familiarize
him or herself with the details of the methodology.

2.1. The Quantitative Model

The ACSL[9] numerical aircraft model used in this
research effort is exactly the same that was reported in
the previously published paper[14]. This model, named
B4, corresponds to a Boeing 747 airplane at cruise flight.
The original aerodynamic parameters of this model
were modified to obtain four different models, with

which a library was constructed. These models repre-
sent structural changes of the original plane, and were
thought to be sufficiently representative to be consid-
ered as transients/accidents. The main characteristics of
these models are:[13]

¢ Model B4 is the original model that represents a
Boeing 747 in cruise flight at high altitude. Its
aerodynarmic parameters are considered as refer-
ence values for the other models.

* Model 747 represents an enlarged Boeing 747 in
cruise flight. The values for the Lift L, Drag D,
aerodynamic momentum M, and the pitch angle
O are changed in comparison with the B4 model.

* Model B5 represents a change of the original B4
model, in which the aerodynamic parameters L
and D are increased, whereas M and 68 are de-
creased. -

e Model B13 represents another change of the B4
model. Here L, D,and 8 are increased, whereas M
is decreased.

* Model Bl4isvery similar to the B4 Model. The only
difference is that M and 6 are slightly increased.

2.2. The Qualitative Model

In this section, only a brief description will be given in
order to show the differences between the crisp and the
fuzzy inductive reasoner, since these differences will be
elaborated upon later in the paper.

The data extracted from the numerical ACSL simula-
tion constitute the “measurement data” of the qualita-
tive model. The execution of the quantitative model, and
the extraction of the measurement data matrix were
now done under the control of Matlab[8] instead of
CTRL-C[12] as used before, but this is without further
concern, since the two versions of SAPS are identical in
their behavior.

The discretization needed to enable the qualitative
reasoning process is done by means of fuzzy recoding
instead of crisp recoding[6]. In the fuzzy recoding
module, a fuzzy membership value is appended to the
recoded (class) value, so this process can be referred to
as “fuzzification”[10]. The discretized variables are
used to find the most plausible qualitative relationship
among them, which is called the fuzzy optimal mask.
This optimal mask will in turn be used to qualitatively
forecast the behavior of other variables. This process is
called qualitative simulation through fuzzy inductive
reasoning. The main difference between the crisp
forecast and the fuzzy forecast is that the former pre-
dicts not only the class value but also the values corre-
sponding to the membership function.
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From the resulting qualitative variables, continuous
signals can then be “regenerated” that can subsequently
be used as inputs to other quantitative or qualitative
submodels. In the context of fuzzy systems, the regen-
eration process is known as “defuzzification.” Figure 1
shows the fuzzy inductive reasoning process. The
inference engine has both a crisp part, where the
qualitative class and side values are computed, and a
fuzzy part where the fuzzy membership values are
computed.

2.3 Differences Between a Crisp and a Fuzzy Inductive
Reasoner

There exist two main differences between the previ-
ously reported crisp inductive reasoning methodology
and the currently employed fuzzy inductive reasoning
approach. The first lies in the computation of the quality
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Figure 1. Fuzzy inductive reasoning process.
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measure of the masks, and the second lies in the utiliza-
tion of the available fuzzy measures in the inductive
reasoning process.

a)The Quality Factor

The quality of a structural relationship, i.e., a mask, is
primarily determined through the Shannon entropy of its
state transition matrix, which determines its forecasting
power over a single step. The Shannon entropy relative
to one input is calculated from the equation

H; =" p(o]i) - log, p(o]i) )
Yo

where p(o |1) is the conditional probability of a certain
output state 0 to occur, given that the input state i has
already occurred. The term probability is meant in a
statistical rather than in a true probabilistic sense. It
denotes the quotient of the observed frequency of a
particular state divided by the highest possible fre-
quency of that state. The overall entropy of the mask is
then calculated as the sum:

H,, = —ZP(")'Hi )
Vi

where p(i) is the probability of that input to occur. The
highest possible entropy H_, is obtained when all
probabilities are equal, and a zero entropy is encoun-
tered for relationships that are totally deterministic. A
normalized overall entropy reduction H_is defined as:

H,
H max (3)

H =1.0-

It is not practical to use the Shannon entropy exclu- -
sively in the performance index that evaluates the
quality of a mask. The reason is that, with growing
mask complexity, the number of discrete states the
system can be in grows. Since the total number of
observations remains constant, the observation frequen-
cies of the observed states become smaller and smaller,
until eventually every state that has ever been observed
has been observed precisely once. Thus, all observed
state transitions are totally deterministic, and the
forecasting power over a single step is maximized.
However, the predictiveness of the model over several
steps will nevertheless be poor, since already the next
predicted state will, in all likelihood, have never been
observed before, which will bring the forecasting
process to an immediate halt. ‘

The previously employed methodology used the
complexity of the mask, that is, the number of relation-
ships among variables, in the performance index.
However, the mask complexity is only an indirect



measure of the number of legal states. The currently
employed methodology uses the observation ratio, a
quality measure that reduces the mask quality if there
exist states that have been observed less often than five
times. Thus the observation ratio, O, is introduced as an
additional contributor to the overall quality measure for
a better selection of the optimal mask:

0. = 5-m5y +4-n4 +3-n3x +2-n2y + N1y

4
5 g @)
where:
N, = number of legal input states;
n,, = number of input states observed only once;
n, = number of input states observed twice;
n,, = number of input states observed thrice;
n, = number of input states observed four times;
n,, = number of input states observed five times or more..

If every legal input state has been observed at least
five times, O, is equal to 1.0. If no input state has been
observed at all (no data are available), O, is equal to 0.0.
Thus, O, can also be used as a quality measure. The
overall quality of a mask, Q_, is then defined as the
product of its uncertainty reduction measure, H , and its
observation ratio, O,:

Qm=H, - O, ©)

The optimal mask is the mask with the largest O value.

b) Fuzzy Measures

The crisp inductive reasoner worked with crisp
landmarks in the recoding of the measurement data.
These “rigid” landmarks were responsible for a loss of
valuable information about the system that could no

longer be exploited by the qualitative model, and this in
turn led to a reduction in its forecasting capabilities,
which diminishes the discriminatory power of the tool
in the application at hand. Fuzzy measures were
introduced as a technique to deal with the uncertainty of
landmarks.

Figure 2 depicts the fuzzy membership functions used
by SAPS-II, the inductive reasoner employed in this
research. They are normal distributions with values 1.0
at the arithmetic mean of any two neighboring land-
marks, and 0.5 at the landmarks themselves.

The fuzzy membership functions allow recoding each
numerical value into a qualitative triple composed of the
class value (as in the previous methodology), the fuzzy
membership value, which is a measure of the likelihood of
the class value, and the side value which indicates
whether the quantitative value is to the left or to the
right of the maximum of the fuzzy membership func-
tion. The membership functions can be easily calculated
using the equation:

Memb; = exp(—7; - (z— #,-)2) 6)
where x is the continuous variable to be recoded, 1, is
the algebraic mean between two neighboring land-
marks, and 7, is determined such that the membership
function, Memb,, degrades to a value of 0.5 at the
landmarks.

No information is lost in the recoding process. The
original real-valued measurement data can be regener-
ated exactly from the qualitative triple. The fuzzy
forecasting process must now predict, for a given set of
inputs, not only the class value of the output, but also its
membership and side values, thus, fuzzy forecasting
predicts an entire qualitative triple. Thereby, the
numerical information is indirectly preserved, which in
turn makes it possible to regenerate real-valued output
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Figure 2. Typical membership functions used by SAPS-II.
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signals from the qualitative model with surprisingly
good accuracy.

In fuzzy forecasting, the membership and side
functions of the new input are compared with those of
all previous recordings of the same qualitative input
contained in the behavior matrix. The one input with the
most similar membership and side functions is identi-
fied. For this purpose, a cheap approximation of the
regenerated quantitative signal

d; = 1+ side; » (1 - Memb.-) )

is computed for every input variable of the new input
set, and the regenerated d, values are stored in a vector.
This reconstruction is then repeated for all previous
recordings of the same input set. Finally, the L, norms
of the difference between the d vector of the new input
and the d vectors of all previous recordings of the same
input are computed, and the previous recording with
the smallest L, norm is identified. Its output and side
values are then used as forecasts for the output and side
values of the current state.

Forecasting of the new membership function is done a
little differently. Here, the five previous recordings with
the smallest L, norms are used (if at least five such
recordings are found in the behavior matrix), and a
distance-weighted average of their fuzzy membership
functions is computed and used as the forecast for the
fuzzy membership function of the current state. Abso-
lute weights are computed as follows: :

ax — d,
dmdm., - ®)

w&bih =

where the index k loops over the five closest neighbors,

andd, £d,i<j; d _=d,. Theabsolute weights are
numbers between 0.0 and 1.0. Using the sum of the five
absolute weights:

3y = E Wabs, 9)
vk
it is possible to compute relative weights:
w :
Wy, = —22% (10)
Sw

Also the relative weights are numbers between 0.0
and 1.0. However, their sum is always equal to 1.0. It is
therefore possible to interpret the relative weights as
percentages. Using this idea, the membership function
of the new output can be computed as a weighted sum
of the membership functions of the outputs of the
previously observed five nearest neighbors:
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Memb,y:,.,, = Z Wy, - Memb,y:, (11)
Vk

The fuzzy forecasting function will usually givea
more accurate forecast than the probabilistic forecasting
function. The fuzzy membership functions allow
preserving more quantitative information in the reason-
ing process, whereas the class values can still be used to
process the available information in a qualitative
fashion. Thus, the qualitative analysis allows us to
generate quickly a rough qualitative response, while the
fuzzy membership functions can then be used to
smoothly interpolate between the qualitative class
values to obtain a quasi-continuous response spectrum.
In the application at hand, the fuzzy membership
functions also serve to enhance the discriminatory
power of the event classifier.

3. Comparison of Results

The inductive reasoning functions are used to qualita-
tively and inductively reason about the measurement
data taken from the ACSL simulation run. The quantita-
tive data will be used to build a qualitative model that
represents the behavior of the airplane in the vicinity of
a steady-state trajectory. Figure 3 compares the qualita-
tive simulation results obtained using crisp and fuzzy
forecasting. Notice in the error matrix that the crisp
methodology produced a reiterative error on the drag D
variable that the fuzzy methodology avoids. Both
simulations correspond to the B4 model excited with
harmonic functions of long periods. Figure 4 shows the
real and forecast drag signals from the B4 model.

When a sudden structural change occurs, the qualita-
tive model will receive inputs that have never been seen
before, which means that it will no longer be able to
predict the future behavior of the system, which, in turn,
trips off an alarm indicating that an accident has
happened.

In a separate library, other qualitative models are
stored that represent a variety of structural changes of
the aircraft. Once the original model is no longer able to
predict the system behavior, these models are consulted
in order to identify the one that best predicts the new
behavior of the aircraft. As each of these models repre-
sents a particular type of accident, this information can
then be used to conclude what type of accident has
happened, i.e,, to discriminate between different types
of accidents. In the very moment when a library model
has become capable of correctly predicting the behavior
of the structurally modified system, the continuous
monitor is able to know what accident has taken place,
and with this information, it can decide upon an
appropriate corrective action or a new control strategy
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to be taken. Figure 5 shows the process of continuously
and qualitatively monitoring the aircraft.

3.1 Detection of the Accident

The detection of accidents proceeds as follows: the
failure detector implemented in the qualitative model
forecasts the future behavior of the system and then
compares this forecast with the actual measured data.
As the forecast is based on past behavior of the system,
it is somewhat adaptive to slow changes in the system
parameters or a slow drift in the steady-state, buta
sudden structural change is immediately detected since

the behavior of the system can no longer be forecast
with the optimal masks that have been evaluated for the
system under observation.

The failure detector works through a threshold error
alarm that counts the incorrect forecasts within a given
period of time, and trips the alarm whenever the
accumulated number of incorrectly predicted future
states surpasses a threshold that is built into the detec-
tor.

Figure 6 shows the differences between the detection
processes corresponding to each methodology. The data
corresponds to a B4 to B747 structural change in normal

MEASURED DATA
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Figure 5. Continuous monitoring process.
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Figure 6. Differences between crisp and fuzzy threshold error alarms for the detection of the accident.
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horizontal flight (referred in the previous investigation
as the”Broken Model”). Notice that the detection of the
accident is made faster than before due to the reduction
in the number of forecast errors when the correct model
is used, which permits reducing the threshold value of

the alarm matrices.

3.2 Recognition of the Type of Accident

The new methodology has also improved the recogni-
tion process. Figure 7 shows the differences between the
old and the new methodologies when trying to recog- .
nize a B4 to B14 transition in normal horizontal flight,
that is, when trying to discriminate between two very
similar qualitative models. Notice that the crisp induc-

tive reasoner has more difficulties than the fuzzy
inductive reasoner in recognizing the right qualitative
model from the library.

4. Conclusions

The main advantage of the improved methodology is
a significant reduction of the number of forecasting
errors. The previously used system as described inf14]
had between 25% and 33% errors in the forecasting
points, while with the new system the percentage of
errors varies consistently between 3% and 12% when
the correct qualitative model is being used. This permits
a reduction in the threshold value used by the detection
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Figure 7. Differences between crisp and fuzzy threshold error alarm for the recognition of the type of accident.
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and recognition processes. Furthermore, an incorrect
forecast often led to an entire chain of consequence
errors, which would immediately trip the alarm if the
accumulation window was selected too narrowly. The
new system doesn’t exhibit this problem any longer.
False alarms are no longer caused by error chains, and
therefore, the accumulation window of the threshold
error alarm can be made much shorter, which allows the
structural change to be detected several points earlier
than when using the old system.

With respect to the recognition of the accident itself,
the B4 to B747 transition is identified seven sampling
intervals earlier than before, and the B4 to B13 transition
is identified three sampling intervals earlier.

The other main advantage is the unambiguous
identification of the post-accident steady state, i.e., the
new set of optimal masks that correctly describe the
post-accident behavior. Using the new algorithm, the
former confusion between the B5 and B13 post-accident
states[13] is completely avoided, in spite of their exhibit-
ing very similar post-accident behaviors.

The purpose of the application shown here is just to
demonstrate the enhancement of the discriminatory
power and the forecasting capability of the fuzzy
inductive reasoning methodology. The approach was
used to provide a human plant operator with additional
information that might prove useful when dealing with
a developing emergency[1]. In a real-time environment,
this approach has a severe drawback because it requires
time after a structural change has taken place for
determining the new qualitative model to be used.
During this time period, the supervisory control is
disabled for all practical purposes. However, it is exactly
this time period when the transition takes place, and
when knowledge of what is going on would be most
valuable to dampen out the transition shock and to steer
the system smoothly into its new mode of operation. If
the transition from one structural mode to another is not
an emergency but a normal event that will happen
regularly during system operation, the mode transition
must be both detected and discriminated almost
immediately. In[2], a new method for dealing with
variable structure systems based on fuzzy inductive
reasoning is proposed that addresses this problem.

In this paper, it was shown that including the observa-
tion ratio in the quality factor of the qualitative relation-
ships and adding fuzzy measures to the inductive
reasoning process can significantly improve its qualita-
tive simulation accuracy, and thereby its discrimination
power.
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Chairman of many international conferences, most recently
ICBGM'93 (SCS International Conference on Bond Graph
Modeling, San Diego, January 1993), CACSD’94 (IEEE/IFAC
Symposium on Computer-Aided Control System Design,
Tucson, March 1994), ICQFN"94 (SCS International Confer-
ence on Qualitative Information, Fuzzy Techniques, and
Neural Networks in Simulation, Barcelona, June 1994),
ICBGM’95 (Las Vegas, January 1995), WMC'96 (SCS Western
Simulation MultiConference, San Diego, January 1996),
WMC'97 (Tucson, January 1997). He is Associate Editor of
several simulation related journals, and he served as vice-
chairman on two committees for standardization of
simulation and modeling software.
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The MISSION EARTH symposium at the SCSC '94
Summer Computer Simulation Conference, July 18-
20 in San Diego, CA will consist of 12 sessions,
which will set a record for these Symposia. John
Mcleod, Founder of SCSI and of MISSION EARTH,
will be the Chairman of the Symposium.

There will be five technical sessions of general
interest. As usual in MISSION EARTH sessions,
each will have a leadoff speaker who broaches an
aspect of the session topic and sets the stage for a
discussion among all present, which occupies most
of the session. These discussions are intended to
bring brainstorming to bear upon major questions
related to World Simulation for World Planning (the
main focus of MISSION EARTH).

Session 1. Global Solid Waste Management
Chair; Ronald A. Hammond, Boeing Computer Services
Speaker:  Gregory M. Holter, Battelle Pacific Northwest Lab

Session 2. The World System Model "IF
Chair: Martin Wildberger, EPRI
Speaker:  John Mcleod, Founder of SCS!

Session 3. Educational and Other Uses of Models
Chair: Gottfried Mayer-Kress, University of lllinois, Urbana
Speaker:  Tom Kirchner, Colorado State University, Ft. Collins-

Session 4. The Place of Virtual Reality in Simulation Technology
Chair: Edwin Y. Lamben, Jr., Consultant
Speaker:  Mary Lou Padgett, Aubum University

Session 5. Project 2050 in Relation to Other Current Projects
Chair: Tom Kirchner, Colorado State University, Ft. Collins
Speaker:* Gottfried Mayer-Kress, University of Iflincis, Urbana -

In addition there will be four technical sessions
devoted to the development of a model of the world
electric power grid and its economies. The speakers
will be Peter Meisen, Walt Venable and Paul-Michael
Dekker, representing GENI, the nonprofit firm which -
is developing the model.

Finally there will be three sessions reportihg and
assessing recent accomplishments by MISSION
EARTH and discussing plans for MISSION EARTH.

CONTACT:
A. Ben Clymer

32 Willow Drive, Ste 1B
Ocean, New Jersey 07712
(908) 493-4364

e-mail: belymer@moncol.monmouth.edu

John Mcleod, Chair
"Simulation and Education for
Understanding and Teaching"

mcleod@sdsc.edu




