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ABSTRACT

Inductive Reasoning is a technique which allows us to rea-
son about a finite state representation of a system on the basis
of available data. If the data stem from a continuous system,
they are first discretized (recoded) into a finite set of discrete
values. Recently, optimal recoding techniques have been de-
vised which are presented in this paper. The forecasting power
of the Inductive Reasoning approach has been shown to be dra-
matic in a number of examples. Yet, the forecast was always
expressed in terms of the recoded, i.e. the discrete, variables,
and not in terms of the original continuous variables. Recently,
we have been working on a modification of the technique which
allows us to reconstruct the continuous signals from the forecast
discrete signals with very good accuracy. For this purpose, we
exchanged the previously used probabilistic quality measures for
fuzzy quality measures, and we predict, together with the dis-
crete states also new fuzzy membership functions of the forecast
signals. From these membership functions, we can then regen-
erate the continuous signals. The technique has been tested by
means of a third order continuous—time linear system and has
given promising results. These results are presented here.

1. INTRODUCTION

How do humans reasons about the behavior of physical sys-
tems? It is known that humans are frequently able to make cor-
rect assessments of the qualitative behavior of a given physical
system without having a detailed knowledge or understanding
as to the true physical mechanisms that govern the behavior of
that system.

To this day, we have not been able to successfully code this
ability into a computer algorithm such that we could e.g. equip
robots aboard unmanned Space missions with it. Yet, since
human presence in Space will, for a long time to come, be an
expensive and risky business which is necessitated and justified
only by the inadequacy of our automation technology, it is a
noble goal to tackle this problem. This will, on the short run,
enable us to reduce the need for manned Space missions, thereby
reducing both the risks and the cost of Space exploration, and
it may, in longer terms, help us develop a mature automation
technology which can support human life in Space safely and at
a reduced cost. At such time, human presence in Space will no
longer be necessitated by an inadequate automation technology,
but on the contrary, will be enabled by an adequate automation
technology.

How can this problem be solved? Two schools of thought
have emerged over the past couple of years which both claim to
slowly get a handle at the problem.

The first school is known under a variety of names rang-
ing from Naive Physics to Common Sense Reasoning. It was
triggered by Hayes [1979] in his “Naive Physics Manifesto.” An
exposé of this methodology will be presented in the same session
as this paper [Morgan 1990]. The idea behind the Naive Physics
approach is to decompose systems into their physical compo-
nents, and then to reason about the behavior of these subsys-
tems in rough and approximate terms. The major strength
of this technique is that it allows us to incorporate whatever
knowledge we possess about the system into the design process,
i.e., it allows us to iteratively improve and refine our under-
standing of the system. Its major weaknesses are that it forces
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us to employ a priori knowledge from the beginning, and there-
fore, it cannot deal with completely unknown and unforeseen
situations, and that so far the technique has only been demon-
strated to work for very simple (almost trivial) systems.

The second school evolved from earlier pattern recognition
techniques. Its proponents claim that our intuitive understand-
ing of system’s behavior does not base on physical knowledge
at all, but rather derives from our ability to recognize simi-
larities with earlier observed systems. When someone holds a
glass full of water in his/her hands and opens his/her fingers,
we know that the glass will fall down, break into many pieces,
and spill the water all over the kitchen floor. How come that we
know this fact? Is it because we know that there exists a grav-
itational force which will accelerate the glass downward once
the constraint of the holding hand is removed, and then reason
about the effect of impact which generates a reaction force too
strong to be annihilated by the internal forces that hold the
glass together? Or is it because we may remember that, when
we were 10 years old, one of the adultsin the family let a bot-
tle of Chianti wine slip through his fingers, and our dog came,
licked all the wine up from the floor, and was totally drunk
for the rest of the day? If the latter assumption is true, then
the next question must be how we can capture knowledge such
that similarities are recognized quickly and reliably and can be
exploited in our reasoning process.

Contrary to the Naive Physics approach which is basically
a deductive technique, the pattern recognition approaches are
basically inductive. These techniques have produced convine-
ing results also for fairly complex systems. However, one major
weakness of these techniques is that they do not lend them-
selves easily to an improved understanding of what happens,
i.e., while we may be able to make correct predictions, we often
don’t know exactly how we came to these conclusions and why
they are correct, and it is therefore a difficult task to assess the
correctness of a proposed prediction before the predicted event
has actually occurred. A second weakness of these techniques
is that they are purely inductive, i.e., they do not support very
well the incorporation of a priori knowledge which may be at
our disposal.

Among the pattern recognition techniques, two different
classes have led to promising results. One is the Neural Nei-
work approach. Neural networks have been around for quite
some time, but research in this area had been discredited in the
late sixties as a consequence of the devastating report by Min-
sky and Papert [1969]. Only the last couple of years have seen
a renaissance of this technique due to the pioneering research
of a few individuals such as Grossberg [1982], Hopfield [1982],
and Kohonen [1984]. Impressive results have meanwhile been
obtained e.g. in the context of robot grasping systems [Ritter
et al. 1990).

Neural Networks still suffer somewhat from their pattern
recognition heritage. Classical pattern recognition techniques
were always concerned primarily with the recognition of static
images. For this reason, most research efforts in Neural Net-
works were also concentrated around the analysis of static in-
formation. For quite some time, it was not recognized that
humans more often than not base their reasoning on temporal
patterns, i.e., series of sketchy images (cartoons) making up an
entire episode. The child who grew up in an abusive family will
assume a defensive position whenever his/her vis-a-vis raises
his/her hand since s/he identifies that motion with a seemingly
similar earlier experienced motion that led to pain. The cartoon
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of the raising hand within reach of the child’s face is a tempo-
ral pattern which is identified with a stored temporal pattern
of his/her past. The prediction is achieved through a playback
of another temporal pattern that used to follow the identified
pattern in time. Neural Networks are well suited to identify
temporal patterns. All that needs to be done is to store the in-
dividual images below each other in a large array, and treat the
entire cartoon as one pattern. Due to the inherent parallelism
in Neural Network algorithms, the size of a network layer (the
length of the pattern array) does not have to enlarge the time
needed for its processing.

Only recently, Neural Network researchers have begun to
investigate temporal patterns, e.g. in the context of speech
recognition systems [Yuhas et al. 1989]. Other important pa-
pers in which Neural Networks are applied to the analysis of
dynamical systems are e.g. a recent paper by Narendra and
Parthasarathy {1990] and a still unpublished paper by Sorsa et
al. [1990]. However, a lot remains to be done in this context.

The other pattern recognition technique that has shown
promising results is the Imfuctive Reasoning approach which
is largely due to Klir [1985]. Inductive Reasoners capture the
knowledge about a system in the form of an optimal mask which
describes the relationship between various variables of the sys-
tem over time. “Similar” systems are characterized by the same
optimal mask. Inductive Reasoners are particularly well suited
to learn the dynamical behavior of a system from past obser-
vations of that system. They are able to determine an optimal
forecast of the system’s behavior in terms of discretized vari-
ables, i.e., they provide an optimal forecast of the system’s class
behavior. It is this technique which is being emphasized in our
paper.

Comparing Inductive Reasoners with Neural Networks, it
can be seen that the Inductive Reasoning approach is much
more systematic than the Neural Network approach, and it is
a little more straightforward to use Inductive Reasoners for
behavior forecasting. However, Neural Networks can operate
on a much larger number of input signals simultaneously, and
they are therefore more general than Inductive Reasoners. Both
techniques have been successfully applied to reasonably complex
realistic system descriptions.

We have described the application of Inductive Reasoners
to qualitative behavior forecasting in two previous publications.
In iﬁellier 1987], we described the application of the SAPS-II
Cellier and Yandell 1987] Inductive Reasoner to forecasting the

ehavior of a linear continuous-time system, and in [Vesantera
and Cellier 1989], we described the application of the same tech-
nique and software to the problem of fault diagnosis during a
high altitude horizontal flight of a Boeing 747 airliner.

In the current paper, we shall tackle two formerly unsolved
problems: (i) the problem of optimal recoding, i.e., the problem
of an optimal selection of landmarks (the borderlines between
neighboring domains in the discretization of continuous—time
variables, and (ii) the problem of reconstructing the continuous
variables following the class behavior forecast. We shall also
propose a new complexity measure.

2. OPTIMAL RECODING

All qualitative modeling and simulation techniques rely on
some sort of discretization of continuous input variables. The
Naive Physics approach usually relies on variables being dis-
cretized into the two domains positive (+) and negative (—)
with a single landmark 0 separating the two domains. Le., in
Naive Physics, continuous variables are recoded in an extremely
crude manner. Neural Networks are able to process continuous
input signals, but the Neural Network will not be able to mi-
grate such signals very well through multiple network layers due
to the sigmoid shape of the non-linear output function in each
network layer. More practical, continuous signals are digitized
and decomposed into series of binary signals. E.g., if an input
signal is a voltage between —1V and +1V, this signal could be
decomposed into 256 levels (eight bits), and fed into the Neural
Network in the form of eight parallel binary signals. Inductive
Reasoners use a discretization scheme which is halfway between
these two extremes. They can tolerate considerably more lev-
els than the crude Naive Physics algorithms, but they cannot

process as many levels as a Neural Network since the Inductive
Reasoning algorithms do not lend themselves so easily to paral-
lelization, and since the optimization algorithms employed are
usually exhaustive search algorithms.

In Inductive Reasoning, we shall allow more different values
than just —, 0, and +, and we shall concentrate on the regions
themselves rather than on the landmarks that separate these
regions from each other. The values that represent such regions
can be symbolic (e.g. tiny, small, average, and big, denoting
four distinct rcgionsi or they can be integer numbers (e.g. ‘1’
‘2’, ‘3’, and ‘4’, denoting the same four regions as above). In
an inductive reasoning system which is coded in LISP, symbolic
names are probably preferred, whereas in an Inductive Reasoner
coded in a predominantly numeric software, integers will be the
representation of choice. From a practical point of view, it really
doesn’t matter which of the two representations is being used
since one can easily be mapped into the other. The symbolic
representation will make the code more readable though.

In Inductive Reasoning, the regions are called levels. (No-
tice the difference with System Dynamics. In System Dynamics,
a “level” denotes a continuous state variable, whereas in Induc-
tive Reasoning, it denotes one value of a discrete state variable.)
The process of discretizing continuous trajectories into discrete
episodes is called recoding. Finally, a combination of legal levels
of all state variables of a model is called a state. Thus, a model
with n state variables, each of which is recoded into k levels has
k" legal states. An episodical behavior is a time history of legal
states. The “episodical behavior” is the qualitative counterpart
of the quantitative “trajectory behavior”.

We have developed an Inductive Reasoning software, called
SAPS-II, which is available as either a CTRL-C library or a
MATLAB toolbox [Cellier and Yandell 1987]. In SAPS-II, lev-
els are represented through positive integers.

The first question that we must ask ourselves is: How do we
recode? How many levels should we select for each of our state
variables? Where do we draw the borderline (i.e., where do
we select the landmark) that separates two neighboring regions
from each other?

Inductive Reasoning is a completely inductive approach to
modeling. It operates on a set of measured data points, and
identifies a “model” from the previously made observations.

From statistical considerations, we know that, in any class
analysis, we would like to record each possible discrete state at
least five times [Law and Kelton 1982]. Thus, there exists a
relation between the possible number of leial states, and the
number of data points that we require to base our modeling
effort upon:

e 2 5-myg =5[] ks (1)
vi

where n,.. denotes the total number of recordings, i.e., the total
number of observed states, n;, denotes the total number of
different legal states, i is an index that loops over all variables,

k is an index that loops over all levels. If we postulate that
each variables assumes the same number of levels, eq(1) can be
simplified to:

flree 2 5 (M) @)

where ny., denotes the number of variables, and n,., denotes
the chosen number of levels for each variable. The number of
variables is usually given, and the number of recordings is fre-
quently predetermined. In such a case, we can find the optimum
number of levels from eq(3):

M = ROUND( ~[ 2 ®)

For reasons of symmetry, we often prefer an odd number of
levels over an even number of levels. E.g., the five levels much
too low, too low, normal, too high, and much too high might
denote states of the heart beat of a patient undergoing surgery.
By choosing an odd number of levels, we can group anomalous
levels symmetrically around the normal state.
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If the number of recordings is not predetermined, we might
consider consulting with a human expert (e.g., the surgeon? to
determine a meaningful number of levels for a given variable.

The number of levels of our variables determines the expres-
siveness and the predictiveness of our qualitative model. The
ezpressiveness of a qualitative model is a measure for the infor-
mation content that the model provides. Later in this paper, we
shall present you with formulae describing the information con-
tent of a qualitative model. The predictiveness of a qualitative
model is a measure for its forecasting power, i.e., it determines
the length of time over which the model can be used to forecast
the future behavior of the underlying system.

If all variables are recoded into exactly one level, the qual-
itative model exhibits only one legal state. It is called a “null
model”. It will be able to predict the future behavior of the un-
derlying system perfectly over an infinite time span (within the
framework of its model resolution). Yet, the prediction does not
tell us anything useful. Thus, the null model is characterized by
an infinitely high predictiveness, and by a zero expressiveness.

On the other hand, if we recode every variable into 1000
levels, the system exhibits myriads of legal states. The expres-
siveness (i.e., resolution) of such a model will be excellent. Each
state contains a large amount of valuable information about the
real system. Yet, the predictiveness of this model will be lousy,
unless we possess an extremely large base of observed data. In
all likelihood, this model cannot be used to predict the behavior
of the real system for even a single time step into the future.

Consequently, we must compromise. For most practical ap-
plications, we found that either three or five levels were about
optimal [Cellier 1987; Vesantera and Cellier 1989)].

Once we decided upon the number of levels for each vari-
able, we must choose the landmarks that separate neighboring
regions. Often, this is best done by consulting with a human
expert. E.g., we may ask the surgeon what he considers a nor-
mal heart beat during surgery, and when he would believe that
the heart beat is definitely too low or too high, and when he
would consider it to be critically too low or critically too high.
If we are then able to predict the future behavior of the pa-
tient in terms of these qualitative variables, we may be able to
construct a heart monitor which will warn the surgeon ahead
of time about a predictable problem. This clearly sounds like a
worthwhile research topic.

However, if the amount of observed data is limited, it may
be preferable to maximize the expressiveness of the qualitative
model. This demand leads to a clearly defined optimal land-
mark selection algorithm. The expressiveness of the model will
be maximized if each level is observed equally often. Thus, one
way to find an optimal set of landmarks, is to sort the observed
trajectory values into e.g. ascending order, cut the sorted vector
into ny., segments of equal length, and choose the landmarks
anywhere between the extreme values of neighboring segments.
Let us demonstrate this process by means of an example. Figure
1 shows an observed trajectory of a continuous variable:

T

Continuous Trajectory

i i i H i
.5 2.0 2.5 3.0 3.5 4
Time [sec]

1.

i

.0

-5. i i . i 1
0. 0.5 e 1 4.5 5.0 5.5 B.0 6.5

Figure 1. Trajectory behavior of a continuous variable

We first discretize the time axis (how this is done in an
optimal manner, will be explained in due course). Let us say,
that this process leads to a trajectory vector of length 131. The
observed values range from 0.0 to 13.5. Let us assume that
we wish to recode this trajectory into the three distinct levels
17, *2’, and ‘3". If we would simply cut the domain into equal
intervals of length 4.5, i.e.:

529

1’ «— [0.0,4.5]

‘2’ «— (4.5, 9.0)

3" — (9.0,13.5)
the levels ‘1’ and ‘2’ would only occur very briefly, and they
would only occur during the initial phase of the episode. There-

after, we would constantly observe a level of ‘3’. Figure 2 shows
the recoded episode.

Episode Recoded with Equidistant Intervals
T T T T T T

i R i
2.5 3.0 3.5 4.0
Time [sec]

o2

H i i H
4.5 5.0 5.5 6.0 8.5

Figure 2. Episodical behavior of a recoded variable

In the process of recoding, we threw away lots of information.
E.g., we lost most of the information regarding the oscillation
frequency. However, if we use the above described optimal al-
gorithm, we sort the trajectory values in ascending order such
that the first value is 0.0, and the last value is 13.5. We then cut
the resulting vector of length 131 into three vectors of approx-
imately equal length. The first vector contains the elements 1
to 43, the second vector contains the elements 44 to 86, and
the third vector contains the elements 87 to 131. For the given
example, the following values were found:

T,oreea(43) = 9.8898
T,orsea(44) = 9.8969
Z,0rtea(86) = 10.0500
Zroreea(87) = 10.0501
and by using the arithmetic mean values of neighboring ob-
served data points in different segments as our landmarks, we
find:
LM,
LM,

It

9.8934
10.0500

il

Figure 3 shows the same continuous trajectory as Figure 1 with
the two new landmarks superimposed:

resholds

Continuous Trajectory with Th
T H H H M

1 i
0.5 1.0 1.5 2.0 2

i
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N H HE
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Time [sec]

0.

Figure 3. Trajectory behavior with landmarks superimposed

The bandwidth of level ‘2’ is very narrow indeed. Figure 4
shows the recoded episodical behavior. Clearly, the recoding of
Figure 4 has preserved more information about the real system
than the recoding of Figure 2.

Which technique will work best depends heavily on the ap-
plication area. For the case of the heart surgeon, the “opti-
mized” recoding would be meaningless. His goal is to receive
an early warning when the heart beat is expected to become
critical, and not to observe each level equally often. Obviously,
he wishes to observe level ‘3’ (out of five levels) only, i.e., he
wishes to keep his patient constantly within the normal range.
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Episode Recoded with Optimized Intervals

i

H L i i i " H i i i i
1}. 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Time [sec]
Figure 4. Episodical behavior of a recoded variable

The following example, which was taken from Hugo Uyt-
tenhove’s Ph.D. dissertation [1979], may serve as an illustration
for the process of recoding. A heart monitor observes six dif-
ferent variables about a patient undergoing surgery. Each of
these variables is being recoded into five different levels using
the qualitative states:

1’ «— much too low
2’ —— too low

‘3! — normal

‘4> «— too high

5’ «—— much too high

Table 1 lists the six variables together with their five ranges.

Let us assume that the trajectory behavior of this six vari-
able system has been recorded in the form of a trajectory be-
havior matrix meas with six columns denoting the six different
variables, and 1001 rows denoting different measurement in-
stants (different time values). The following SAPS-II program
segment will recode these values:

DO saps : saps

from=[ 0.0 75.0 100.0 150.0 180.0
75.0 100.0 150.0 180.0 999.9];

to=1:85;

raw = RECODE(meas(:, 1), domain’, from, to);

from={ 00 50.0 65.0 100.0 110.0
50.0 65.0 100.0 110.0 999.9;

r = RECODE(meas(:,2), domain’, from, to);

raw = [raw,7};

from=[ 0.0 40
4.0 20.0

20.0
999.9];

to=2:4;

r = RECODE(meas(:,3), domain', from,to);
rew = [raw,7};

from=[ 0.0 2.0 3.0 7.0
999.9;

to=1:4;

r = RECODE(meas(:,4),' domain’, from, to);

raw = [raw,r};

from=[ 0.0
50.0

2.0 3.0 7.0

50.0
60.0

60.0
100.0

100.0
110.0

110.0

999.9);

to=1:5;

r = RECODE(meas(:,5),’ domain', from, to);

raw = [raw,r};

from=[ 00 1.0 4.0
1. 4.0 20.0

20.0
999.9};

to=1:4;
r = RECODE(meas(:,6),’ domain’, from, to);
raw = [raw,r};

RECODE is one of the SAPS-II functions. As it is used in
this example, it maps the regions (domains) specified in columns
of the from matrix to the levels that are specified in the to
vector. Thus, the from matrix and the to vector must have
the same number of columns. In this example, each variable
(column) is being recoded separately. The resulting episode
r is then concatenated from the right to the previously found
episodes which are stored in raw. The code should be fairly
self-explanatory otherwise.

3. FUZZY RECODING

How big is big? Obviously, qualitative terms are somewhat
subjective. In comparison with an adult, a 10 year old has
usually quite a different opinion about what an “old person” is
The concept of landmarks is a treacherous one. Is it really true
that a systolic blood pressure of 100.1 is “normal”, whereas a
systolic blood pressure of 99.9 is “too low”? Different physicians
may have a different opinion altogether. One of the authors’
wives has usually a systolic blood pressure of about 90. Yet, her
physician always smiles when he measures her blood pressure
and predicts that she will have a long life. 90 is too low for
what? What the surgeon probably meant when he declared
100 the borderline between “normal” and “too low” was the
following: If a “normal” patient, i.e. a patient with an average
“normal” systolic blood pressure of 125 experiences a sudden
drop of the blood pressure from 125 to 90 during surgery, then
there is probably something wrong. Does this mean that we
should look at the time derivative of the systolic blood pressure
beside of the blood pressure itself? We probably should, but
the surgeon couldn’t tell us, because this is not the way he
thinks. Most medical doctors aren’t trained to think in terms
of gradients and dynamical systems.

Zadeh [1985, 1986, 1987 tackled the uncertainty problem.
He introduced fuzzy measures as a technique to deal with the
uncertainty of landmarks. Instead of saying that the systolic
blood pressure is “normal” for values above 100, and “too low”
for values below 100, a fuzzy measure allows us to specify that,
as we pass the value 100 in negative direction, the answer “nor-
mal” becomes less and less likely, while the answer “too low”
becomes more and more likely.

In a graphical form, we can depict the fuzzy measure as
follows:

W Likelihood of Answer
1.0 Llow normal
0.5 |
0.0 v T T T ;
9.0 1000 1100 1200  Systolic Bloo
Pressure

Figure 5. Fuzzy qualitative variable

Table 1.Recoding of heart variables

variable ‘1’ €2° €3’ ‘47 ‘5’
Systolic Blood Pr. <75 | [75,100) | [100,150) | [150,180) | > 180
Mean Blood Pr. <50 50, 65) [65,100) | [100,110) | > 110
Central Venous Pr. <4 [4,20) > 20
Cardiac Output <2 [2,3) B3,7) >7
Heart Rate <50 [50,60) [60,100) [i00,110) > 110
Left Atrial Pr. <1 L,4) [4,20) > 20
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The sigmoidal curves are called membership functions. How pre-
cisely these membership functions are shaped is up to the user.
In SAPS-II, we have implemented only one type of membership
function: a normal distribution which is 1.0 at the arithmetic
mean value pi; of any two neighboring “landmarks”, and which
is 0.5 at the landmarks themselves. This membership function
can be easily calculated using the equation:

Memb; = exp(—k; - (2 — )*) (4)

where z is the continuous variable which needs to be recoded,
say the systolic blood pressure, and k; is determined such that
the membership function Memb; degrades to a value of 0.5 at
the neighboring landmarks. Figure 6 shows the membership
functions for the systolic blood pressure:

Membership Functions

rmuch too low too low normal

much too high

too high

Likelihood of Answer

0.0 200.

20. 40, 80. 80. 100. 120. 140. 100. 180.

Systolic Blood Pressure

220.

Figure 6. Membership functions of the systolic blood pressure

The first and the last membership functions are treated a lit-
tle differently. Their shape (k; value) is the same as for their
immediate neighbors, and they are semi—open.

If we wish to compute the membership functions for the
heart monitor example, we need to modify the previously shown
program segment in the following way:

DO saps : saps
from=[ 0.0
75.0

75.0
100.0

100.0
150.0

150.0
180.0

180.0
999.9];
to=1:5;

[fraw, Memb, side] = RECODE(meas(:

\1),! fuzzy, from,to);
rom=[ 00 50.0 65.0 100.0 110.0

50.0 65.0 100.0 110.0 999.9];

[r,m,s] = RECODE(meas(:,2),' fuzzy/, from,to);
raw = (raw,r); Memb = [Memb,m]; side = [side, s];
from=[ 0.0 4.0 200

4.0 20.0  999.9];
to=12:4;
[r,m, s] = RECODE(meas(:,3), fuzzy', from,to);
raw = [raw, r); emb = [Memb, m]; side = [side, s];
from=[ 0.0 2.0 7

2.0 3.0 7.0 999.9];
to= 4;

1:
[r,m,s] = RECODE(meas(:,4), fuzzy/, from,to);

raw = [raw,7]; Memb = [Memb,m]; side = [side, s};
from=[ 0.0 50.0 60.0 100.0 110.0
50.0 60.0 100.0 110.0 999.9};

to=1:5;
[r,m,s] = RECODE(meas(:,5), fuzzy/, from, to);
raw = [raw,r}; Memb = [Memb,m], side = [side,s];
from=[ 00 1.0 4.0 20.0

1.0 4.0 20.0  999.9];
to=1:4

[r,m, s} = RECODE(meas(:,6), fuzzy', from,to);
raw = [raw,r}; Memb=[Memb,m}; side = [side,s];

The raw matrix will be exactly the same as before (since
RECODE will always pick the most likely answer), but in ad-
dition, we obtain the fuzzy memberships of all our qualitative
variables which are stored in the Memb matrix. The third ma-
trix side contains a value of 0 whenever the measured data point
coincides with the mean value of the neighboring landmarks, it
assumes a value of —1 if the measured variable is smaller than
the mean between the landmarks, and it is +1 if the measured
variable is larger than the mean between the landmarks.

In the process of recoding, a large amount of valuable infor-
mation about our real system is usually discarded. The fuzzy
membership retains some of this information which will prove
useful in due course. In fact, up to this point, no information

240.
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has been lost at all. The original continuous signal can be re-
generated precisely using the SAPS function:

meas = REGEN ERATE(raw, Memb, side, from, to)

where the meaning of the from and fo parameters is opposite
from before.

4. INPUT/OUTPUT BEHAVIOR AND MASKING

By now, we have recoded our trajectory behavior into a dis-
crete episodical behavior. In SAPS-II, the episodical behavior
is stored in a raw date matriz. Each column of the raw data
matrix represents one of the observed variables, and each row of
the raw data matrix represents one time point, i.e., one record-
ing of all variables, i.e., one recorded state. The values of the
raw data matrix are in the set of legal levels that the variables
can assume, i.e., they are all positive integers, usually in the
range from ‘1’ to ‘5.

How does the episodical behavior help us identify a model
of our system for the purpose of forecasting the future behavior
of the system for any given input stream? Any model describes
relationships between variables. That is its purpose. E.g., in
a state-space model, we describe the relationships between the
state variables z; and their time derivatives &;:

(5)

&= fs’(:hz?y"-)zn)

If the state variables z; have been recoded into the qualita-
tive variables v, and their time derivatives have been recoded
into the qualitative variables w;, we can write:

w; = fi(v1,v3,...,0n) (6)
i.e., while f; will be a different function than f;, the fact that
there exist (deterministic) relationships between the z; and the
#; variables, can be partially preserved in the process of recod-
ing. The f; functions are (possibly deterministic) relationships
between the v; and the w; variables.

The beauty of this transformation becomes evident when we
try to identify these functional relationships. While the identi-
fication (characterization) of the f; functions is a difficult task,
the identification of the f; functions is straightforward. Since
each of the v; variables can assume only a finite set of values,
we can characterize the f; functions through enumeration. Let
us look at an example:

y = sin(z)

(M

is a quantitative relationship between two quantitative variables
z and y. Let us recode the variable  into a qualitative variable
v with four states, such that:

z v
1*t quadrant ‘1’
2 gquadrant ‘2’
3¢ quadrant ‘3’ ®
4** gquadrant ‘4’

i.e.,if the angle z is anywhere between 0° and 90° plus or minus
a multiple of 360°, the qualitative variable v assumes a value of
‘1°, etc. v simply denotes the quadrant of z. Let us recode the
variable y into a qualitative variable w with two states, such
that:

y w
negative ‘1’
( positive ‘2’ (9

i.e., w simply denotes the sign of y. This allows us to char-
acterize the functional relationship between the two qualitative
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variables v and w as follows:

v w
‘17 517
2 (10)
‘4’ ‘27

Eq(10) is the qualitative counterpart of eq(7). Qualitative
functions are finite autornata which relate the qualitative vari-
ables to each other.

However, we have to be careful that we recode all variables
in a consistent fashion. E.g., had we recoded z differently:

z v
—45e. 4 45° ‘T
$45°. 4 135° 2
+135°. + 225° ‘@ 1)
2250, 4 315° @

with the same recoding for y, we would have found a non-
deterministic relationship between v and w:

v w prob
‘1’ ‘1 50%
(1’ S27 507;
' ‘1 100%
g 1 50% (12)
‘3 2 50%
‘4 ¢2' 100%

The third column denotes the relative frequency of observation
which can be interpreted as the conditional probability of the
output w to assume a certain value, given that the input v has
already assumed an observed value.

Eq(12) can be rewritten in a slightly different form:

'\U ‘1, 12’
‘l: 0.5 0.5
9@ (10 00
3 | o5 05 (13)
¢4’ 0.0 1.0

which is called a state transition matriz relating v to w. The
values stored in the state transition matrix are the transition
probabilities between a given level of v and and certain level of
w, i.e., they are the conditional probabilities of w given v:

ST; = plw ="'j’lv="7} (14)

The element < i,j > of the state transition matrix is the con-
ditional probability of the variable w to become ‘j’, assuming
that v has a value of ‘2’

We are not going to assume that we know anything about
our system with the exception of the observed data streams, i.e.,
the measured trajectory behavior. Obviously, this says that we
cannot know a priori what it means to recode our variables
“consistently”. All we know is the following: For any system
which can be described by a deterministic (yet unknown) arbi-
trarily non-linear state-space model of arbitrary order, if we are
lucky enough to pick all state variables and all state derivatives
as our output variables, i.e., if all these variables are included
in our trajectory behavior, and if we are fortunate enough to
recode all these variables in a consistent fashion, then there will
exist deterministic and static relationships between the quali-
tative state variables and the qualitative state derivatives.

In the process of modeling, we wish to find finite automata
relations between our recoded variables which are as determin-
istic as possible. If we find such a relationship for every output
variable, we can forecast the behavior of our system by iterating
through the state transition matrices. The more deterministic
the state transition matrices are, the better will be the certainty
that we predict the future behavior correctly.

Let us now look at the development of our system over time.
For the moment, we shall assume that our observed trajectory
behavior was produced by quantitatively simulating a state-
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space model over time. Let us assume that the state—space
model was coded in a CSSL language, that we integrate it using
a fixed step forward Euler algorithm, and that we log every time
step in our trajectory behavior. In this case, we can write:

2i(k + 1) = 2i() + At - &,(k) (15)
The qualitative version of eq(15) is:
vk + 1) = §(vik), wi(k)) (16)

Eq(15) is obviously a deterministic relationship between
z;(k), zi(k), and z;(k+1). Is § a deterministic function? Let us
assume that we choose our step size At very small in order to
integrate accurately. In this case, the state variables will change
very little from one step to the next. This means that, after the
recoding, v;(k+1{ is almost always equal to v"gc). Only when z;
passes through a landmark will v; ‘Sk+1 be different from v;(k).
Consequently, our qualitative model will have a tough time pre-
dicting when the landmark crossing will take place. Thus, it is
not a good idea to include every tiny time step in our trajectory
behavior. The time distance between two logged entries of our
trajectory behavior §t should be chosen such that the two terms
in eq(15) are of the same order of magnitude, i.e.:

llwsll = 8¢ - fjosl| (n

Notice that 8t is the communication interval, whereas At
denotes the integration step size. These two variables have no
direct relationship with each other. The data stream could as
well be the output of a digital oscilloscope observing a real phys-
ical system. In such a case, At has no meaning, but &t still
exists, and must be chosen carefully.

Let us now forget about state-space models. All we know
is that we have a recorded continuous trajectory behavior avail-
able for modeling. We want to assume furthermore that we
know which are inputs into the real system, and which are the
outputs that we measure. Our trajectory behavior can thus be
separated into a set of input trajectories concatenated from the
right with a set of output trajectories, e.g.:

U U3 W Va2 Vs

3.5t SO (18)
sl s

The trajectory behavior is recoded into an episodical be-
havior using the techniques described in the last section. Our
modeling effort now consists in finding finite automata relations
between the recoded variables which make the resulting state
transition matrices as deterministic as possible. Such a relation

could look like:
%(2) = Flys(t — 26),ua(t — 6t), 31 (t — 6t), wa(2)) (19)

Eq(19) can be represented as follows:

t U Y2 Y1 Yz Vs
t— 26t 0 0 0o 0 -1
t— ot ( 0 -2 -3 0 O ) (20)
t -4 0 +1 0 0

The negative elements in the above matrix denote inputs of our
qualitative functional relationship. The above example has four
inputs. The sequence in which they are enumerated is immate-
rial. We usually enumerate them from the left to the right, and
from the top to the bottom. The positive value is the output.
Thus, eq(20) is a matrix representation of eq(19). In Induc-
tive Reasoning, such a representation is called a mask. A mask
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denotes a dynamic relationship between qualitative variables.
In SAPS-II, masks are written as either MATLAB or CTRL-
C matrices. A mask has the same number of columns as the
episodical behavior to which it should be applied, and it has a
certain number of rows. The number of rows of the mask ma-
trix is called the depth of the mask. The mask can be used to
flatten a dynamic relationship out into a static relationship. We
can shift the mask over the episodical behavior, pick out the se-
lected inputs and outputs, and write them together in one row.
Figure 7 illustrates this process.

' A
Y N
°of1 2113

xl2.2.1.3.3]. 12l 4%
i201 1 33@): >3 2113
l.w1®®21; a3 1312
22233 1) —> @212 23
B271727371 21 232 2
@1 2133 el 1211

L J

Figure 7. Flattening dynamic relationships through masking

After the mask has been applied to the raw data, the for-
merly dynamic episodical behavior has become static, i.e., the
rcl'atlonships are now contained within single rows. in SAPS-II,
this operation can be performed using the JOMODEL function:

to = IOMODEL(raw, mask)

IOMODEL will translate the raw data matrix on the left side
of Figure 7 into the flattened data matrix on the right side of
Figure 7.

We still haven’t discussed how &t is picked in practice. Ex-
perience has shown that the equality of eq(17) can be trans-
lated into the following general rule: The mask should cover
the largest time constant that we wish to capture in our model.
If the trajectory behavior stems from measurement data, we
should measure a Bode diagram of the system that we wish to
model. This allows us to determine the band width wsgp of the
system. The largest time constant (i.e., the settling time) of the
system can be computed from eq(21):

27
t,

(21)

WsdB

If our chosen mask depth is 3, the mask spans a time interval
of 26t, thus:

t

it = (22)

|

The mask depth should be chosen as the ratio between the
largest and the smallest time constant that we wish to capture
in our model, but this ratio should better not be larger than 3
or 4. Otherwise, the Inductive Reasoner won’t work very well.

5. OPTIMAL MASKS

An Inductive Reasoning model is simply a set of masks that
relate the input variables and previous values of the output
variables to the current values of the outputs. We shall usually
forbidfrelations between various outputs at the current time,
since if:

n(t) = fiw(t)
0(t) = H(n®))

(23a)
(23b)

we got an algebraic loop.
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The question remains: How do we find the appropriate
masks. The answer to this question was already given. We
need to find the masks that, within the framework of the al-
lowable masks, presents us with the most deterministic state
transition matrix since this matrix will optimize the predictive-
ness of our model. In SAPS-II, we have introduced the concept
of a mask candidate matriz. A mask candidate matrix is en en-
semble of all possible masks from which we choose the best one
by a mechanism of ezhaustive search. The mask candidate ma-
trix contains —1 elements where the mask has a potential input,
it contains a +1 element, where the mask has its output, and it
contains 0 elements to denote forbidden connections. Thus, the
mask candidate matrix for our previous five variable example
will look as follows:

\* Uy Uz Y1 Y2 Ys
t—26t /(-1 -1 -1 -1 -1
t-— 6t -1 -1 -1 -1 -1 (24)
t -1 -1 41 0 0

The SAPS-II program segment:

mecan = ~ONES(3,5);

mcan(3,3:5) = [1,0,0;

mazcompl H

mask = OPTM ASK (raw, mcan, mazcompl)

determines the optimal mask from the set of candidate masks.
raw is the raw data matrix, and mcan is the mask candidate
matrix. OPTMASK will go through all possible masks of com-
plexity two, i.e., all masks with one input, and find the best.
It will then proceed and try all masks of complexity three, i.e.,
all masks with two inputs, and find the best of those, etc. The
third parameter mazcompl enables us to limit the maximum
complexity, i.e., the largest number of non-zero elements that
the mask may contain. This is a useful feature. In all practical
examples, the quality of the masks will first grow with increas-
ing complexity, then reach a maximum, and then decay rapidly.
Thus, by setting mazcompl, we can reduce the time that the
optimization takes. A good value for mazcompl is usually five.
If you wish to disable this parameter, set mazcompl to zero.

How do we determine the quality of a mask? Let us ex-
plain the process by means of a simple example. Let us assume
that we have found the following raw data matrix (episodical
trajectory) of a three variable system:

raw = [

DO DO B R s ke B
RO N RS D e s B
B 00 PO RO N G0 D €0

]

Each mask will lead to a different state transition matrix.
E.g., the mask:

-2 0

mask =[ -1
0 0 +1]

will lead to the following input/output model:

io=]|

D RO RO e e B
I L X
00 B B N OO &

]

The basic behavior of this input/output matrix is a lexi-
cal listing of all observed states together with their observation
frequencies:
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BRSO b bt b
BB b= DD N b
B G i = 0 N
coooooo
e B DD DD

1
In SAPS-II, the basic behavior can be computed using the
statement:

[6,p} = BEH AVIOR(i0)

This gives rise to the following state transition matrix:

(n\”‘ 61! (21 63’ G4Y

‘11 0.000 0.667 0.333 0.000
12’ 0.333 0.000 0.000 0.667
21 0.000 0.000 1.000 0.000
22 0.500 0.500 0.000 0.000

which shows on the left side the combined values of the two
inputs, in the top row the values of the output, and in the table
itself, the conditional probabilities. The two inputs are binary
variables, whereas the output has four levels. In addition, we
need the absolute probabilities (observation frequencies) of the
input states. For our example, the following values are found:

input prob
‘11’ 0.
12 0.3
21° 0.2
22’ 0.2

In SAPS-II, the state transition matrix and the input prob-
ability vector can be computed using the statement:

[st,ip) = STM ATRIX (io,2)

where the second input argument denotes the number of in-
put variables of the input/output matrix. In our example, the
input/output matrix contains two inputs and one output.
Now, we can compute the Shannon entropy [Shannon and
Weaver 1964] of the state transition matrix which is a measure
of the information content of the state transition matrix. The
Shannon entropy is computed with the following formulae:

HM = - z(p{inp =} Z(p{out = ‘§’linp = ¢’}
v vi

- log,(p{out = *j’linp = ‘'})))

In our example:

(25)

—~HM = 0.3+ [0.667 - 1og;(0.667) -+ 0.333 - log, (0.333)]
+0.3- [0.667 - log,(0.667) + 0.333 - log,(0.333)]
+0.2 - [1.0 - log,(1.0)]
+0.2-[0.5 - log,(0.5) + 0.5 - 1og,(0.5)]
= —0.275 — 0.275 + 0.0 — 0.2
= -0.75

and thus:

HM =0.75

The state transition matrix is completely deterministic if it
contains one +1 element in every row, while all other elements
are 0. In that case, the Shannon entropy is:

HM, ;, = 0.0

. The worst case occurs if all outcomes are equally probably,
i.e., if the state transition matrix contains only elements of the
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same magnitude, in our case: 0.25 (since the output has four
levels). For this case, we find the following Shannon entropy:

HMpoo = 2.0

The maximum entropy depends on the number of rows and
columns of the state transition matrix. We can introduce an
uncertainty reduction measure which is defined as follows:

HM

=1.0-
HR 0 Mo

(26)

In SAPS-II, the Shannon entropy and the uncertainty re-
duction measure of a state transition matrix can be determined
using the statement:

[HM,HR] = ENTROPY (st,ip)

HR can be used as a quality measure. In the worst case, HR is
equal to 0.0, while in the best case, HR is equal to 1.0.

However, there is still a problem with this approach. If
we increase the complexity of the mask, we find that the state
transition matrix becomes more and more deterministic. With
growing mask complexity, there exist more and more possible
input states (combinations of levels of the various input vari-
ables). Since the total number of observations n,.. remains
constant, the observation frequency of the observed states will
become smaller and smaller. Very soon, we shall be confronted
with the situation where every state that has ever been ob-
served has been observed precisely once. This leads obviously
to a completely deterministic state transition matrix. Yet, the
predictiveness of the model may still be very poor, since al-
ready the next predicted state has probably never before been
observed, and that will be the end of our forecasting. Therefore,
we must include this consideration in our quality measure.

We had explained previously that, from a statistical point
of view, we would like to ensure that every state was observed at
least five times. Therefore, we introduce an observation ratio:

_ 5emgx +4-ng +3-ng + 203y + Nx

OR 27
5 nyy
where:
Nieg = number of legal input states
Nix = number of input states observed only once
Tiax = number of input states observed twice
Nax = number of input states observed thrice
Nax = number of input states observed four times
Tigx = number of input states observed five times or more

If every legal input state has been observed at least five times,
OR is equal to 1.0. If no input state has been observed at all
(no data), OR is equal to 0.0. Thus, also OR qualifies for a
quality measure.

We define the quality of @ mask as the product of its uncer-
tainty reduction measure and its observation ratio:

Q=HR-OR (28)
The optimal mask is the mask with the largest Q@ value.

The OPTMASK function can be used to compute all these
quantities. The full syntax of this function is as follows:

[mask, HM, HR, Q, mhis] = OPTM ASK (raw, mcan, mazcompl)

mask is the optimal mask found in the optimization. HM is
a row vector that contains the Shannon entropies of the best
masks for every considered complexity. HR is a row vector that
contains the corresponding uncertainty reduction measures. @
is a row vector which contains the corresponding quality mea-
sures, and mhis is the mask history matrix. The mask history
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matrix contains, concatenated to each other from the right, the
best masks at each of the considered complexities. One of these
masks is the optimal mask which, for reasons of convenience, is
also returned separately.

Until now, we haven’t used our fuzzy membership functions
yet. Remember that the fuzzy membership associated with the
value of a qualitative variable is a measure of confidence. It
specifies how confident we are that the assigned value is cor-
rect. If we compute the input/output matrix, we can assign
a confidence to each row. The confidence of a row of the in-
put/output matrix is the joint membership of all the variables
which are associated with that row.

Let us demonstrate the concept by means of our simple
three variable example. Assume that the following fuzzy mem-
bership matrix accompanies our raw data matrix:

raw = | Memb =[ 0.61 1.00 0.83
0.73 0.77 0.95
0.73 0.88 1.00
0.51 0.91 1.00
0.55 0.92 0.92
0.71 0.77 0.78
0.63 0.91 0.69
0.86 0.83 0.83
0.77 0.97 0.70
0.78 0.93 0.75

4] 0.89 0.81 1.00 ]

The joint membership of ¢ membership functions is defined
as the smallest individual membership:

RO RO RO B e B
[ O N e L
(SRR CY O VTR

Membjping = ﬂ Memb, = ig\;f(Memb,»)déf n\]j.‘;n(Memb.») (29)
Vi

The FIOMODEL function of SAPS-II computes the in-
put/output matrix together with the confidence vector:

[éo, conf} = FIOMODEL(raw, mask)

Applied to our example, we find:

-
)
I

conf = 0.61
0.73
0.73
0.51
0.55
0.69
0.63
0.70
0.75
] 0.78 ]

= RO B R ke e b DD
DO RO DO =t B b bt D b
B0 B B B W 0

The conf vector indicates how much confidence we have in
the individual rows of our input/output matrix. We can now
compute the basic behavior of the input/output model. Rather
than counting the observation frequency, we shall accumulate
the confidence. If a state has been observed more than once,
we gain more and more confidence in it. Thus, we sum up the
individual confidences. In SAPS-II, this can be achieved using
the statement:

[6,¢) = FBEHAVIOR(io,conf)

Applied to our simple example, we find:
b=1{ c=[1.06
0.73
0.75
1.51
1.24
0.70

1 0.69

BN R
BB = RO
DO bt 00 B = 0 D

Notice that the ¢ vector is no longer a probability. The c; ele-
ments no longer add up to 1.0.

This leads now to a modified state transition matrix. The
SAPS-II statement:
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[st,ic) = FSTM AT RIX (io,conf,2)

produces the following results:

A T S MY
‘1’ 0.00 1.06 0.73 0.00
12 0.75 0.00 0.00 1.51
21 0.00 0.00 1.24 0.00
22 0.70 0.69 0.00 0.00

which shows on the left side the combined values of the two
inputs, in the top row the values of the output, and in the table
itself, the confidence values. The total input confidence vector
is:

input conf
‘11 1.79
‘a2’ 2.26
21’ 1.24
22 1.39

The total input confidences are computed by summing up
the individual confidences of all occurrences in the basic behav-
jor. Notice that in all these computations, the actual qualitative
variables are exactly the same as before, only their assessment
has changed. The previously used probability measure has been
replaced by a fuzzy measure.

The optimal mask analysis can use the fuzzy measure as
well. The statement:

[mask, HM,HR,Q,mhis] =
FOPTMASK (raw, Memb, mcan, mazcompl)

uses the fuzzy measure to evaluate the optimal masks. In order
to be able to still use the Shannon entropy, we normalize the
row sums of the state transition matrices to 1.0. It can happen
that FOPTMASK picks another mask as its optimal mask than
the previously used OPTMASK routine. Due to the fact that
we use more information about the real system, we will in most
cases obtain a higher mask quality. Notice that the concept of
applying the Shannon entropy to a confidence measure is some-
what dubious on theoretical grounds since the Shannon entropy
was derived in the context of probabilistic measures only. For
this reason, some scientists prefer to replace the Shannon en-
tropy by other types of performance indices [Klir 1989; Shafer
1976) which have been derived in the context of the particu-
lar measure chosen. However, from a practical point of view,
numerous simulation experiments performed by us have shown
the Shannon entropy to work satisfactorily also in this context.

6. FORECASTING BEHAVIOR

Once we have determined the optimal mask, we can com-
pute the input/output model resulting from applying the opti-
mal mask to the raw data, and we can compute the correspond-
ing state transition matrix. Now, we are ready to forecast the
future behavior of our system, i.e., we are ready to perform a
qualitative simulation.

Forecasting is a straightforward procedure. We simply loop
over input states in our input/output model, and forecast new
output states by reading out from the state transition matrix
the most probable output given the current input. Let us ex-
plain this procedure by means of the previously used example.
Given the raw data matrix:

raw = |

B 0O N B bt e e RO
RO B DO b B bt e e B
R N O
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which is assumed to consist of two input variables and one out-
put variable. The future inputs over the next four steps are:

inp =

RO =
[SYSYT

]

and we wish to forecast the output vector over the same four
steps. Let us assume furthermore that the optimal mask is the
one used earlier:

mask=[-1 -2 0
0 0 +1]

For this case, we have already computed the input/output
model and the state transition matrix. After the input/output
model has been computed, the mask covers the final two rows
of the raw data matrix. In order to predict the next output, we
simply shift the mask one row further down. The next input
set is thus: ‘21°. From the state transition matrix, we find that
this input leads in all cases to the output ‘3’. Thus, we copy ‘3’
into the data matrix at the place of the next output. We then
shift the mask one row further down. At this time, the mask
reads the input set ‘11’. From the state transition matrix, we
find that the most probable output is ‘2’, but its probability
is only 66.7%. We continue in the same manner. The next
input set is again ‘11’. Since this input set is assumed to be
statistically independent of the previous one (an unreasonable
but commonly made assumption), the joint probability is the
product of the previous cumulative probability with the newly
found probability, thus p = % . % = % = 44.4%. The next input
set is ‘22’. For this case, we find that the outcomes ‘1’ and ‘2’
are equally likely (50%). Thus, we pick arbitrarily one of those.
The cumulative probability has meanwhile decreased to 22.2%.

This is exactly how, in SAPS-II, the FORECAST routine
predicts future states of a recoded system.

[£2,p) = FORECAST(f1,mask,nrec, minprob)

forecasts the future behavior of a given system f1 where f1
contains the raw data model concatenated from below with the
future inputs filled from the right with arbitrary zero values,
thus:

f1 = [raw; inp, ZROW (nstp, nout))

where nsip denotes the number of steps to be forecast, and nout
denotes the number of output variables in the raw data model.
mask is the optimal mask to be used in the forecasting, nrec
denotes the number of recorded past data values, i.e., nrec tells
the forecasting routine how many of the rows of f1 belong to the
past, and how many belong to the future, and minprob instructs
SAPS to terminate the forecasting process if the cumulative
probability decreases below a given value. This feature can be
disabled by setting minprob to zero.

Upon return, f2 contains the same information as f1 but
augmented by the forecast outputs, i.e., some or all of the
ZROW values have been replaced by forecasts. p is a column
vector containing the cumulative probabilities. Of course, up to
row nrec, the probabilities are a.lf 1.0 since these rows contain
past, i.e. factual, information.

If, during the forecasting process, an input state is encoun-
tered which has never before been recorded, the forecasting pro-
cess comes to a halt. It is then the user’s responsibility to either
collect more data, reduce the number of levels, or pick an arbi-
trary output and continue with the forecasting.

How can we make use of the fuzzy memberships in the fore-
casting process? The procedure is very similar. However, in this
case, we don’t pick the output with the highest confidence. In-
stead, we compare the membership and side functions of the
new input with the membership and side functions of all pre-
vious recordings of the same input, and pick as the output the
one that belongs to the previously recorded input with the most
similar membership. For this purpose, we compute a cheap ap-
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proximation of the regenerated continuous signal:

d =1+ side » (1 —~ Memb) (30)

for every input variable of the new input set, and store the re-
generated d; values in a vector. We then repeat this reconstruc-
tion for all previous recordings of the same input set. We finally
compute the Ly—norms of the difference between the d vector
of the new input and the d vectors of all previous recordings of
the same input, and pick the one with the smallest Ly—norm.
Its output and side values are then used as forecasts for the
output and side values of the current state. We proceed a lit-
tle differently with the membership values. Here, we take the
five previous recordings with the smallest La—norms, and com-
pute a distance weighted average as the forecast for the fuzzy
membership values of the current state.
In SAPS-II, this is accomplished by use of the function:

[£2, Memb2, side2] = FFOREC AST(f1, Membl, sidel, mask, nrec)

The fuzzy forecasting function will usually give us a more
accurate forecast than the probabilistic forecasting function.
Also, if we use fuzzy forecasting, we can afterwards regenerate
pseudo—continuous output signals with a relatively high quality
using the REGENERATE function.

7. A LINEAR SYSTEM - AN EXAMPLE

Let us analyze once more the same third order example that
we discussed in [Cellier 1987]:

x=A:x+b-u
0 1 0 0

= 0 0 1}-x+[0]-u (31a)
-2 -3 -4 1

y=C-x+d-u
100 0

={o 1 0]-x+[0]) u (318)
0 0 1 0

We can easily determine that the band width of this system
is wigp ~ 1sec™!. Therefore, the settling time is ¢, ~ 6sec. We
wish to use a mask with a depth of three, and therefore, the
communication interval should be 6t ~ 3sec.

In order to exert all frequencies of this system in an optimal
manner, we shall simulate this system (directly in CTRL-C)
applying a binary random sequence as the input signal [Cellier
1987]. We decided to recode each of the output states into three
levels BSthe input is already binary), and therefore, the number

of legal states can be computed as:

Ty =2-3-3.3=54 (32)
and therefore, the required number of recordings is:

Nypee = 5 nyey = 270 (33)

Let us simulate the system over 300 communication inter-
vals. This is accomplished as follows:

t=0:3:900;

uv = ROUND(RAND(t));
z0 = ZROW (3,1);
SIMU('ic', z0);
y=SIMU(a,b,c,d, u,t);

Figure 8 shows the results of the continuous-time simula-
tion.
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Figure 8. Continuous-time simulation of linear system

Notice that we used the continuous-time simulation here as
we could have used a digital oscilloscope. We shall not make
any use of the fact that we know the structure of our system.

We shall use our optimal recoding algorithm to discretize
our three output variables:

DO saps : saps
meas = [u',y');
m = meas;
FORi=12:4,...

{indz, mi] = SORT(meas(:,i));. ..

m(:, 1) =mi; ...
END

LM = m(1,);

LM = {LM;0.5 * (m(100,:
LM = [LM;0.5 » (m(200,:
LM = [LM;m(300,:);

raw = meas; Memb
to=1:3;
FORi=2

mi
+ m(101,:))];
+ m(201,:))};

= ON ES(meas);

side = ZROW (meas);

:[I:‘M'(i 23,4), LM(2: 4,3)]55...

from=

[r,m,s] = RECODE(meas(:,i), fuzzy', from,to);

raw(:,1) =r; Memb(:,i) =m; side(:,1) =55
END

The above code segment sorts each trajectory (column) vec-
tor separately, then subdivides the sorted vector into three seg-
ments of equal size to determine the optimal landmark values
(LM). Thereafter, the measurement data are recoded separately
for each trajectory. At the end of the code segment, raw con-
tains the recoded raw data matrix.

We are now ready to search for the optimal masks. We
operate on three separate mask candidate matrices, one for each
of the three outputs. We shall compute the quality vector and
the mask history matrix since it turns out that we shall put
also the suboptimal masks to good use. We shall keep the three
best masks and sort them in order of decreasing quality. The
following code segment shows the optimal mask analysis for the
first output. The other two masks are computed accordingly.
Nolticc that we shall use the first 270 rows of the raw data matrix
only.

rraw = raw(l : 270,:);
MMemb= Memb(1: 270,:);
sside = side(1 : 270, :);
mcan = ~ONES(3,4);
mean(3,2: 4) = [1,0,0];
[mask, hm, hr,q1, mhisl) = FOPTM ASK (rraw, Mmemb, mcan, 5);

indz = SORT(q1);
— 1) +1: 4 xindz(1));
— 1)+ 1: 4 xindz(2));

:,4;
HE 33
—1)+1:4%ind2(3

mla = mhisl K indz(1
mlb = mhisl indz(2
mlc = mhisl(:, 4 » (indz(3
ml = [mla, ml1b, mic];
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At the end of this code segment, ml contains the three best
masks concatenated to each other from the right.

We are now ready to forecast. During the forecasting pro-
cess, it will happen from time to time that an input state is
encountered which has never before been recorded. In this case,
the forecasting routine will come to a halt and leave it up to the
user what to do next. We decided to try the following strategy:
since the input state depends on the masks, we simply repeat
the forecasting step with the next best mask hoping that the
problem goes away. If this doesn’t help, we try the third mask.
This is the reason why we saved the suboptimal masks.

We coded the forecasting in a separate routine called FRC
which is called from the main procedure as follows:

DEFF frc
inpt = raw(271: 300,1);
[pred, cpred] = F RC(rraw, Mmemb, saide, inpt, ml, m2,m3);

At this point, it should have become clear why we simulated
over 300 steps although we needed only 270 recordings. The
final 30 steps of the continuous-time simulation will be used
to validate the forecast. pred contains the predicted discrete
variables, whereas cpred contains the reconstructed continuous
variables.

The FRC routine operates in the following way: We loop
over the 30 steps of the forecast. In each step, we call the
SAPS-II routine FFORECAST three times, once with each of
the three optimal masks to forecast one value only. At the end
of the step, we concatenate the new row (forecast) to the raw
data from below, and repeat. If FFORECAST isn't able to
predict a value since the input state has never been seen before,
it returns the raw data unchanged, i.e., the number of rows
upon output is the same as upon input. In that case, we repeat
the FFORECAST with the next best mask. If none of the three
best masks is able to predict the next step, we pick a value at
random. The following code segment shows how FRC works:

//[frest,cfrest] = FRC(raw, Memb, side, inpt, ml, m2, m3);
1

‘mle = mi(:,1:4); mlb=ml(:5:8); mlec =ml(:9:12);
m2a = m2(:,1: 4); m2b=m2(:,5:8); m2c=m2(;,9:12);
m3a = m3(;,1: 4); m3b=m3(:,5:8); m3c=m3(;,9:12);

r=raw; Mb= Memb;
row, col| = SIZE(raw);
n,m| = SIZE(inpt);
FORi=1:n,...

in = inpt(i

s = side;

npt(1);...
fo= [.'n,%zoW(l,s)]; "
cc=[r; fe);  Mbb = [MbONES(fc)}; ss = [s; ZROW (fe));.--
ff1,Mbl,s1] = FFORECAST(fcc, bb, ss, mla,row +i—1
Irf,Cf]=512E'(ffl);~~-
g j

[ff1,Mb1

.

, 81 =...
FFORECAST(fcc, Mbb, ss, mlb,row +1i — 1);...
[rf,cf] = SIZE(ff1);...
IFrf<>row+i,...
(Ff1, Mb1,81] = ...
FFORECAST(fcc, Mbb, ss,mlc,row + i~ 1,0);...
rficfl=SIZE(ff1);...
IF rf <>row+i,...
FF1= [ff1; ROUND(RAND(1,4))}i .-
Mbl = Mbb; sl =ss;...
END,...
END,...
END,...
// %% Same code for ff2 and ff3 ==
¥ = lin, £ f1(row + ,2), f f2(row + i,sg,ffs(mu i 4.
MM = [ON ES(in), Mbl(row + 5, 2), Mb2(row +4,3),..
Mb3(row +i,4));...
si= [ZROW(ing,sl row + 4, 2), s2(row + §,3), 83(row + 4, 4)]; ...
r=[r;ffl; Mb=[MbMM] s= [8; 8d);...
END
frest=r;

from=1:3;

cpred = ZROW(30,3);

FORi=12:4,...
to=[LM(1:3,i),LM(2:4,i)]
rr=r(271:300,3); MMb=
ss = 5(271: 300,4);...
¢ = REGEN ERATE(rr, MMb, 83, from,t0); ...
cpred(s,i—1) =¢...

END

cfrcst = meas;

RETURN

1.

Mb(271 : 300, ); ..

cfreat(271:300,2: 4) = cpred;
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We then compared the data from the simulation with the
forecast data:
simdat = raw(271 : 300, :);
fredat = pred(271 : 300, :
error = simdat — frcdat;

It turned out that there was not a single error in the forecast
in terms of the recoded (discrete) variables. The forecasting
procedure worked beautifully.

Figure 9 displays the true continuous signals with the re-
generated ones superimposed.

Comparison of Simulated and Forecast Behavior
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Figure 9. True and regenerated continuous—time signals

The solid lines represent the results from the continuous
simulation. They look discontinuous because of the large com-
munication interval of 3sec used in the simulation. CTRL-C’s
plot routine uses linear interpolation between communication
points. The dashed lines are the pseudo—continuous signals that
were regenerated from the forecast using the fuzzy membership
functions. The reconstructed third output variable has a small
consistent bias, whereas the reconstructed first two output vari-
ables look excellent.

8. SUMMARY

In this paper, we have introduced a number of pattern
recognition techniques that can be used for qualitative simula-
tion or forecasting of system behavior. Optimal mask analysis
allows us to determine qualitative causality relations among a
set of causally related variables. Optimal masks can be viewed
as a sort of feature extractor. Similar patterns will lead to the
same optimal mask, and therefore, the optimal mask can help
us recognize similarities between patterns. These patterns can
be either temporal patterns (such as time signals) or static pat-
terns (such as images). Optimal mask analysis is still a far cry
from automating the human associative reasoning capability,
but it may be a first step towards mimicking this capability in
a computer program.

SAPS-II was introduced as a tool to qualitatively ana-
lyze systems using these techniques. SAPS-II is available as
a CTRL-C function library and also as a ProMatlab (PC-
Matlab) toolbox. More details about the proposed method-
ologies can be found in a forthcoming book [Cellier 1990).
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