
Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Ke]ton, Gordon M. Clark (eds.)

QUALITATIVE MODELING AND SIMULATION: PROMISE OR ILLUSION

Fran~ois E, Cellier

Department of Electrical and Computer Engineering

University of Arizona

Tucson, Arizona 85721

ABSTRACT

In this panel discussion, questions shall be addressed

relating to the potential usefulness of qualitative

modeling and simulation. When might qualitative

versus quantitative modeling/simulation be justified?

What types of qualitative models if any are useful

and under which conditions? What can qualitative

simulations reveal that quantitative simulations can-

not ? Under what conditions are combined quantit a-
tive/qualitative models feasible/meaningful?

In this article, some basic definitions are presented

that may serve as a basis for the discussion. After all,

we must first agree on some common ground before

particular properties can be explored.

1 TYPES OF MATHEMATICAL MODELS

What types of mathematical models do exist? A first

category is the set of continuous-time models. Figure

1 shows how a state variable a changes over time in
a continuous-time model.
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Figure 1: Trajectory behavior of continuous models

We can give the following definition for continuous-
time models: “Continuous-time models are character-

ized by the fact that, within a finite time span, the

state variables change their values infinitely often.”

No other mathematical model shares this property.

Continuous-time models are represented through

sets of differential equations. Among the continuous-

time models, two separate classes can be distin-

guished: the lumped parameter models, which are de-

scribed by ordinary di#erential equations (ODES), in

general:

x = f(x, u, t) (1)

and for the special case of linear system%

x= Ax+ Bu (2)

and the distributed parameter models, which are de-

scribed by partial differential equations (PDEs) such

as the diffusion equation:

au (Pu—=
a r“~ (3)

The second class of mathematical models to be

mentioned is the set of discrete-time models. Figure 2

depicts the trajectory behavior exhibited by discrete-

time models.
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Figure 2: ‘Trajectory behavior of discrete-time models
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In this type of models, the time axis is dis-

cretized. Discrete-time models are commonly repre-

sented through sets of difference equationa, at least if

the discretization is equidistantly spaced. Such mod-

els can be represented as:

Xk+l = f(x~,u~,tk) (4)

The third and final class of models is the set of

discrete-event models. Paradoxically, the time axis

of discrete-event models is usually “continuous” (i.e.,

reai rather than integer), but discrete-event models

differ from the continuous-time models by the fact

that, in a finite time span, only a finite

state changes may occur. Figure 3 depicts

trajectory behavior of a state variable in

event simulation.
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Figure 3: Trajectory behavior of discrete-event models

Discrete-event models are usually described by an

enumeration of all possible event types together with

either a list of times when these events occur (a so-

called event calendar) or a set of conditions under

which they occur (activity scanning).

The three types of models differ in their interpre-

tation of time. In continuous-time simulations, time

is (at least conceptually) an analog variable. Digi-

tal continuous-time simulations proceed by advanc-

ing the simulation clock in sufficiently small steps
so that the human observer of the simulation results

is seduced into smoothing out the trajectory behav-
ior, i.e., he or she does not perceive the (on a digi-

tal computer necessary) time quantization aa an es-

sential or noteworthy property of his or her model.

Discrete-time simulations perceive time as an integer

or fixed point variable. Time is advanced by a fixed

clock increment that is sufficiently large to make it

essential/noteworthy. Discrete-event simulations fi-

nally proceed from one event time to the next, i.e.,

while time is perceived aa a real variable, only par-

ticular time instants are seen as noteworthy, namely

those where a state change occurs.

Notice that nothing is said about the nature

of the state variables themselves. The three

model/simulation types differ only in their interpreta-

tion of time. If the state variables themselves are real

valued, the model is called quantitative, otherwise it

is called qualitative. Figure 4 shows the trajectory

behavior of a qualitative model.

Figure 4: Trajectory behavior of qualitative models

Different types of qualitative models differ in the

manner in which the state variables are discretized,

and in the manner in which time is advanced.

2 SOME USEFUL DEFINITIONS

The following terminology shall be used:

1. Qualitative variables are variables that assume

a finite ordered set of qualitative va’lues, such

aa “minuscule,” “small: “average,” “limge,” and

“gigant it.” The lit erature on quantitative soft

sciences is a little more precise on this definition

than the literature on artificial intelligence. For

instance, Babbie (1989) distinguishes between:

(a)

(b)

Nominal measures, i.e., variables whose val-

ues have the only characteristics of exhaus-

tiveness and mutual exclusiveness. Nomin-

al measures are unordered sets. Typical

nominal variables might be the religious af-

filiation, or the hair color of a person. Such

variables are not useful as state-variables in

a simulation. They can play a role as pa-

rameters.

Ordinal measures, i.e., variables that are

nominal, and in addition, are rank-ordered.

These variables are what I called above

qualitative variables. However, sometimes
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2.

3.

4.

(c)

(d)

we shall let go of the condition of mutual

exclusiveness, for example, when we oper-

ate on fuzzy sets.

Interval measures, i.e., variables that are or-

dinal, and in addition, have the property

that a distance measure can be defined be-

t ween any two values, that is: interval vari-

ables can be added to and/or subtracted

from each other. A typical candidate for

a “soft” interval variable might be the in-

telligence quotient.

Ratio measures, i.e., variables that are in-

terval measures, and in addition, have a

true zero point.

Qualitative behavior denotes a time-ordered set

of values of a qurdit ative variable, i.e., an episode.

Episodes are qualitative trajectories.

Qualitative models are models that operate on

qualitative states.

A qualitative simulation is an episode generator

that infers qualitative behavior from a qualita-

tive model.

Qualitative state variables are frequently ordinal

measures, i.e., no dist ante information is preserved

between neighboring states. In this respect, Fig.4 is

atypical. Also, time in a qualitative simulation is of-

ten perceived as a qualitative variable as well. One

“unit” of qualitative time is the time that elapses be-

tween two consecutive state changes. Obviously, since

state changes don’t have to be equidistantly spaced,

a “unit” of qualitative time is not a quantum. While

qualitative models with quantitative time can be rep-

resented through integer-state discrete-event models,

qualitative models wit h qualitative time could be rep-

resented through integer-state discrete-time models.
However, a more commonly used representation for

such models is the finite state machine.

While quantitative simulation always denotes the

trajectory behavior of a quantitative model in re-

sponse to a particular expem”ment, qualitative simu-

lation often aspires to describe the episodical behav-

ior of a qualitative model in response to all possi-

ble experiments. Consequently, while the result of a

quantitative simulation is one particular trajectory

behavior, the result of a qualitative simulation may

be a (possibly extensive) set of all feasible episodi-

cal behaviors. It is desirable to describe a qualitative

model in such a way as to minimize the cardinality of

this set. However, this is often not possible, and it is

therefore quite common that a qualitative simulation

drowns in the sea of ambiguity. Are there techniques

around that minimize ambiguity in a systematic fash-

ion? I don’t know of any such techniques. Hopefully,

one of the panel members will address this important

issue.

3 TYPES OF QUALITATIVE MODELS

3.1 Naive Physics Models

Naive physics encompasses a set of different tech-

niques for knowledge-based reasoning about physi-

cal systems. Different representatives of this type of

qualitative models are described in Bobrow (1985).

All naive physics models have in common that they

discretize the state space in a very crude way, namely

the set { – O + }. A state variable is characterized

as either negative, —, zero, O, or positive, +. Some

researchers view these as three different states, while

others view – and + as two different states with O

being a “landmark” separating the two states. Both

interpretations are meaningful. The former uses O to

represent any state that is sufficiently small in mag-

nitude, whereas the latter interprets O as a transitory

condition that separates the states – and +.

The legitimation for this methodology is taken from

the observation that, in a mechanical system, the di-

rection of forces seems to carry more information than

the magnitude. We don’t need to know the magni-

tude of the gravitational force to conclude that all

free-moving objects will eventually fall towards the

gravitational center.

Some researchers have observed that, while the

magnitude of the state variables may still be impor-

tant to qualitatively describe the behavior of a sys-

tem, the magnitude of their time derivatives may no

longer be important. Consequently, some researchers

describe their models in terms of derivatives only

(qualitative derivatives are sometimes referred to as

confluences). Others extended the methodology by

allowing additional levels and landmarks for the state

variables while restricting state derivatives to the

original ternary set.

Some researchers describe their naive physics

models through qualitative stat e equations, others

through a rule base (a constraint set relating qual-

itative variables to each other). Morgan (1990) de-

scribes an automated procedure to translate a qual-

itative state-space model into a finite state machine

(i.e., a special type of a rule base). Many of these re-

searchers concentrate more on the modeling than on

the simulation aspects, i.e., for them the generation

of the qualitative model is more important than the

generation of episodical behavior. Those that gener-

ate episodical behavior usually operate on qualitative
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rather than quantitative time.

3.2 Inductive Reasoning Models

Inductive reasoning describes a variety of pattern-

bssed techniques to reason about relations between

qualitative variables. While naive physics models

strive to capture the structure of models, inductive

reasoning models aspire to capture the behavior di-

rectly. Consequently, inductive reasoners generate

directly and immediately finite state machine repre-

sentations of systems, whereas naive physics models

arrive at such a representation only indirectly if at

all. A good overview of various inductive reasoning

approaches is given in Klir (1985).

Inductive reasoners are based on time quantization

in addition to state quantization. Consequently, they

operate on quantitative rather than qualitative time.

Inductive reasoning models are optimization models.

They optimize the forecasting power of the model by

minimizing the indet erminism or ambiguity of state

transitions. Cellier (1991) describes techniques for

optimizing the state and time discretizations. How-

ever, it is equally important to select a representative

set of state variables to base the model upon. I don’t

know of any technique that would allow us to system-

atically determine an optimal set of state variables.

Hopefully, one of the panel members will address this

important issue.

Contrary to the finite state representations gener-

ated from nafve physics models, inductive reasoners

contain information about the likelihood of any par-

ticular state transition. This is important for model

validation purposes. If the accumulated likelihood of

a particular episode drops below a level that can be

user-specified, forecasting will come to a halt. There-

fore, the user can guarantee that his or her model

will not forecast behavior beyond a time for which

the available data are insufficient to substantiate the

prediction.

Similar to the naive physics models, it is possible

to use inductive reasoners to enumerate all possible

(or likely) system behaviors.

3.3 Symbolic Discrete-Event Models

As mentioned earlier, discrete-event models are

equally well suited to represent qualitative as quanti-

tative models. In the qualitative case, the event cal-

endar must contain the time instants when the system
transits from one qualitative state to another. How-
ever, as qualitative states may be fuzzy, also state

transitions will be unsharp, and therefore also event

times. Ambiguity can occur since a unique sequence

of events may no longer be given. Due to the fuzziness

of event times, it could be that one event precedes

another or vice-versa. Symbolic discrete-event mod-

els allow us to fomulate event times as polynomials

of time with unknown or partially known (possibly

fuzzy) coefficients. Symbolic discrete-event simula-

tion generates all trajectories that are feasible due

to the fuzziness of these parameters. This technique

has been described in Zeigler and Chi (19!? 1). The

fuzziness of event times is expressed through so-called

time windows. The time window in formaticm is sub-

sequently also used for the purpose of fault diagnosis.

Symbolic discrete-event models provide us with a

second knowledge-based approach to reason about

qualitatively known systems.

3.4 Neural Network Models

Neural networks provide us with a second pattern-

based approach to qualitative (and even quantita-

tive) modeling. Contrary to the inductive reasoners

discussed earlier, the number of discrete states of a

neural network can be quite large. Some neural net-

works (such as backpropagation networks) even oper-

ate on a continuous state-space, i.e., can be used for

the identification of quantitative models. However,

such models cannot be used to enumerate all possible

system behaviors, and no information is generated as

to the likelihood of a particular behavioral pattern.

Yet, neural network models can be very powerful tools

for capturing the behavior of (partially) unknown sys-

tems. An overview of this technique is given in Cellier

(1991).

4 COMBINED QUANTITATIVE AND

QUALITATIVE MODELS

It is quite common that properties of a system are

partially known and partially unknown. It is there-

fore desirable if available knowledge about a system

can be coded into the model while unknc~wn prop-

erties can be treated in a qualitative manner. This

justifies the call for combined quantitative and qual-

itative models. However, the generation of combined

models is basically virgin territory. Very little has

been writ ten about such combined models. Obvi-

ously, the discrete-event approach lends itself natu-

rally to such models. However, this approach requires

that the model as a whole be formulated as a discrete-

event model. This is not always desirable. Inductive

reasoners could be integrated with continuous-time
models using the fuzzy measure approach introduced

by Li and Cellier (1990). However, no practical expe-

rience is available yet. It is not clear to me how naive

physics models could be combined with quantitative
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models. I hope that one or the other of the panel

members will address the issue of how which type of

qualitative models can be combined with quantitative

models.

5 CRITICAL ASSESSMENT

While there exists a good amount of literature already

describing various methodologies for qualitative mod-

eling (as described above), very few references discuss

practical real-life applications of these techniques (ap-

plications that reach beyond simple schoolbook ex-
amples). It is not clear how well this technique scales

up to solve realistically large problems. I hope that

one or the other of the panel members will discuss

practical experiences with qualitative modeling and

simulation.
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