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Abstract

We describe progress on the development of a high-autonomy
intelligent command and control architecture for unmanned
plants that conduct scientific experiments or process local
planetary resources. Examples include a science rover
suitable for lunar or martian deployment and an automated
process plant for production of oxygen from carbon dioxide.
A distributed command and control architecture has been
designed to teleoperate such plants in a high-level task
oriented mode with supervisory control from one or several
remote sites. The architecture integrates advanced network
communication concepts and modern man/machine interfaces with
recent advances in autonomous intelligent control. A complete
working prototype is being developed to demonstrate the
architecture. Experience with, and lessons learned from, this

development project are reported.



INTRODUCTION

A distributed command and control architecture is being
developed that ultimately will provide the capability to
teleoperate one or several scientific experiments or materials
processing plants located on Mars, Luna, an asteroid, or other
objects in space. The architecture must be able to guarantee
highly autonomous, reliable, and robust control over an
extended time ©period with high 1level task-oriented
teleoperation. The goal of achieving high autonomy within a
remote supervisory control umbrella necessitates a distinctive
architecture that integrates concepts originating in the
intelligent control and communications networks areas. This
presentation will discuss the architecture, the consideration

that led to it, and the current state of its implementation.

MODEL-BASED HIGH AUTONOMY ARCHITECTURES

Autonomy is the ability to function as an independent unit or
element over an extended period of time, performing a variety
of actions necessary to achieve pre-designated objectives
while responding to stimuli produced by integrally contained
sensors. Emerging from the control field, intelligent control
is viewed as a new paradigm for solving control problems [16].
However, its relatively narrow interpretation of the "control
problem" does not fully accord with high autonomy requirements
since it does not include the control needed by a system to
diagnose and repair itself after significant insults to its
physical structure. Requiring greater autonomy from a system
forces the expanded view presented by Antsaklis and Passino
[2] in their framework for autonomous control systems: full
integration of knowledge-based reasoning (derived from
artificial intelligence) together with perception and action

components (derived from robotics and control).



To achieve such integration, Saridis [19] developed a three
layer hierarchy (execution, coordination and organization) for
intelligent control which is supposed to reflect increasing
intelligence with decreasing precision. Antsaklis and Passino
[2] refine the hierarchy to an arbitrary number of layers,
depending on the particular application. The coupling of
control and information at various layers characterizes the
framework proposed by Albus [1]. At the core of Albus's
"reference model architecture" is a world model, the
intelligent system's "best estimate of objective reality." In
such a model-based architecture, knowledge is encapsulated in
the form of models that are employed at the various control
layers to support the predefined system objectives. One major
hurdle to be overcome in such architectural concepts is the
heavy on-line computation times needed for higher 1level
task-oriented functions such as planning and diagnosing. In
high autonomy applications to planetary resource utilization
a premium is placed on payload size and weight and thus (in
the present state-of-the-art at least) computational load is
a major concern. To overcome this obstacle, Zeigler and Chi
[28] proposed a model-based architecture that seeks to reduce
on-line computation by off-line pre-compilation to produce
simplified models individually matched to the tasks needing to
be performed. Such models are attached to generic engines that
can interpret them efficiently with reduced processing times.
As will be described later, the task-oriented models are
developed as abstractions of a full-dynamics simulation model
of the plant. Such models must be expressed in a variety of
formalisms and at various levels of abstraction. Lower
control layers are more 1likely to employ conventional
differential equation descriptions and other forms of dynamic
system models. Symbolic models derived from artificial
intelligence (AI) research, such as logics for reasoning and

planning, are more applicable at higher layers. A key



requirement for achieving high autonomy is the systematic
development and integration of such dynamic and symbolic
models. In this way, traditional control theory, where it is
applicable, can be interfaced with AI techniques, where they

are essential.

REMOTE SUPERVISORY CONTROL

Interaction with human operators at the very highest levels of
a high-autonomy system provides the flexibility to deal with
those rare but unavoidable events which are either impossible
to foresee, or, if accounted for, would unacceptably increase
the computational load and memory requirements [20]. To
facilitate such remote supervisory control requires that a
distributed command and control system enable operators to
observe the ongoing in situ process and issue high level
commands from one or several remote sites. Ultimately there
will be many remote sites geographically distributed
throughout the world. Such sites will communicate with each
other and with the earthside command center over the national
data communication network (currently the Internet). The
command communication center will be located at the primary
uplink, most likely at White Sands, New Mexico. This network
will eventually also employ other uplinks, as well as various
relay satellites orbiting the earth, Luna, and Mars. The
space-based portions of this network will utilize optical
links for increased bandwidth. At any time, there will be one
operator in charge of each distinct plant, while other
observers may watch from other remote sites. It should be
possible to switch operations authority from one operator to
another arbitrarily during an experiment without jeopardizing
the overall mission. Moreover, if the remote controller or
its connection to the plant fails then the latter should be
able to continue on its own, possibly at a lower level of
performance. When supervisory authority is reasserted by



another remote workstation the local plant controller should
relinquish its full autonomy and resume operation under remote

supervision.

Such a command and control system must be resilient to
temporary breakdowns in communication links, and must be able
to accommodate a varying number of remote participants and
local plants to be controlled. New remote observers should be
able to join at any time, while others may sign off. New
plants should be attachable to the control umbrella at will.
Conversely, those that have accomplished their missions or are

no longer serviceable should be easily removable.

In what follows we shall first overview the command and
control architecture that was developed to meet the foregoing
requirements. Then we shall describe the model-based kernel

that provides local high autonomous operation.

THE COMMAND AND CONTROL ARCHITECTURE

Figure 1 shows the overall command and control architecture.
Each global site, whether local to the processing plant, or
remote, hosts a Command Communication Center (CCC). On one
hand, such a center serves as the gateway to the "longhaul"
network that links this CCC to other CCCs; on the other hand,
the center manages the resources available at the site. The
reliability of the CCCs themselves can be guaranteed by
standard technology such as resource duplication. Plants and
operators communicate with their own CCC through an interface
computer. For operators this interface computer is a VMS or
Unix workstation running the Operations and Science Instrument
System (OASIS) software developed at the University of
Colorado [7,14]. OASIS has been successfully employed in a
number of NASA applications.



OASIS is a layered software architecture developed
specifically for remote supervisory control. It provides a
convenient human-computer interface with color graphics, mouse
or keyboard command entry, and multiple window displays of
telemetry data from the plant site. OASIS itself controls
data flows, translates mouse clicks and pull-down menu actions
into command streams, receives and processes telemetry data,
and controls the communication process using TCP/IP protocols.
Lower 1levels (TAE+, Motif, X) provide window editing,
management, and control. The software is database driven, so
that programming new applications can be accomplished very

quickly.

The operator workstations are called Remote Commanding
Computer (RCC) and Remote Observing Computer (ROC)
respectively. There is no fundamental difference between the
two types of workstations. They run the same software. They
differ only in the privileges given to the operator of the
workstation at any time. The privileges are a resource that
is maintained by the cccC. Additional privileges can be
requested from the CCC at any point in time. The CCC will
grant these privileges if the operator of the workstation has
a sufficiently high priority, and if granting these privileges
is not in conflict with other demands. For example, no plant
should be commanded by several remote commanders
simultaneously in an intrusive fashion. The reason for this is
that, at least in initial operations capability, there will be
no direct communication between the remote commanders. Thus
allowing multiple simultaneous operation would lead to
situations where remote commanders try to drive the plant

toward inconsistent goals.

The operator privileges are symbolized in our current
implementation by a privilege "key," that is maintained by the



ccc. This key can be requested by remote operators to
establish them as the new remote commander. If the key has
been requested, but is currently in use by another operator,
the CcCC will inform the current key holder of the request. It
is then the responsibility of the key holder to relinquish the
key when it is no longer needed.

The CCCs (local or remote) serve three purposes:

1. Software-decoupling the individual computers from each
other. Each interface computer needs to know only the
language of its client (the plant or the operator) and the
language of the CCC. Different interface computers need not
know anything of each other's characteristics and physical
location, how many such computers are in the system, and how
they operate.

2. Managing the resource umbrella of clients. Each CcCC
is responsible for managing the limited resources of its
clients for example, a restricted resource of the RCCs is
their privilege level, implemented through the privilege key
in the current prototype. Restricted resources of the Local
Controlling Computers (LCCs) may be the amount of energy to be
used at any one time or the usable communication bandwidth
between the LCC and its CCC.

3. Managing the communication with the other CCCs.
Together, the CCCs manage the longhaul communication network.
The time delays between the RCC/ROCs and their closest CCC
will be short and a simple message acknowledging protocol can
be employed. The duty of the CCCs will be to ensure proper
transmission of commands and telemetry packets across the
potentially less reliable longhaul network.



THE LOCAL INTELLIGENT CONTROL ARCHITECTURE

Having discussed the communications portion of the command and
control architecture, we now come to the command structure.
At the "local" site the plant communicates with its cccC
through the Local Controlling Computer (LCC). As shown on
Figure 2, the LCC comprises a distributed control architecture
in itself [11]. The plant itself is interfaced with a
hardware controller, called a Programmable Interface Unit
(PIU) , that is responsible for implementing low-level control
strategies. The PIU, a commercially available DataPaclOKAT [8]
has an advanced multiprocessor architecture and a fixed
operating software that enables preprogramming to recognize
and instantly respond to a number of simple commands. Several
analog signal conditioner cards accommodate different types of
transducers. The interface unit has internal registers for one
thousand internal binary variables. These bits may be used
for direct 1logic input/output (I/0) for process control,
automatic triggering of executable commands, and initiation of
limit-violation responses. It also has calibration functions
for its I/O0 channels, 1limit status monitoring on user
selectable channels, and digital/analog signal I/0 functions.
Numeric functions can be defined with one or more data
channels as arguments. With a combination of the above
functions, simple control programs can be downloaded to the
interface unit from the LCC.

The LCC translates high-level task-oriented commands received
from the RCC via the CCC into sequences of low-level commands,
downloads the corresponding low-level control programs into
the PIU, and initiates the control action by enabling the PIU
control. Notice that, in Figure 1, the term LCC denotes the
overall local control architecture, whereas in Figure 2, LCC

is only a part of the local control architecture. This is



only for our convenience in showing details of the current
implementation. In the generic representation (Figure. 1) the
LCC could of course be implemented as one or several
processors. The LCC is the heart of the autonomous control
system at the site of the plant. The LCC communicates with its
CCC to receive control parameters and to send telemetry data
back to the RCC on Earth. Users' commands include commands to
set control parameters, telemetry data requests, system
start-up commands, and system shut-down commands. The LCC
communicates with other computers/controllers while also
executing the 1local <control procedures. Thus  the
communication process is included as part of the control
program. Figure 3 shows the overall protocol for the
communication between the LCC and CCC. The LCC, physically a
PC-386, first sets up communication links to the PIU in order
to initialize the sensors and actuators of the plant. Then it
tests the communication link to the cCcC. Upon receipt of the
control parameters and the start-up command from the CCC, the
LCC begins to control the plant. Figure 4 shows the decision
process for control of start-up and steady-state operations.
In order to operate in real-time, the inference engine of the
architecture has a clock to check time constraints on control
rules. When the real-time expert system receives tasks from
the RCC, it schedules the appropriate control actions to
execute them. During the execution, it continually monitors
the state of the plant.

The LCC and PIU together form a two level hierarchical control
architecture. Reasoning and high-level logic are realized in
the LCC in an expert system shell written in C. In contrast,
the PIU contains simple control programs in memory and
executes 1low-level control tasks in accordance with the
parameters received from the LCC. This bi-level partition of

functionality enables fast local control under the guidance of



slower, more global, intelligent control.

MARTIAN OXYGEN PRODUCTION PLANT

To provide a concrete example of the design methodology, we
will describe the design of an oxygen production plant that
would eventually operate on Mars. In keeping with the
model-based architecture paradigm for high autonomy, we
briefly describe the oxygen generation process and the
full-dynamics model of the plant that we developed to support
the design.

To exploit the Martian atmosphere, which is 90% carbon
dioxide, a process of oxygen extraction has been studied by
several investigators [13]. The process requires that input
gas, at a pressure of 6 millibar and at a temperature of
approximately 200K) be compressed (and thereby heated) to a
pressure of 1 bar. It is then heated further to a temperature
of approximately 800 K. At that temperature, carbon dioxide
decomposes through thermal dissociation into carbon monoxide
and oxygen. The heart of the oxygen production plant is an
array of Zirconia tubes or disks which separate the two gasses
in an electrocatalytic reaction. The oxygen is liquified and
stored and the carbon monoxide is either discarded or
converted to methane by a Sabatier process. Parenthetically,
this process is also important for Lunar oxygen production, as
many of the proposed processes (e.g., carbon ilmenite
reduction), result in carbon dioxide as an intermediate

product.

To develop a high fidelity simulation model of the oxygen
production system we employed a modeling and design
methodology based on Bond Graphs [4]. The Bond Graph
formalism affords the ability to unify various processes in
terms of energy flow relationships. For example, the power



flow in the thermal dissociation of carbon dioxide into oxygen
and carbon monoxide can be formulated in a separate model
which can be conveniently connected to the thermal model of
the overall system. In this way we can construct a
full-dynamic system model that can be used to represent both
steady-state operation (flow equilibrium) as well as start-up
and shut-down phases with high accuracy. Space limitations
preclude a detailed presentation of the Bond Graph models.
However, the general methodology is fully explained by Cellier
[4] and application of the methodology to the oxygen plant is
discussed in a technical report [10].

To meet the needs of the control and fault management tasks
involved in autonomous operation, the full-dynamics simulation
model is recast into various abstractions. Figure 6
illustrates three such abstractions, for use in tuning the
parameters of a fuzzy-logic process controller, training a
neural net diagnoser and testing the operation of a command
interface, respectively. The abstractions are employed as
fast running stand-ins for the base model in constructing the
specific task engines [27,28]. To be useful surrogates, the
abstractions should be valid simplifications of the full

dynamics base model.

FAULT MANAGEMENT

Interspersed with the control tasks just described, the LcCC
reads sensory data from the PIU and reports telemetry data
through the CCC to update the RCC's data base. If the LcCC
detects a faulty situation, it reports the fault detection to
the RCC and starts its diagnosis inferencing engine. The
behavior of each state variable is controlled by a dedicated
watchdog monitor {5]. Each watchdog monitor has upper/lower
limits for its state variable. Violation of these limits
causes the watchdog monitor to activate diagnosis rules to



execute appropriate recovery actions. During the diagnosis
process, the LCC sends data more frequently to the RCC, which
represent the error state transition behavior of the plant.
This alerts the user at the RCC to the deviant behavior of the
plant. On such an occasion, or indeed, at any time, the RCC
can route new commands or parameter values through the CCC to
the LCC to re-schedule control tasks and/or to establish new
control set points. Also, the RCC can send shut-down commands
to interrupt the system. This can happen even while the
system is in start-up mode. At the same time, if recovery is
not possible, the expert system automatically executes a
benign shut-down procedure to protect the plant from further
damage.

The nature of extraterrestrial environments makes automated
fault diagnosis an essential prerequisite for high-autonomy
control of in situ plants. This fault diagnoser must be very
reliable. Model-based diagnosers [13] have been demonstrated
to provide high coverage of anticipated and unforeseen faults.
However, since it is impossible to foresee all faults that
might occur, it is desirable to build some redundancy into the
fault monitoring and diagnosis procedures. For this reason,
a second process fault diagnosis system using multiple sensors
for data acquisition and neural networks for information

processing has been developed [23].

The execution of this system is divided into three stages:

Item Fault Detection: At this stage a possible process
fault is detected by checking if particular measurable or
estimable variables are within a certain tolerance of the
normal values. For example, the measured temperature of
the Zirconia tube should be above 790K but below 815K
under normal conditions. If this check is not passed, it



leads to a fault message that activates the next stage of

fault diagnosis.

Fault Diagnosis: The fault is located and the cause of it
is established at this stage using a neural network that
fuses the data from several sensors. A multilayer
feedforward net with one hidden layer was used. The
reason to choose this type of networks is mainly due to
its simplicity and available software. However, some
recent studies have suggested that a multilayer
feedforward network with a hyperbolic tangent as the
nonlinear element seems best suited for the task of fault
detection and diagnosis [22]. The input layer has ten
nodes representing ten sensor readings, and the output
layer has eight nodes - one for each of eight selected
fault situations. The hidden layer has six nodes. The
standard sigmoid was used as the activation function for
the output neurons, while the hyperbolic tangent was used
for hidden neurons in order to speed up the learning

process.

Fault Evaluation: An assessment is made of how the fault
identified in the second stage will affect the production
process. The faults have been classified into different
hazard classes according to a simple fault tree analysis.
After the effect of the fault is determined, a decision
on the actions to be taken will be made. If the fault is
found to be tolerable, the production process may
continue. If it is conditionally tolerable, a change of
operation has to be performed by either modifying the
local control algorithm or sending a request to the
higher level of control for guidance. However, if the
fault is intolerable, the process will be shut down

immediately and an emergency request will be made to the



higher level to eliminate the fault. For example, if a
malfunction in the heater has been determined to be the
cause of high temperature, the operation will be stopped
immediately and a request for changing the heater will be
made.

To design the fault diagnoser ten sensor readings were used
for sensor fusion in the neural network. One thermocouple
transducer is located inside the Zirconia tube. On each of
the €02, 02, and CO2/CO pipes, one thermocouple, one pressure
transducer, and one flow rate transducer are located. All
readings are scaled to a range from -1.0 to +1.0. The scaling
makes the sensor fusion easier to perform because the original
measurement data contains both small and large values. Eight
representative fault situations were chosen:

1) CO, valve partially opened; 2) 0, valve partially opened; 3)
CO,/CO valve partially opened; 4) Thermocouple transducers
broken; 5) Leak flow in tube; 6) Malfunction in heater;

7) €O, flow rate too high; and 8) CO, flow rate too low.

VERIFICATION AND VALIDATION

To assure that a complex high-autonomy system such as that
described actually achieves its intended mission requires a
comprehensive plan for verification and validation. Since our
goal is to establish the proof-of-concept of the underlying
command and control architecture, it is important that testing
be sufficiently extensive to provide some confidence either
that an actual system would perform as required. This section
reports on the state of completion of the prototype, some of
the tests of performance that were done, and some lessons
learned from the experience.



A version of the prototype has been completed that
demonstrates a respectable level of functionality for the
communications and control portions separately. However, the
overall system has not yet been put to test for reasons not
related to the automation but to the development of the oxygen
production plant itself. The highest priority for the latter
is to demonstrate sufficient efficiency of production to
suggest plausible space application. All efforts of the group
in charge of its development are devoted to this end. At this
time, we have had access to the plant on few occasions. On one
such occasion, the operation of a rudimentary version of the
architecture was demonstrated in a week long experiment with
an actual prototype of the oxygen production plant. A truly
unforeseen disturbance occurred during this period -- a
thunderstorm caused a transient power outage. The ability of
the controller to recover from this unplanned anomaly was
notable and lends some credibility to the proposed fault
management approach. The incident is described in [6].

Although the general outlines of the architecture have been
verified, the specific incarnation as a command and controller
of the oxygen production plant has yet to be fully tested.
The reasons for this can be found in the delays encountered in
our progress that caused departure from an ideal development
of a model-based architecture. Such an ideal progression is
predicated on the prior construction of the plant. Once the
plant exists, a full dynamics base model is constructed and
validated against the plant. Work on the abstractions intended
to support various tasks can be started concurrently with
development of the base model and validated against the latter
when it has itself been validated against the real system.
The task engines can be designed while the abstractions are
validated and then tuned with the help of these abstractions
after they have been validated. Once verified in this manner,



the engines can be tested against the plant individually and
collectively within the completed command and control system.

SUMMARY AND FUTURE WORK

The basic outlines of the architecture for high autonomy
command and control of space-based processing plants have been
validated in the experimental work described. However, future
work must extend and strengthen the model-based architecture
methodology to apply to diverse processes and plant designs.
Improved techniques and tools are required to facilitate
development of faster running, more flexible models to support
the design and tuning of task-oriented engines More advanced
concepts in the higher 1levels of hierarchical planning,
sensing, control, and exception handling must be integrated
into the framework of the model-based architecture. Design
for increased autonomy must emphasize graceful degradation of
performance with reduced resource availability that arises
when resources must be shared among commanders or as a
consequence of system failure. This will require integration
of computer vision and other advanced sensory capabilities
(including sensor fusion) for world state assessment as well
as fault detection, diagnosis, and recovery. For eventual
deployment of in situ processing systems, the major challenge
will be to reduce to practice the architectural concepts
discussed here [5]. This will require addressing the
tradeoffs between higher autonomy and remote supervision and
between high component redundancy and intelligent
self-diagnostic capability. These tradeoffs may be ameliorated
by the increased computation and memory afforded by continuing
development of light weight and low power components, but will

continue to pose severe limitations in the foreseeable future.
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