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ABSTRACT

This paper describes the design of a model-based autonomous planning system that will
enable robots to manage a space-borne chemical laboratory. In a model-based planning
system, knowledge is encapsulated in the form of models at the various layers to support the
predefined system objectives. Thus the model-based approach can be considered as an
extended planning paradigm which is able to base its planning, control, diagnosis, repair,
and other activities on a variety of objectives-related models. We employ a System Entity
Structure/Model Base framework to support autonomous system design through the ability
to generate a family of planning alternatives as well as to build hierarchical event-based
control structures. The model base is a multi-level, multi-abstraction, and multi-
formalism system organized through the use of system morphisms to integrate related
models.

1. INTRODUCTION

Planning is a subfield of artificial intciligence that has yet 1o find a coherent theory.
Recently, it has been extended a broader range of problems and techniques than the
classical planning problem. Planning can be defined as the design process for selecting
and sequencing actions to transform the world from a given state to a desired state.
Conflicts between subgoals must be resolved so that by the time one comes to execuie an
action in the plan, one can be sure that this action will be executable!>2.3. Planning is,
also, viewed as a reasoning about how actions affect the world4. In case-based planning, a
system learns how to plan by synthesizing new plans from existing ones and analyzing how
they interact with the world3-6.

Faced with the overwhelming complexity of planning, a model-based approach strives to
integrate key ideas 1in existing planning paradigms; hierarchical abstraction, time

constraints, and dynamic memory retrievall.7.8, In the model-based approach, knowledge
is encapsulated in the form of models that are employed at the various hierarchical
abstraction layers to support predefined system objectives. Thus the model-based

approach can be considered as an extended planning paradigm which is able to base its
planning, control, diagnosis, repair, and other activitiecs on a variety of objectives-related
models9-10.11

The work described in this paper derives from research related to telerobotics. The
project is to develop a technology that will allow carefully designed and specially
constructed laboratory robots to perform many routine tasks in a Space laboratory under
remote supervision from the ground. Therefore the robots must be able to perform simple
operations autonomously, and communicate with the ground only at the task level and
above. Such robots should be able to judge the adequacy of a proposed action plan on the
basis of expectations of its effects on the laboratory, materials, instruments, etc. For this
purpose, it is important that models at various levels of granularity can be automatically

generated from a set of generic master models!2.



transformation of the entity subtree is aborted. Retrieve looks for a model first in
working memory. If no model is found in working memory, the retrieve procedure
searches through model definition files, and finally, provided that the entity is a leaf, in
pruned entity structure files. A new incarnation of the transform process is spawned to
construct the leaf model in the last case. Once this construction is complete, the main
transform process is resumed.

The result of a transformation is a model expressed in an underlying simulation

language such as DEVS-Schemel4 which is ready to be simulated and evaluated relative to
the modeler's  objective. The fact that the transform process can look for previously
developed pruned entity structures, in addition to basic model files, encourages PES
reusability.

In model-based task planning and execution, knowledge is encapsulated in the form of
models that are employed at the various control layers to support the predefined system
objectives. Lower layers are more likely to employ conventional differential equation
models with symbolic models more prevalent at higher layers. A key requirement is the
systematic development and integration of dynamic and symbolic models at the different
layers. In this way, traditional control theory, where it is applicable, can be interfaced
with Al techniques, where they are necessary. Discrete event representation, facilitating

event-based control, can be employed to map traditional dynamic to symbolic models! 7,20,

Note than an autonomous system could in principle, base ilts operation, diagnosis, repair,
planning, and other activities on a single comprehensive model of its environment.
However, such a model would be extremely unwieldy to develop and lead to intractable
computations in practicel2. Instead, our architecture employs a multiplicity of partial
models to support system objectives. As indicated, such models differ in level of
abstraction and in formalism. The partial models, being oriented to specific objectives,
should be easier to develop and computationally tractable!3. However, this approach leads
to sets of overlapping and redundant representations. Concepts and tools are need to
organize such representation into a coherent whole. Morphisms!3.17.21 can connect
models at different levels of abstraction so that they can consistently modified.

Fishwick?2 has extended process abstraction concepts and implemented a simulation

system that is able to switch between levels within simulation runs. However, although
the need for multiple levels of abstraction has been recognized in mainstream Al, there has
been little consideration of the importance of the morphism concept to this issue. But just

as tools are needed to enable agents to plan, diagnose, and reason effectively with respect to
particular objects, so tools are needed to organize the various models that support such
planning, diagnosis, and reasoning. An organized model base enables the agent to deal
with the multiplicity of objects and situations in its environment and to link its high level
plans with its actual low level actions. Such a model base is a special case of multifacetted
model base management!S, ‘

The SES/MB framework provides an ability to develop model-based planning systems.
It can supports:

(1) multiplicity of partial models to support system objectives (multifacetted modelling).

(2) integration of dynamic and symbolic models at different layers (hierarchical
architecture).

(3) multi-abstraction to integrate related models (system morphism).

(4) execution, control, diagnosis, and repair (event-based control).



(5) selection/retrieval of initial/modified planning models (pruning and reusability).
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Fig. 1. The System Entity Structure/Model Base (SES/MB) Environment

3. SPACE-BORNE _LABORATORY

As an example of a model-based architecture of autonomous planning system, let us

consider a robot-managed space-borne laboratory environment. Such a laboratory
requires design of advanced robot-controlled instrumentation. For example, handling
fluids in orbit will be essential to many of the experiments being planned in
manufacturing and biotechnology. However, the micro gravity conditions of space
necessitate radically different approaches to fluid handling than common on earth. As
experience in space accumulates, approaches and instrumentation will likely undergo
continual modification, enhancement, and replacement. Thus robots for managing such

equipment must be highly autonomous and flexible so that constantly changing
environments can be accommodated?3.

In designing the robot models, we assume that necessary mobility, manipulative and
sensory capabilities exist so that we can focus on task-related cognitive requirements.
Such capacities, the focus of much current robot research, are treated at a high level of
abstraction obviating the need to solve current technological problems.

The laboratory environment 1is constructed on the basis of object-oriented and
hierarchical models of laboratory components within DEVS-Scheme. Laboratory
configurations are generated by pruning the entity structure knowledge representation.
The laboratory is designed to be as generic as possible by employing hierarchical event-
based control logic, which will be discussed later. However, as stated, the focus will be
upon fluid handling in microgravity which presents a variety of problems that are unique
to space.

Fig. 2 illustrates the approach taken. The entity structure for SSL (Space Station
Laboratory) decomposes this entity into structure knowledge part and experiment (goal)



knowledge part; STRUCTURE and EXPERIMENT. The former is for the execution structure;
hardware, software, instrumentation, etc. The latter concerns how 10 achieve given goals.
Each of the entities will have one or more classes of objects (models) expressed in DEVS-
Scheme to realize it.

The EXPERIMENT has three level hierarchy; high-level models (HM), middle-level models
(MM), and low-level models (LM). Each level is designed for experimental knowledge
representation, which is used to resolve a given task into necessary component models.

The The laboratory STRUCTURE is decomposed into SPACE and OBIJECTS. For a full
explanation see reference [17].

Each OBJECT is specialized into ROBOT and EQUIP. And each ROBOT is decomposed into
MOTION, SENSE, and BRAIN. The EQUIP is a generic entity for the laboratory equipment
which is modeled much the same as the ROBOT. However, EQUIP has no BRAIN and its
MOTION and SENSE subsystems are always passive. Note that OBJECTS are also defined as a
multiple entity . Any number of instances may be generated for such an entity, and with
the pruning discussed earlier, we can have any desircd number of ROBOTs and EQUIPs in the
laboratory.

Each Robot's Cognition system (BRAIN) is decomposed into a SELECTOR as controller and
MPUs (Model Plan Units) as components. The MPU is specialized into HMPU, MMPU, and
LMPU corresponding to the EXPERIMENT abstraction hicrarchy just mentioned. HMPU is a
high level MPU which manages action planning of MMPUs. Each of which perform the
same function with respect to the lower model LMPUs. The latter employ event-based
control logic to interact with the environment. These three types of MPU are placed at the
same level in our entity structure but conceptually they reflect the hierarchical
decomposition structure of the EXPERIMENT models.

As illustrated in Fig. 2, more than one SES may exist in the entity structure base, each
one representing a family of models for its root entity. In principle, every entity might
have its own SES but this would lead to extremc fragmentation of the encoded knowledge.
PESs are saved as they are developed for each of the SESs and available for convenient reuse
as illustrated in Fig. 3. See reference [17] for more discussion.

4. MODEL ABSTRACTION HIERARCHIES AND HIERARCHICAL PLANNING/EXECUTION STRUCTURE

This section briefly reviews our approach to model abstraction hierarchies,
hierarchical planning structures, and hicrarchical ecveni-based control.

Models of intelligent agents must represent not only a decision making component, but
also the model of the real system the decision maker uses to arrive at its dccisions. Such
modelling is based on homomorphic preservation of the input-output behavior where
inputs are operation commands to the system and outputs are responses of finite-state
sensors attached to the system to observe its state. Selection of controls and sensors must
reflect the operation objectives. An atomic DEVS model abstracts incremental micro-state
transitions from the continuous model and replaces them by time windows taken for macro-
state transitions (which correspond to crossing of sensor thresholds). A coupled DEVS
model abstracts the behavior of the composition of lower level DEVS models.
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Fig. 2. Partitioned SES of Robot-Managed Chemical Laboratory
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Fig. 4 represents abstraction related modcls. At the bottom, MB is a continuous state
model of the system being controlled (the most refined model considered for it). Other
models are related by abstraction, i.e., a form of homomorphic relation, ME is a discrete
event model derived from MB, and MI-O and MI-D are two different abstraction models of MI
(for operation and diagnosis, respectively) which in turn is an abstraction of ME. Each
abstraction is governed by an underlying morphism. ME serves as the external model of
each device, whereas MI-O and MI-D serve as thc internal models used by the low level
event-based control units (LMPU).
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Fig. 4.  Abstraction Reclated Models



Sets of Mi-O and MI-D can be composed into higher level models (MMI-O and MMI-D) and
abstracted to represent more global state transitions (used by MMPU). Likewise, HMI-O
and HMI-D are the highest level models which represent global state transitions (used by
HMPU). In this way, the higher level execution units use their own models, which are
abstractions of compositions of lower level models, to control their subordinates. The
abstraction process is done by aggregating states and windows of lower level models.

The levels of abstraction just illustrated can be formalized using system morphism

concepts13.17, By generating a hierarchical structure with models of different levels of
abstraction we can systematically integrate the highest level goal command with most
refined dynamic models.

There are three levels of model plan units: high-level model plan unit(HMPU), middle-
level model plan units(MMPU), and lowest-level model plan unit(LMPU). The task
formulation planner interprets an external command and uses it to decide the necessary
models. Consider external commands, for example, (mix ((liquid-A 100) (liquid-B 100)))
and (mix ((liquid-A 100) (liquid-B 200))). Also suppose that liquid transporting syringes
are of three different sizes as followings: small (<100), medium (< 200), and large (> 200).
In the former case, we need only one small size syringe to handle the liquid. But in the
latter case, we need two different syringes, small and medium sizes. And, in both cases, two
types of liquids, liquid-A and liquid-B, are involved.

Most  laboratory procedures managed by a robot consist of sequences of common steps?4.
These building blocks are represented by the middle level models (MMs) and their

associated execution units (MMPUs). The action flow graph (Fig. 5) contains the
sequencing constraints imposed on these building blocks. The MM sequencing depends on
the target MM as well as needed instruments, e.g. number and size of syringes. Once a
target MM and necessary instruments arc selected, the sequencing can be done by chaining
MMs in backward and forward manner. Conflict resolution is done within the task
formulation module. For example, if the target MM is mixing, and one syringe is selected,
the resulting sequence is : object-gerting, sampling, fluid-injecting, washing, sampling,
fluid-adding, mixing, washing, object-putting, and finishing. On the other hand, if two
syringes are selected, then the resulting sequence is : object-getting, sampling, fluid-

injecting, washing, object-putting, object-getting, sampling, fluid-adding, mixing,
washing, object-putting, and finishing. As already indicated, each MM in the hierarchy
is decomposed into LMs.

TARGET MM

Huid-adding

sampling

washing

obj-putting

obj-getting

start

end

Fig. 5. Action Flow Graph



Once a sequence of MMs is derived to perform a task, i1 is assigned to a HMPU and an
execution control structure is generated as shown in Fig. 6.

The LMPU is the lowest level in the hierarchy and employs event-based control logic for
operation and fault diagnosis. In this control paradigm, the controller expects to receive
confirming sensor responses to its control commands within definite time windows
determined by its model of the system under control. This lowest level unit is consisted of
a planner, controller, and diagnoser. The planner works by developing paths backward
from the goal in the MM-O model until the given initial states (possible starting states of the
controlled system) are reached. See references {15, 16, 20] for further details.

At the medium and high levels, each control unit has its own internal model and
controller to supervise its subordinates. There are two types of messages in the
hierarchy, goal (command) and done (response) messages. The goal is divided into a set
of subgoals in top-down manner. Whereas, the done messages are gathered in bottom-up
manner. There are three types (+.0,-) of done messages: + is for a success, - for a failure,
and O for an uncertainty (not sure whether goal was reached). The last message may be
due to the lack of relevant sensors or complex fault associated with other units in the
hierarchy.
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Fig. 6. Mixing Example of Hierarchical Eveni-based Control Structure

5. AUTONOMOUS SYSTEM GENERATION

The SES/MB framework is used to generate a control structure with a given goal In
other words, once we have specified the available resources (structures) and their behavior
characteristics (models), we have to specify how to allocate resources to accomplish a goal.
In our SES/MB framework, the planning is viewed as a pruning operation which generates

a candidate structure. As shown in Fig. 4, the STRUCTURE entity generates possible
configurations of an execution structure to be pruned. On the other hand, the
EXPERIMENT entity represents the possible alternative goals. Fig. 7 depicts a methodology

for generating autonomous systems.

(1) Load the system entity structure (SSL) which organizes all available domain knowledge
including experiment knowledge and structure knowledge;

(2) Interpret natural language-like task goal to map into the predefined domain knowledge
(SSL);



(3) Check ENBASE whether there are already existing plans (PESs) and if not then select
necessary models and sequence actions by pruning to the goal knowledge part of the
system entity structure (EXPERIMENT);

(4) Construct model structure by pruning the execution knowledge part of the system entity
structure (STRUCTURE);

(5) Transform the model structure into an autonomous
component models from the model base, MBASE.

(6) Test the correctness of the plan by simulation.

(7) In case the plan is not satisfactory, reprune (replan) the SES by
goal and repeat from step (3).

(8) Save the results for reuse; states of each model into MBASE and PES into ENBASE.

system architecture by synthesizing

issuing the repairing

The reuse of existing plans, formulated as pruned entity structures, is similar in spirit to
the case-based planning approachS.6.
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Fig. 7. Autonomous System Generation Methodology Using SES/MB

6. CONCLUSIONS

The key concepts and issues of advanced planning including execution (simulation) are
categorized as follows:

(a) Abstraction-related hierarchical
(b) Reusability of old plans.

(c) Time constraints (goal condition checking).
(d) Replanning, self-diagnostic and sclf-repairing.

planning.



Building on the basis of the SES/MB framework as implemented in DEVS-Schefne, we
have extended the ability of our knowledge/model base tools to support model-based design
of high autonomy systems through the ability to generate a family of planning alternatives

and to build a hierarchical event-based control structure. We have developed the
methodology for the autonomous system generation by integrating the execution structure
(resources structure) and planning structure (resources allocation structure). The

methodology exhibits solutions to points (a), (b), (¢) and the self-diagnosis part of (d).

As described above, the model-based approach, employing multi-abstraction, multi-level,
and event-based control logic, has been demonstrated in the design of a robot-managed

space-borne laboratory environment, We have applied our planning system to fluid
handling under microgravity conditions. Although much of the methodology has been
implemented, much work remains to complete and verify the working system. Also we

will seek to extend the system to include self-repair capability and replanning using
concepts from the case-based approach.
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