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Abstract

In this paper, automated formula manipulation is shown to be
central to object—oriented continuous-system modeling. Such
techniques are needed to (i) solve the causality assignment prob-
lem in modeling any kind of energy transducer, (ii) generate
the equations that result from the couplings between different
objects, (iii) automatically reduce structurally singular models,
and (iv) take care of algebraic loops that often result from sub-
system couplings, and that also occur from the reduction of
structurally singular models. A new tool, Dymola 2.0, is pre-
sented that implements all of the aforementioned formula manip-
ulation techniques, and that can be used to generate state-space
models in a variety of different simulation languages (ACSL, DE-
SIRE, and Simnon).

Introduction

The first generation of digital continuous-system simulation ln.n-
guages were designed to resemble analog computer “programs.”
They were block-diagram languages with adders, integrators,
multipliers, and potentiometers used as their basic building
blocks. This was done in order to “ease” the transition from
analog to digital simulation technology. It took the modelers
of that era several years to realize that programming an ana-
log computer hadn’t been that convenient after all and that, by
making digital simulation languages resemble analog programs,
they actually made their task unnecessarily bard. Analog com-
puter programming had been dictated by the technology in use,
it wasn’t designed to suit the human programmer.

Digital technology is not bound by the same limitations as
analog technology. There is considerably more flexibility in de-
signing digital programs. The next generation of simulation lan-
guages started out from the mathematics of numerically solving
sets of ordinary differential equations. It turns out that most
numerical integration algorithms are designed to solve so—called
state—space models of the type

& = f(x,u,t) (1)

Continuous—system simulation languages used today have been
"designed to facilitate the formulation of state-space models. It
was quickly recognized that the same e.xpmnom may reappear
in several state equahom, and that it is more efficient from a
computational pau:t of view (and also more convenient) to as-
sign these expressions to auxiliary (algebraic) variables. Con-
sequently, the extended state—space model used in simulation
languages takes the form
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x = f(x,s,u,t) (2a)
s = g(x,8,u,¢) (26)

with the additional restriction that the auxiliary variables, g,
must not depend algebraically upon each other in a mutual way,
i.e., that no algebraic loops are contained in the model. As an
additional bonus, simulation language designers added an equa-
tion sorter that enables the user to specify the model equations
in an arbitrary sequence and that thereby also supports the use
of macros. Macros are used to describe subsystems in a compact
fashion. They are invoked like subroutines, but their treatment
within the simulation language is very different from that of a
subroutine. The simulation compiler inserts the statements that
are formulated within a macro into the simulstion program at
the place of its call. This happens before the equation sorter
is activated. This is important since, once an executable state-
ment sequence has been established, the statements that were
extracted from different macros are now mixed*.

It is important to realise that also simulation languages of
the CSSL—type’ that are in use today are technology-based.
This time, it is not the technology of electronic and/or me-
chanical components that dictates the modeling methodology,
instead, today’s simulation languages are designed to suit the
mathematical technology of numerical integration algorithms.
This fact is illustrated in the following example. Figure 1 shows
a simple passive electrical circuit:

Figure 1. Simple passive electrical circuit.

In a CSSL-type simulation language, this circuit could be rep-
resented as:

Uo = f(t)
uC = INTEG(iC/C,uC0)
iL = INTEG(uL/L,iL0)

uR2 = R2+sil

Rl = U0 - uC
iC = uR1/R1
ul = U0 - uR2
0 =iC +iL
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which corresponds to the block diagram of Figure 2:

Uy —

Figure 2. Block diagram of electrical circuit.

The block diagram shows the computational causality of the
model. The computational causality of s model determines how
the physical laws that are encoded in the model equations must
be interpreted in order to obtain a program that can be executed
on a sequential machine using existing numerical algorithms. In
the above example, Ohm’s law is utilized differently when ap-
plied to the two resistors, R; and R;. In the case of R, the
current through the resistor, ig, is computed from the voltage
across the resistor, ug,, which is computed elsewhere, whereas
in the case of R3, the reverse is true. Obviously, both equations
describe one and the same physical phenomenon.

No modeler would normally fall upon the idea to represent
this circuit by the set of equations:

Uo = f(t)
iC = C « DERIV(uC)
wL = L o DERIV(iL)

«Rl=Rl+iC
wC =U0 - uRl

uR2=U0-ul
iL = uR2/R2
i0 =¢C +iL

which would correspond to the block diagram of Figure 3:

Figure 8. Alternative block diagram of electrical circuit.

although both descriptions are completely equivalent from an
analytic point of view. The fact is that modelers have learned
to avoid the DERIV operator at all cost, since it is numerically
easier to integrate variables than to differentiate them (at least
as long as explicit numerical algorithms are used, which is always
the case in today’s simulation software).

This example demonstrates the intimate interrelation of the
modeling methodology supported by today’s simulation software
and the characteristics of the underlying numerical algorithms.
From the point of view of user convenience, there is no differ-
ence between the two formulations. It is not suggested here that
it would be in any way more advantageous to formulate mod-

" els in differential causality (i.e., by use of the DERIV operator)

rather than in integral causahity (i.e., by use of the INTEG opera-

tor). Yet, it is demonstrated below that the familiar state—space
model is not the most convenient way to specify a model.

The above equations, or rather assignment statements, are
not obvious when inspecting the circuit shown on Figure 1. The
reason is that basic electrical laws have been transformed into
unfamiliar forms. The familiar forms are given below as true

equations:

U = £(¢) {Voltage source.}

C. %, {Capacitor. Law of capacitance.}
L. 9“!{1 =ug {Inductor. Law of inductance. }
up, = R, -ic {Resistor. Ohm’s law.}

up, = Ry -4, {Resistor. Ohm’s law.}

Us = ug, + uc {Kirchoff’s voltage law.}

Uo = up, + % {Kirchoff’s voltage law.}
fo=tc+4, {Kirchoff’s current law.}

There is a much closer correspondence between this formulation
and the circuit diagram. These equations can be written down
directly by inspecting the circuit diagram. The correctness of
the model equations is thus promoted. In this paper, a modeling
tool is introduced that allows the user to formulate his or her
model in such an equation-based form.

The Causality Assignment Problem

The above example contains two objects of the class resistor.
Yet, in the familiar CSSL-type formulation, the equations used
to describe these two objects are different. In the case of resistor
R;, the current flowing through the resistor seems to “cause” a
potential drop across the resistor. In the case of R;, the po-
tential drop acroes the resistor seems to “cause” current to flow
through the resistor. Moreover, the causalities for the two resis-
tors change if the model as a whole is formulated in differential
rather than integral causality. Quite obviously, computational
causality is not & physical phenomenon at all, but is simply yet
another artifact of the underlying numerical algorithm.

It is rather inconvenient that the user must determine the
(numerically) correct causality of the dissipative elements, or
more generally, the causality of all energy transducers (trans-
formers exhibit exactly the same problem as resistors). It would
be much nicer if objects, such as a resistor, could be described
once and for all in terms of their physical properties and their
interactions with the environment. In case of the resistor, such
an approach would call for a description of the resistor itself
(Ohm’s law) and a description of how this equation interacts
with other equations of the neighboring components.

However, object—oriented continuous-system modeling? is
much more than just a matter of convenience. State—space mod-
els suggest that each state variable changes with time according
to some law that is expressed in the corresponding state equa-
tion. But why does this happen? The voltage across a capacitor
doesn’t change with time unless it has a good reason for doing
so. Physics is a matter of trade. The only tradable goods are
mass and energy. Consequently, it would be much safer if the
modeling environment were to enable the user to formulate mass
balances and energy balances rather than state equations. If a
state equation is formulated incorrectly, a CSSL-type simula-
tion language? will happily accept the incorrect equation, and
trade it for beautiful multi—colored graphs that may even look
plausible®.

The modeling language Dymola® incorporates these con-
cepts. In Dymola, a resistor can be described as follows:



model type resistor
cut WireA(Va/i), WireB(Vb/-i)
main path P < Wired — WireB >

local u
parameter R = 1.0
u=Va-Vb
u=Roei

end

Obhm'’s law is described in the usual way. It involves the param-
eter R, which has a default value of 1.0, the local variable u,
and the terminal variable i. The cut and path declarations are

used to describe the interface to the outside world. Additional

equations are formulated to specify the relations between the
local variables and the terminal variables.

Of course, the chosen approach also calls for a general mech-
anism to describe the couplings between different interconnected
objects. In Dymola, the above example circuit could be repre-
sented as follows:

model circuit

submodel (vsource) U0

submodel (resistor) R1(R = 100.0), R2(R = 20.0)
submodel (capacitor) C(C = 0.1E-6)

submeodel (inductor) L(L = 1.5E-3)

submodel Common

node n0, nl, n2, n3

input u

output yl, y2

connect Common at n0,
vo from n0 to nl,
Rl from nl to n2,
c from n2 to n0,
R2 from nl to n3,
L from n3 to n0

VoV =u

M=Cu

y2=1Li

end

The submodel declaration instantiates objects from classes. For
example, two objects of type resistor are instantiated, one named
R1 with a parameter value of R = 100.0 { and the other named
R2 with a parameter value of R = 20.0 1. The connect state-
ment is used to describe the interconnection between objects.
Notice that the connecting equations (Kirchhoff’s laws) are not
explicitly formulated at all. They are automatically generated
at compile time from the topological description of the intercon-
nections.

Upon entering the model, Dymola immediately instantiates
all submodels (objects) from the model types (classes). It then
extracts the formulated equations from these objects, and ex-
pands them with the coupling equations that are being gener-
ated from the description of the interconnections between ob-
jects. For the above example, the result of this operation is the
following:

vo V=Vb-Va

R1 u=Va-Vb
u=Rst

R2 u=Va-Vb
u=Rei

C u=Va-Vb
Cuder(u) = 4
u=Va-Vb
Lader(i) = u

Common V =0

circuit U0V =u
yl=Cu
v2 =Ls
R1LVb=C.Va
Cs=Rli
Rl.Va= R2.Va
U0.Vb= Rl.Va
R24i+ Rl.i=U04
R2Vb=LVa
Li=R2i
CVb=LV)
U0.Va=C.Vb
Common.V =U0.Va

The first 10 of these equations are extracted from the submod-
els. The next three equations are extracted from the circuit
model. The last 10 equations represent Kirchhoff’s laws. These
equations are automatically being generated from the connect
statements that describe the interconnections between the ob-
jects.

The structure of the equations needs to be examined in or-
der to determine which variable to solve for in each equation. In
addition, the equations need to be sorted into a correct computa-
tional order. If this is not possible due to mutual dependencies,
minimal systems of equations, that need to be solved simultane-
ously, should be isolated. These problems are naturally solved by
use of graph-theoretical algorithms®. The structure of equations
and variables is represented by a bipartite graph. The problem
of associating each equation with one variable is called the as-
signment problem. Algorithms with execution time depending
linearly on the number of nodes can be found in Wibergl?. The
sorting problem is referred to as finding the strong components
of the graph. Tarjan!® has designed an algorithm with linear
time dependency based on a depth—first traversal of the graph.

The partition eliminate command in Dymola utilizes these
algorithms to solve the causality assignment problem. It also
eliminates trivial equations of the type

a=b ®)
The result of this operation is as follows:
Common [L.Vb)=0
Uo circuit.u = [R2.Va] - L.Vb
c u=[Va] - LVb
R1 {u]= R2.Va-CVa
u=Rs[i
C C ¢ [der(u)] = R1.i
R2 [uj=ReL.i
u=Va-[LVg|
L [u)=Va-Vbd
Lo[der(s)) = u
circuit Li+ Rli = [U0.4)
yl]=Cu
[v2] =Li

In each equation, the variable to be solved for is marked by
square brackets. Notice the different causalities for the two re-
sistors.

At this point, further formula manipulation can be used to
solve the equations in order to generate a state-space model.
The algorithm used for solving equations symbolically works on
an internal representation of equations, called a syntax tree.
In order to solve equations, Dymola recursively applies certain
transformation and simplification rules to the tree representa-
tion.

Dymola has rules about the inverse of certain functions and
handles the case of several linear occurrences of the unknown
variable. Solving the following equation for z:



exp(a + sin([z]/b + cs 2] - d) s (exp(e) + 1)) e 92~ f=24g (4)

gives the result:

¢ = (arcsin((In(sqrt(2 ¢ g + £)) - a)/(exp(e) +1)) +d)/(1/b + ¢) (B)

More about symbolic formula manipulation can, for example, be
found in Davenport, Siret, and Tournier®.
For the above circuit example, the result of the command:

> output solved equations

is as follows:

Common LVb=0

vo R2.Va = circuit.u + LYD

C Va=u+ LV

R1 w=R2.Va-CVa
i=u/R

c der(v) = R1i/C

R2 w=Rels
LVa=Va-u

L «=Va-Vb
der(i) = u/L

circuit U0.i=Ls+ Rl
MN=Cu
y2=1L.i

Finally, the state—space model can be automatically encoded as
a text file in any one of a list of simulation languages. Notice
that Dymola is not a simulation program in its own right. It does
not provide for any simulation support at all. Dymola can be
viewed as a sophisticated macro processor since it can be used as
a frontend to a simulation langusge and thereby (among other
things) assumes
also be viewed as a model generator since it can generate models
for a variety of different simulation languages. The currently
supported languages are ACSL!®, DESIRE!?, and Simnon!®.

However, the most adequate interpretation is to view Dymola
as a modeling language. Dymola has been designed to facilitate
the object-oriented formulation of models of complex continu-
ous systems. The user interface (language definition) of Dymola
is much less technology—driven than CSSL-type simulation lan-
guages. It is designed to increase user—convenience. The Dymola
software, on the other hand, is strongly technology—driven since
it generates a state—space model whenever possible. This is a
deliberate choice. It would be possible to make the Dymola pro-
gram convert & Dymola model into a description that could then
be simulated by use of a differential/algebraic equation (DAE)
solver®. The decision to generate a state—space model was based
on efficiency considerations. It is usually more efficient to ma-
nipulate the model at compile time to generate code that exe-
cutes fast than to lay the burden of model manipulation on the
numerical algorithm of the run-time program (a DAE solver).

The Algebraic Loop Problem

It was mentioned earlier that simulation languages do not permit
mutual algebraic relations between variables. This is due to the
fact that, in such a case, the equation sorter cannot determine
a proper execution sequence of the model statements. With the
two equations:

y=f(z)
& =g(y)

(6a)
(63)

z must be known before y can be computed from the first equa-
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the role of its macro processor. Dymols can .

tion, but y must be known in order to compute z from the sec-
ond equation. Consequently, neither of the two equations can
be computed without the other.

Algebraic loops among variables within a model sometimes
mean bad modeling, or rather, a bad choice of variables. How-
ever, algebraic loops that are the result of interconnections be-
tween different objects occur frequently and are unavoidable.
A simple example of this type is the voltage divider shown on
Figure 4:

R,-
1000
uol
-1ov
Ry =
20

Figure 4. Voltage divider.

The voltage divider can by coded in Dymola as follows:
model divider

submodel (vsource) U0
submodel (resistor) R1(R = 100.0), R2(R = 20.0)
submodel Common

input «
output y

connect Common — U0 — R1 — R2 - Common

UoV=u
y=R2u

end

When this model is entered into Dymola the following set of
equations is generated:

uo V=Vb-Va

R1 u=Va-Vb
u=R»i

R2 wu=Va-Vb

w=Reid

V=00

UV =u

y=R2u

Rl.Va=U0Vb

Rli=U0.i

R2.Va= R1.Vd

R2.¢= Rla

Common.V = R2.Vb

U0.Va = Common.V

Common
divider

After the partition eliminate operation has been issued, the
solved equations can be displayed. The result of that operation
is as follows:

R2.VE=0
Vb = divider.u + R2.V)

Common
vo

System of 4 equations. Unknown variables:
RLVD
divider.y
- U0
Rlu



-R2 divider.y = [R1.Vb) - Vb
- [divider.y) = Ro U0.&
-R1 w = Re[U0.]

[v] = UO.Vb— Vb

End of system of equations.

Solved system of equations:

R1V)=(R1.ReR2.Vb+ R2.R e U0.V})/(R1.R + R2.R)
divider.y = (R2.R +» U0.V) - R2.R » R2.V})/(R1.R + R2.R)
U0.i = (U0.Vb — R2.V))/(RL.R + R2.R)

Rlu = (R1.ReUO.V) - R1.R e R2.V})/(R1.R + R2.R)
End solved system of equations.

The simple fact that this circuit contains two series—connected
resistors results in a system of simultaneous equations (an al-
gebraic loop) involving four variables and four equations. The
causality assignment problem can no longer be solved in a unique
fashion, which is always an indication of algebraic loops. Dy-
mola detects the algebraic loop, isolates the involved equations,
determines the involved variables, discovers that the algebraic
loop is linear, and therefore is able to solve it at once by sym-
bolic formula manipulation. Further simplifications are possible.
Dymola can be set up to find common sub~expressions and in-
troduce auxiliary variables for them. This reduces the amount
of computations needed. Equations of the type:

a=0 (7

can be eliminated from the model, and in all other equations,
terms multiplied by a can also be eliminated. Finally, equations
that evaluate a variable, which is neither used in any other equa-
tion nor declared as an output variable, are surplus equations
that can be omitted from the model.

With these two additional simplifications, the above model
is reduced to a single equation:

divider.y = R2.R o divider.u/(R1.R + R2.R)

which is the well-known voltage divider equation.

Obviously, not all algebraic loops are linear. Nonlinear alge-
braic loops cannot generally be solved by formula manipulation.
Also, it can happen that a single linear algebraic loop contains
many equations and many variables, in which case the solved
set of equations may look formidable. In such cases, it may still
be necessary to employ a numerical, iterative method, such as a
Newton-Raphson type algorithm for a subsystem of equations.

Structurally Singular Models

Structurally singular problems are systems that contain more
energy storing elements than eigen modi. A structurally sin-
gular linear electrical circuit contains more capacitors and/or
inductors than indicated by the order of its transfer function.
Structural singularities are related to index n,n > 1 DAEs*13.

Structural singularities can easily be detected as a byprod-
uct of the algorithm that determines the computational causal-
ity. I, during causality assignment, any of the integrators (en-
ergy storage elements) assumes differential rather than integral
causality, the model is structurally singular.

As in the case of linear algebraic loops, structural singulari-
ties within models often indicate bad modeling, or rather a poor
selection of variables. However, structural singularities that are
caused by interconnections between objects are frequent and un-
avoidable. This fact can be demonstrated by the simple circuit
shown on Figure 5.

lq: L.
Tﬂ?pF 0.1

F
Figure 5. Parallel capacitor circuit.

MO,

This circuit can be modelled in Dymola as follows:

model parcap

submodel (capacitor) C1(C = 0.2E-6), C2(C = 0.1E-6)
submodel (csource) 10
submodel Common

input i
output y
connect Common — I0 — (C1//C2) — Common

I0II =4
y=Clu

end

When this model is entered into Dymola, the following equations
are generated:

C1 u=Va-Vb
Csder(u) =4

c2 v=Va-Vb
Ceder(u) =i

Io V=Vb-Va
i=1II

Common V =0

parcap I0II =3
C2.Vb=C1.Vb

Common.V = C2.V}
10.Va = Common.V
ClVa=1I0.Vb
C2Va=ClVa
Cli+ C24 =104

Partitioning this problem leads to the following warning:
Singular problem.

Unassigned variables:
C2.i

Redundant equations:
parcap C2Va=Cl.Va

and the generated equations are:

C1 u={Va]-Vb
C o [der(u)] =4
c2 u=[Va]- Vb
Celder(u)) =14
I0 [VI=Vb-Va
=1
Common [V]=0
parcap [IodI)=i

C2.Vb = [C1LV}]
Common.V = [C2.V})
{10.Va] = Common.V
Cl.Va = {I0.V})
C2.Va=ClVa
[CL4] + €2 = JO.i



Dymola asiumes by default that the state variables of the model
are all variables that appear differentiated. Due to the fact that
the target simulation language is expected to make use of an ex-
plicit integration technique, all state variables can automatically
be declared as known variables according to equation (1).

It is possible to get around the singularity by telling Dymola
explicitly that one of the two so—called state variables that were
introduced by default is, in fact, not a state varisble at all. This
can be accomplished by declaring: .

>  variables unknown C2.u
>  variables known C2.deru

Now, the equations can be repartitioned, and after eliminating
the trivial assignments, and after sorting and solving them, the
following set of equations is obtained:

Common CLVb=10

C1 IoVd=u+Vh

C2 w=10.Vb-C1LVD
i = Csder(y)

parcap Cli=i-C2i

Ci der(u) =§/C

10 V=Vb-CLV]

parcap y=Clu

It can be clearly seen that one of the two differential equations
now assumes differential causality rather than integral causality.

While this is a possible solution to the dilemma, it is not
a very good one, since it forces the subsequent simulation to
numerically differentiate the variable C2.u in order to compute
C2.4, which is unnecessary. There exists a (linear) algebraic
relationship between the two so—called state variables, i.e., the
two outputs of the integrators. More precisely:

C2.u=Clyu (8a)

By differentiating equation (8a), the following equation is ob-
tained:

der(C2.u) = der(Cl.u) (88)

One method is to replace equation (8a) by equation (8b), and
thereby remove the structural singularity. The constraint is thus
removed, and the voltages of the capacitors are integrated sep-
arately. It is then important to assign initial values that are
consistent with the removed constraint. This approach has the
drawback that numerical inaccuracy might introduce drift in
such a way that the removed constraint is no longer valid after
the simulation has proceeded for a while!2.

The approach taken in Dymola is to retain all constraints.
The dimension of the state vector is reduced. Instead, the
removed state variables are solved from the constraints. The
derivatives of the removed state variables also need to be com-
puted. Equations for those are added by differentiating the con-
straints.

Pantelides’® has designed an algorithm for determining
which equations need to be differentiated. It is a graph-
theoretical algorithm that uses the dependency structure of the
equations. This algorithm has been implemented in Dymola.
When the differentiate command is entered, Dymola uses the
algorithm to sugment the set of equations with symbolically
differentiated versions of some of the equations. The algorithm
assumes that all state variables are known. It then looks for
constraints between these variables. Note, that there might be
a chain of equations with auxiliary variables involved. All equa-
tions in such a dependency chain must be differentiated.

This process is repeated because there might be second order
derivatives implying that differentiated variables are considered

known. The added differentiated equations might introduce con-
straints on these differentiated variables, which means that these
equations bave to be differentiated once more.

Once the differentiate command has been issued, Dymola
no longer assigns any variables to the set of state variables auto-
matically, but leaves it up to the user to declare, which variables
are to be used as state variables.

The parallel capacitor problem can be tackled using the fol-
lowing set of commands:

> differentiate
> variables known Cl.u
> partition
> output equations
which leads to the following set of equations:
a1 w=[Va]- Vb
Co[deru) =i
c2 [w]=Va-Vb
C s deru = [i]
I0 V]=Vb-Va
=1
Common (V]=0
parcap [I0JI =i
C2.Vi = [CLVY)
Common.V = [C2.V}]
[10.Va] = Common.V
Cl.Va = [10.V}]
[C2.Va] = C1.Va
[C14 +C2i =TI0.
C1 deru = [derVa] — derVd
parcap C2.derVb = [Cl.derV})
Comumon [derV] =0
C3 [deru] = derVa — derVb
parcap  Common.derV = [C2.derV}]

[C2.derVa} = Cl.derVa

The last six equations of the above set are those that have been
added by applying the Pantelides algorithm to this model.

By declaring Cl.u as a known variable, the causality as-
signment algorithm inside Dymola knows that it doesn’t need
to find an equation to evaluate Cl.u, and the model generator
inside Dymola knows that it needs to generate a state equation
for this variable. For example in the case of ACSL, a statement
of the type:

Cl.u = INTEG(C1.dery, 0.0)

will be added to the set of generated equations.
The commands:
> partition eliminate
> output solved equations
will lead to the following set of equations:

Common . derV =0

parcap C2.derVb = Common.derV
Cl.derVh = C2.derV'd
I0JI =4

System of 6 equations. Unknown variables:

Cl.

C2.¢

C2.deru

C2.derVa

Cl.derVa

Cl.deru
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- [C14] + C2.i = T0.IT

-C2 C e deru = [1]

- {deru] = derVa — derVb
—parcap {C2.derVa] = Cl.derVa
~C1 deru = [derVa] — derVd
- Colderu]=1i

End of system of equations.

Solved system of equations:

Detl = C1.C + C2.C
Cli= (C1.C ¢ I0II + C2.C + C1.C + C2.derV}b

~C2.C ¢ C1.C ¢ Cl.derVb)/Detl
C2.i= (C2.Ce10JI - C2.C + C1.C » C2.derVb

+C2.C ¢ C1.C s Cl.derVb)/ Detl
C2.deru = (I0II - C1.C » C2.derVb + C1.C » Cl.derV'})/Detl
C2.derVa = (1011 + C2.C ¢ C2.derVb + C1.C ¢ Cl.derVb)/Detl
ClderVa = (10.JI + C2.C ¢ C2.derVb + C1.C » Cl.derV})/Detl
Cl.deru = (1041 + C2.C ¢ C2.derVb — C2.C + Cl.derV})/Detl
End salved system of equations.

Common Civs=20

C1 IOVdb=u+ Vb

10 V=Vb-CLVD
Cz2 u=JI0.Vb-CLVD

which can be used to automatically generate a simulation pro-
gram for either ACSL, DESIRE, or Simnon.

Applications

This section describes some typical modeling situations where
symbolic model manipulation is needed.

When modeling a mechanical system, the technique of free
body diagrams is utilized. The introduced forces and torques are
terminal variables that are structured into cuts to facilitate the
description of the mechanical topology. Connecting mechanical

links and joints introduces constraints on positions and veloc-
ities, which implies that the degrees of freedom of the inter-
connected system are reduced, i.e., the dimension of the state
vector of the interconnected system is smaller than the sum of
the dimensions of the state vectors of the subsystems.

A simple example is the model of a body in two dimensions
for which one end point is attached to a fixed rotational joint.
The unconstrained body has three degrees of freedom. It can
translate in z and y directions, and it can rotate around its z-
axis. Thus, a state—space model of an unconstrained body must
contain six first~order ODEs. Due to the connection with the
rotational joint, the lever is restricted in its freedom to move. It
can no longer translate at all. It can only rotate around the joint.
Consequently, a state-space model of the constrained body must
contain two first-order ODEs. The degrees of freedom are re-
duced from three to one.

The model type that describes the body irrespective of
tbe environment it operates in must describe the unconstrained
body. Consequently, it may contain either two instances of New-
ton’s translational law and one instance of Newton's rotational
law, equivalent descriptions using the d’Alembert principle, a
direct formulation of the energy balance equations, or finally, a
description of power flow through the system (e.g. using a bond
graph notation?®). In either formulation, an instantiation of
the unconstrained body will result in a sixth~order state—space
model.

The model type that describes the joint doesn’t contain any
dynamics at all, since the joint by itself doesn’t move around.
When the unconstrained body is connected through the joint to
the wall, four constraints (two explicit positional and two de-
duced velocity constraints) are introduced. The resulting model
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is thus structurally singular. By applying the Pantelides algo-
rithm (differentiation), it is possible to get rid of the structural
singularity. In the process, the number of state equations is re-
duced from six to two. By choosing the angular position, 4, and
the angular velocity, w, as the two remaining state variables, a
system of equations arises, i.c., the resulting model contains a
linear algebraic loop that can be solved by formula manipula-
tion. The solution is of the form:

der(w) =.../(J + m-d-d) (%)

where J is the inertia of the body relative to its point of gravity,
d is the distance from the center of gravity to the joint, and m is
the mass of the body. The formula for how the inertia changes
due to translation (J + m - d- d) is thus sutomatically obtained.

Thermodynamic systems and chemical reaction dynamics
are modeled by defining control volumes and introducing ter-
minal variables in cuts corresponding to e.g. the pipes between
different components. The topology is typically described as
separate subgraphs by following the different flows in the sys-
tem (steam, water, etc).

As an example, consider a superheater in a thermal power
plant. A model for the steam is:

der(E) = Qi - W - (h — h,,) (10a)
E=V.r.h (108)
r=g(h) (10¢)

where E denotes the stored energy, Q:n describes the incoming
heat flow, W is the mass flow rate of steam, A is the enthalpy of
steam in the superheater, h;, describes the enthalpy of incoming
steam, V denotes the volume, and r is the density. The function
g describes steam properties and is typically implemented as a
table look-up function.

If E is chosen as the state variable (default selection), a
nonlinear system involving equations (10b) and (10c) has to be
solved for h and r. An alternative approach is to select the
enthalpy h as the state variable. The differentiation algorithm
in Dymola determines that the equations (10b) and (10c) have to
be differentiated. A two—dimensional linear system of equations
results. Its solution produces:

der(h) = derE/(gDER(h) -V - h + V -r) (11)

where der(h) is a true state derivative, whereas derE is an alge-
braic variable with a special name?!3. The existence of a function
gDER is assumed that returns the partial derivative of the func-
tion g with respect to its argument.

It is not obvious which state variable selection is preferable.
If the function gDER exists, the selection of h as a state vari-
able probably gives more efficient computations. If gDER is
not available, the former approach may be more appropriate.
The point is that the modeler doesn't need to manually perform
the required formula manipulations depending on which state
variable is selected. The model contains only the fundamental
physical equations. This makes modeling a considerably safer
enterprise.

A similar situation occurs when modeling active electronic
circuits®. A bipolar transistor model contains three junction
diode models. Each of those models contains a nonlinear capac-
itor. Simplified model equations are:

der(g.) = 3. (12a)
ge =k -ul + ky-ig+ ke (12b)
§e = ky - exp(ug) + kg - ug + ky (12¢)



where g is the charge, i. is the capacitive current, iq is the
diode current, uq is the voltage, and k;, ..., by are parameters.
A choice of g as the state variable leads to a nonlinear system
of equations in the variables u¢ and ig that must be solved it-
eratively. In an alternative approach, ug can be chosen as the
state variable. In this case, the Pantelides algorithm must be
applied. After differentiation, a linear system of equations in
the variables %3¢ and ¢ results that can be solved by formula
manipulation.

The true bipolar transistor equations are, in fact, much more
complicated than indicated above. It is thus a relief for the
modeler not to have to perform the differentiations by hand, and
sutomated differentistion certainly promotes model correctness.

Summary and Conclusions

In this paper, it was demonstrated how sophisticated antomated
formula manipulation can be used to automatically generate
state—space models from an object-otiented description of a
physical system. It was shown that the two major complications,
algebraic loops and structural singularities, occur frequently as
a consequence of couplings between submodels (objects), and
that these difficulties can often be dealt with by automated for-
mula manipulation. All structural singularities can be reduced
to systems of simultaneous algebraic equations'?, and small lin-
ear systems of equations can be solved explicitly.

The examples chosen in this paper were all very simple,
and were mostly selected from the class of passive linear elec-
trical circuits. However, the advocated techniques have been
successfully applied to considerably more complex systems, and
to systems stemming from various application areas, such as me-
chanics, thermodynamics, and chemical reaction kinetics. Many
sophisticated examples can be found in the literature! 47818,
The selection of examples used in this paper was dictated partly
by space considerations and partly by the desire to isolate the
individual types of advocated formula manipulation techniques.

A sofiware tool, Dymola, was presented in which the var-
jous formula manipulation techniques have been implemented.
Dymola is an object—oriented continuous-system modeling lan-
guage and a model manipulator that can be used to generate
models in several simulation languages.
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