OBJECT-ORIENTED MODELING: TOOLS AND TECHNIQUES
FOR CAPTURING PROPERTIES OF PHYSICAL SYSTEMS
IN COMPUTER CODE !

Andrew H. Cutler

Space Engineering Research Center
The University of Arizona

Tucson, Arizona 85721

U.S.A.

Frangois E. Cellier and Bernard P. Zeigler

Dept. of Electrical & Computer Engr.
The University of Arizona

Tucson, Arizona 85721

U.S.A.

Abstract. Mathematical modeling means the formal encoding of knowledge about a dynamical
system. Knowledge can be grouped into behavioral knowledge and structural knowledge. Behavioral
knowledge is local knowledge relating to a particular experiment applied to a system or model.
Behavioral knowledge is what is generated in a real-world experiment or during a simulation run.
Structural knowledge is global knowledge relating to a system or model, irrespective of the experiment
that is performed. A model is a formal encoding of structural knowledge of a system. Structural
knowledge can be further decomposed into functional knowledge, coupling knowledge, decomposition
knowledge, and taxonomic knowledge. In this paper, a methodology is presented that helps to
organize the structural knowledge about a system to be described. It enables to encode separately
and in an organized fashion functional, coupling, decomposition, and taxonomic knowledge about a
system. The methodology lends itself to the implementation of automated procedures for deductive
as well as inductive model synthesis necessary for the realization of high~autonomy intelligent control
systems. A fairly involved example concludes the paper.

Keywords. Artificial intelligence; decentralized control; event—based control; failure detection; intel-
ligent machines; knowledge abstraction; model synthesis; object—oriented modeling; process control;

time—windows.

INTRODUCTION

New buzz words appear regularly in the software engineer-
ing literature. One such buzz word of a fairly recent vintage
is object orientation (Booch, 1991). The idea of object ori-
entation was first popularized by computer languages, such
as Smalltalk (Goldberg and Robson, 1983) and by oper-
ating environments, such as the Hypercard (Shafer, 1988).
Suddenly, any piece of code had to be “object-oriented” in
order to be respectable. :

After a certain delay time most software engineering
buzz words show up in the world of simulation, so also the
‘term “object orientation” (Zeigler, 1990). Consequently,
simulation software suddenly had to be object-oriented.
What is object—oriented simulation? Before this question
can be answered, it is necessary to take a step back and
discuss the basic idea behind object orientation in general.
What is object orientation? Where does the demand for
object orientation come from? Why is object orientation a
useful attribute of a software system? These are some of
the question that should be answered before the concept
is blindly ported to a particular application area such as
simulation.

What is object orientation? Stated in simple terms, ob-
ject orientation of a piece of software can be defined as its
capability to represent facets of real-world objects in a com-

t This research is supported in part by NASA-Ames Co-
Operative Agreement No. NCC 3-525, “A Simulation Environment for
Laboratory Management by Robot Organisations,” and in part by the
NASA /University of Arisona Space Engineering Research Center for
the Utilisation of Local Planetary Resources (SERC/CULPR).

pact and coherent form. Figure 1 shows a few “real-world
objects” (modestly abstracted) that are partially embedded
inside each other.

Figure 1. A set of “real-world objects.”

Object A is the “world object,” i.e., an object that encom-
passes the “entire world” (as far as it is of concern to the
task at hand). The world object contains two embedded
objects, B and C, and as far as A is concerned, these two
objects are the only objects in the whole world. Object
B contains one object, D, while object C contains two ob-
jects, E and F. Finally, object F' contains object G. Object
C knows that it is not the entire world. The traditionally
employed view was the following: object C knows that it
is embedded in object A4, but it doesn’t know whether 4
is the world object or whether A is further embedded in a -

" yet more comprehensive object. Object C knows about its

own two children objects, E and F, but it doesn’t know

anything about its grandchild, G, and it doesn’t know any-
thing about its sibling, B. This is the so~called kierarchical
world view. A number of computer languages were based
on this world view. The most prominent among them is
Pascal. In Pascal, the world object is called the program,
whereas embedded objects are called procedures. In Pascal,
the world of Fig. 1 can be represented as follows:

program A
procedure B
procedure D

end
end
procedure C
procedure E
end
procedure F
procedure G
end
end
end

end .

Graphically, a strict hierarchy can be represented as a so—
called system entity structure (SES). Figure 2 shows the
SES of the previously discussed world.

[A)
B C
L E F
|

Figure 2. System entity structure of a “world.”

The nodes of the SES are called entities. The world ob-
ject is here called the root entity, while objects that are
not further decomposed into other objects (in the preced-
ing example: D, E, and G) are called the leaf entities.
Leaf entities represent so—called atomic objects, whereas all
other entities represent molecular objects.

The strict hierarchy has a number of awkward proper-
ties that deserve to be mentioned.

(1) Objects D and @ could be twin siblings, i.e., they could
be two instantiations of the same object type. Employ-
ing a strictly hierarchical world view, these two objects
must be manually duplicated in the code. In fact, the
strict hierarchy doesn’t support the concept of object
types (usually called object classes), but only individual
objects.

(2) One of the demands of object-oriented programming is
that things that belong together are placed close to each
other. The strict hierarchy certainly does not provide
for this feature. In Pascal, the variables of the world
object (the program) are declared at the very beginning
of the program, whereas the instructions performed on
these variables are coded at the very end. Consequently,
the Pascal programmer must constantly flip back and
forth through many pages of code.

(3) Oune of the demands of object—oriented programming is
that modifications that concern only one object can be
bandled locally. The strict hierarchy does not provide

- for this feature either. If one of the objects (proce-
dures) is slightly modified, the entire program must be
recompiled.

Of course, many “modern” Pascal compilers provide partial

answers to all of the above problems. They achieve this by

violating the rules of the strict hierarchy.

What are the major causes for the aforementioned
problems? It turns out that the most serious deficiency
stems from the demand that siblings shouldn’t know any-
thing about each other. In the real world, each human in-
teracts constantly and directly with all the other “objects”
in his or her environment. In fact, the human has only 2
very limited understanding of the “world object” and the
“children objects” (such as the functioning of the brain),
while he or she has a much better understanding of sibling
objects. This idea has been ported to the object-oriented
world view. The object—oriented world is populated by in-
dividual objects that “talk” to each other or rather that ask
each other questions. In the object—oriented jargon this is
called “asking a method from another object” — a fairly
strange and somewhat confusing terminology.

The major paradigms of the object—oriented world view
are the following:

(1) Objects are instantiations of generic objects, called ob-
ject classes. An object class declaration is similar in
nature to a Pascal type declaration, whereas an object
declaration is similar to a Pascal var declaration.

(2) Each object possesses a knowledge base, i.e., a number
of things that it knows and can do. These items are
called methods and are coded as algorithms inside the
object.

(3) Objects automatically inherit all properties (methods)
of their respective class declarations.

(4) An object class can inherit methods of its parent class.

(5) Objects know about the methods of their siblings. An
object can “ask a method from another object,” i.e., it
can ask the other object to run one of its algorithms and
return the result of that algorithm. The Sir object asks
the clock object “What’s the time”? The clock object
executes the algorithm that computes the current time,
and replies: “It’s ten o’clock, Sir.”

(6) Implementational details about the methods contained
in an object are hidden from the outside. The object—
oriented world view provides for clean interfaces with
few side effects.

The object—oriented world view has indeed overcome most
of the problems inherent in strict hierarchies. Individual
object classes can be coded and debugged separately with
little to no side effects noticeable in other object classes.
This enables a team of programmers to join in the efforts
of coding a large software system (a so—called case — the
youngest animal in the zoo of software engineering gibber-
ish).

It should be noticed that objects are not hierarchically
structured in the standard object—oriented world view, only
classes are. However, even class hierarchies are somewhat
different from programming hierarchies in more traditional
approaches to programming. A subclass may inherit all
methods of its parent class and add a few methods of its
own. Thus, a subclass usually provides a superset of meth-
ods (capabilities) in comparison with its parent class, not
a subset. ’

Yet, new problems popped up, which interestingly
enough are again related to difficulties with hierarchies.
The inconspicuous statement that “an object class can in-
herit methods of its parent class” puts the skeleton right

back in the closet. By stating that all object classes (ex-
cept the world object class) have a parent class, a hier-
archical decomposition of classes is implicitly introduced,
which causes the same problems as before. A trap door
object should be allowed to inherit methods of its father,
the trap, and its mother, the door. Unfortunately, strict
hierarchies don’t understand the concept of two parents.
Some object—oriented programming environments provide
for multiple inheritence schemes by allowing declarations

such as:
class trap_door is a trap and a door

thereby again violating the concept of a strict hierarchy
(Davis et al., 1990).

The second problem has to do with the idea of “talk-
ing.” The object—oriented world view presumes that all in-
teractions between objects can be realistically represented
by mechanisms of message passing. This is not so. If a
drunkard drives his car against a tree, a strong interac-
tion between the car object and the tree object takes place,
which cannot properly be modeled as a mechanism of talk-
ing. The “talking” world view assumes that every interac-
tion between objects can be described by one object causing
an effect in another object. However, the cause~and—effect
relationship is not always realistic. Does the tree cause the
dent in the car? The tree hasn’t done a thing! Is it the
potentijal difference between the two ends of a resistor that
causes a current to flow, or is it the current flowing through
the resistor that causes a potential drop? In a mechanical
system consisting of a mass object series—connected with a
spring object, who owns the reaction force between the two
objects?

MODELING VERSUS SIMULATION

Before these very interesting questions, which are inti-
mately related to the topic of modeling, can be answered,
it is necessary to properly distinguish between the process
of modeling and that of simulation.

Modeling denotes the process of creating a model. Sim-
ulation describes the method of extracting trajectory be-
havior form a given model. In the past, these two terms
have often been confused. There was no need for a clear
distinction since modeling was an activity of the human
user whereas simulation was performed by a computer pro-
gram. However, it will be shown that there is good reason
to automate the process of modeling as well. Consequently,
a modern modeling and simulation environment (a model-
ing/simulation case?) should provide for both modeling
and simulation software.

In such an environment, the human user interacts with
modeling software that helps him to create a model. Once
the model has been created it can be transformed (com-
piled) into code that can be understood by the simulation
software. Thus, the so—called simulation program is now
totally machine-generated and there is no longer any need
for the human user to even understand the simulation lan-
guage. The simulation program now assumes a role similar
to the compiled machine—code program in an ordinary pro-
gramming environment. Most human users of Pascal are
unable to understand the code that is generated by the
Pascal compiler and, hopefully, they never have 2 need for
such knowledge. ’

In this context, it makes sense to distinguish between
the terms object-oriented modeling and object-oriented sim-
ulation. The former term denotes the concept of an object—
oriented user interface. The user models his system through
objects and relations between these objects. The latter
term implies that objects communicate by means of mes-

sage passing mechanisms during the execution of a simula-
tion run. These two properties have little in common with
each other. It turns out that the modeling compiler (i.e.,
the program that generates the simulation program from
the user-specified model) is perfectly capable of doing away
with object orientation and translating an object—oriented
model into an amorphic simulation program. For most pur-
poses, that is exactly what the modeling compiler should
do, i.e., while object-oriented simulation (as will be shown)
is a fairly dubious undertaking, object-oriented modeling is
a fruitful concept.

Ordinary object—oriented languages could employ the
same concept, i.e., the object orientation could be put to
the sword in the process of compilation. This is not usu-
ally done, because it would make it very difficult to still
provide for separate compilation of objects. In ordinary
programming, the compile time of a program is usually of
the same order of magnitude as its execution time. Thus,
efficient compilation is very important and separate com-
pilation of subprograms (modules, objects) is therefore a
very desirable feature. In simulation, however, the average
execution time of the once-compiled simulation program is
usually hundreds of times slower than its compilation. Con-
sequently, efficient compilation of 2 simulation program is
much less important than efficient run—time execution. For
these reasons, the capability to separately compile simula-
tion objects is not as high on the feature wish list and may
be sacrificed if the price to be paid would be a considerably
slower run—time execution.

OBJECT-ORIENTED SIMULATION

Object orientation in ordinary programming was intro-
duced as a means to organize knowledge about the problem
to be solved. Consequently, object orientation is impor-
tant at the user interface, not at execution time. There is
no run—time advantage to object orientation, except in a
multiprocessor environment in which different objects are
implemented on separate CPUs.

Since simulation programs (in the proposed model-
ing/simulation environment) aren’t handcoded, there is no
advantage to object—oriented simulation, except if the sys-
tem to be simulated is a physically distributed system
in which the physically distributed objects communicate
by means of message passing. Typical examples include
the simulation of a multiprocessor computer architecture,
the simulation of a national communication network, or
the simulation of the distributed control architecture of a
large energy distribution network. Zeigler’s book presents
many meaningful examples of the use of object—oriented
distributed discrete—event simulation (Zeigler, 1990).

Object—-oriented discrete—event simulation is not neces-
sarily desirable, but at least it comes about quite naturally.
Objects in a discrete—event system communicate (by defi-
nition) through mechanisms of message passing, i.e., there
exists a natural cause-and-effect relationship between all
objects in a discrete—event system. There is never any ques-
tion as to which object is the cause of an event and which
objects are affected by it.

Object—oriented continuous—time simulation is much
more problematic. Since continuous objects “communi-
cate” continuously with each other, the “talking” paradigm
may not be such a useful concept altogether. -Chicken-and-
egg type conflicts (such as in the previously mentioned case
of the voltage across and the current through an electri-
cal resistor) occur frequently and interfaces between ob-
jects often introduce “methods” of which it is unclear to
whom they belong (such as the reaction force in the afore-
mentioned masg—spring system). Furthermore, due to the
needs for continuous (or at least very frequent) communi-

cation between different continuous objects, the run—time
efficiency issue becomes a real bottleneck. There is simply
no efficient way to implement two continuous real-world
objects (such as the aforementioned mass and spring ob-
jects) as two separate software objects and yet have them
communicate efficiently by exchanging information at least
once per integration step (not once per communication in-
terval). For these reasons, object—oriented continuous-time
simulation is a nono!)

Interestingly, the object—oriented paradigm is much
older than either Smalltalk or Hypercard. It was origi-
nally proposed in the context of discrete—event simulation.
SIMULA’67 bad all the properties of a modern object—
oriented programming environment. It is sometimes dif-
ficult to understand why particular languages become fash-
ionable while others don’t. In the case of SIMULA, the
language was much more promising than its success seems
to indicate. The reason for this discrepancy is probably
related to poor salesmanship. SIMULA’67 was advocated
as a discrete—event simulation language — which it wasn’t,
since it didn’t offer proper support for random variate gen-
eration, queue management, and output presentation. Cor-
respondingly, a model that could be coded in five lines us-
ing GPSS called for a fairly long SIMULA program. SIM-
ULA’67 was a quite decent language for compiler writing,
but it wasn’t properly marketed for that purpose.

OBJECT-ORIENTED MODELING

Objeci—oriented modeling helps the (human) user to orga-
nize his or her knowledge about the system to be modeled.
All physical properties of one object should be expressible
in one place.

A hierarchical decomposition of complex objects into
simpler objects is desirable since each object, including the
world object, should be expressible in terms of no more than
50 lines of code (N. Wirth, personal commmunication). This
demand is incoherent with the standard object—oriented ap-
proach according to which all objects are at the same level.
However, the object—oriented world view can easily be ex-
tended to encompass hierarchies of objects. Each method
is an algorithm, i.e., a program. If a method is sufficiently
complex, the program implementing that method can be-
come very long. Consequently, it may be desirable to imple-
ment individual methods using the object—oriented world
view. Thereby, a method inside an object is implemented
by means of many objects generated from their own object
classes that cooperate in task solving.

For reasons that will be explained in due course, it is
important that all equations describing the system behavior
are captured in atomic objects. A molecular object consists
only of declarations of all the objects that it contains and
a description of the interactions between them. This recipe
will be referred to as the coupling rule. The description of
an atomic object is called an atomic model and the descrip-
tion of a molecular object is called a coupling model.

In the preceding example, the leaf entities D, E, and G
describe three physical objects. All other objects describe
how these three physical objects are connected together to
form a whole. Of course, the coupling rule precludes molec-
ular objects from containing only one object. For example,
the object F is not meaningful since it contains only one
object G, and unless F' contains physical equations besides
a declaration of G, this makes little sense since F and G
would be identical objects.

It should be noticed that only some of the properties
of object—oriented programming have been migrated to the
object—oriented modeling paradigm. In particular, the na-
ture of connections is not specified at the modeling level.
If the model represents a discrete—event system, the con-

nections will be transformed into some sort of communica-
tion protocol during the transformation of the model into a
simulation program. If the model represents a continuous—
time system, the interactions between objects describe their
physical couplings. In the mass-spring example, the mass
and the spring are two atomic objects, whereas the mass—
spring model is a coupling model that describes how the
mass is attached to the spring. During the transformation,
the coupling equations (possibly involving the aforemen-
tioned reaction force) are automatically generated from the
declared nature of the coupling.

A SPICE program is an object—oriented description of
an electrical circuit. The SPICE “models” (i.e., the ele-
ments R, C, Q, etc.) are the atomic objects. Subcircuits
are the coupling models. They contain references to atomic
objects and other subcircuits, and once—defined, they are
molecular objects (X elements) that can be invoked just
like atomic objects. The SPICE program is the world ob-
ject.

AUTOMATED MODEL SYNTHESIS

A modeling/simulation environment was created, which
comprises a five-level hierarchy of modeling tools (Cellier et
al.,, 1990; Cellier, 1991). The five-level hierarchy is shown
in Fig. 3.

Decision
Support System
(DEVS)

Inference Engine l

(FRASES—Scheme)

General
System Entity Structure
(DEVS)

SES Pruner < |
(ESP—Scheme)

y
Pure

System Entity Structure
(DEVS)

SES Transformer
(DEVS—Scheme)

Y

Object—Oriented
Modeling Program
(DYMOLA)

Hierarchy Flattener
(DYMOLA Program Generator)
\

Flat
Simulation Program
(DESIRE)

Figure 3. Five-level hierarchy of model management.

Flat simulation models are at the lowest level of the hi-
erarchy. Simulation models can be either of the discrete—
event type (coded in DEVS—Scheme (Zeigler, 1987, 1990))
or of the continuous system type (coded in either DESIRE
(Korn, 1989) or ACSL (MGA, 1986)). As explained ear-
lier, at least the continnous-t{ime models must be flat in
order to run efficiently. Unfortunately, flat simulation mod-
els are difficult to construct, read, and maintain. However,
since these simulation models are not handcoded, this is
not much of a problem. Level 1 models are optimized for
run—time efficiency.

Hierarchically decomposed modular models of both
types are at the next higher level of the hierarchy. Discrete—
event hierarchical models are coded in DEVS-Scheme,

while continuous—time hierarchical models are coded in DY-
MOLA (Elmgvist, 1978). Level 2 models are easier to main-
tain since they can reference submodels that can be stored
in a model library. Submodels used in a level 2 model are
instantiations of model types. Level 2 has been optimized
for user convenience in coding atomic models to be stored
in a level 2 model library. The transformation of level 2
models into level 1 models is accomplished by a hierar-
chy interpreter. In the case of discrete—event models, the
hierarchy interpreter is a built—in function of the DEVS-
Scheme simulation engine, whereas in the continmous case,
the hiera.rchy is flattened by the DYMOLA Preprocessor.
The continuous case is a little more difficult to handle since
continuous models do not provide for a natural distinction
between component inputs and outputs. For example, an
electrical resistor calls for the model:

U=R»s1 (1a)

when connected to a current source, but it requires the
model:

I=U/R (1%)

when connected to a voltage source. The DYMOLA pre-
processor contains formula manipulation algorithms that
enable it to solve equations at compile time for the appro-
priate variable,

At the next higher level, models are represented by a
pure system entity structure (SES) (Rozenblit et al., 1989;
Zhang and Zeigler, 1989). A pure system entity structure
is a hierarchical tree that decomposes root entities (corre-
sponding to the main program) graphically into its compo-
nent models. The leaves of the tree correspond to level 2
atomic models, whereas the interior nodes of the tree corre-
spond to level 2 coupling models. DEVS~Scheme contains
a function (transform) that compiles a pure SES into a set
of level 2 models. Atomic models are retrieved from the
model library, while coupling models are automatically be-
ing generated from the information provided in the pure
SES. The transform routine can generate level 2 models
of either the discrete—event type (coded in DEVS—Scheme)
or the continuous system type (coded in DYMOLA), and
it will generate coupling models in accordance with their
use. Thus, while atomic models are handcoded at the sec-
ond hierarchy level, the coupling models are automatically
generated from a higher level description. The third hi-
erarchy level has been optimized for user convenience in
specifying the coupling relationships between objects (the
coupling knowledge). The coupling knowledge is specified
by means of stylized block diagrams. In the system entity
structure, each decomposition of an object into parts is
represented by a so—called aspect node, i.e., layers of entity
nodes toggle with layers of aspect nodes. The aspect nodes
were omitted from the SES in Fig. 2. Each aspect node
is linked to a stylized block diagram that encodes the cou-
pling knowledge, i.e., shows how the parts are connected to
form the object. “Signal paths” in the stylized block dia-
gram represent {groups of) variables of both the across type
(i.e., variables that assume the same values around a node,
such as potentials in an electrical circuit) and the through
type (i.e., variables that add up to zero in a node, such as
currents in an electrical circuit). Unlike the conventional
block diagram, the stylized block diagram does not mark
the direction of the signal flow from one block to another.
Thus, signal paths are undirected. This rule reflects the
previously mentioned difficulty as expressed in Eqgs. (1a-b).
In the case of physical systems, an alternative to the styl-
ized black diagram is the bond graph {Cellier, 1990). It can
also be used to encode the coupling knowledge of a physical
system.

At the next higher level, models are represented by

general system entity structures. General SESs provide
for a mechanism to describe many variants within one sin-
gle SES. DEVS-Scheme provides for a tool, called ESP-
Scheme (Kim, 1988), which can prune a general SES to
generate a pure SES. In the pruning process, all variants
except one are pruned out by cutting away all undesired
branches of the SES. By selecting an internal node of the
general SES as the root node of the pure SES, the pruner
can also generate a pure SES of a subsystem only. Level 4
models are much more compact than level 3 models, since
an entire class of models can be represented with one sin-
gle general SES. Models at this hierarchy level have been
optimized for specifying the decomposition knowledge of a
system. The decomposition knowledge is encoded in the
general SES, which is user—coded at the fourth hierarchy
level. Entities can be decomposed into parts by use of
aspect nodes, as explained earlier. They can also be de-
composed into variants by means of so—called specialization
nodes. Thus, in the general SES, layers of entity nodes
toggle with layers that contain both aspect nodes and spe-
cialization nodes. Aspect nodes represent and connections:
a car consists of a body, and an engine, and four wheels,
and a trunk. Specialization nodes represent or connec-
tions: an engine can be either a V6 or a Diesel engine.
Figure 4 shows the general SES encoding this example.

{ "
car

car-dec

[l l

body engine wheels
engine-spec wh-mdec
L Ve Diesel wheel
J

- Figure 4. General (partial) SES of an automobile.

The only difficulty left is the need to decide manually
which variant to choose among the many possible variants
contained in a general SES. The fifth level of the hierar-
chy defines a rule-based decision support system that, on
the basis of qualitative rules, instructs the pruner which
branches to cut. This tool is called FRASES-Scheme
(Frames and Rules Associated System Entity Structure)
(Hu et al., 1989). The fifth hierarchy level has been op-
timized to encode the tazonomic knowledge of the system.
For this purpose, each specialization node is linked to a
rule-base editor in which selection rules can be specified,
such as:

if purchase price = high and maintenance_cost = low
then select Diesel
else select V6

end if

A complete description of a taxonomy of models together

with a complete description of a taxonomy of experiments

to be performed on these models, i.e., a so—called world
model consists of:

(1) a library of level 2 leaf models and level 2 unit ac-
tion plans, encoding the functional knowledge of system
components;

(2) a set of level 3 stylized block diagrams describing the
coupling mechanisms between submodels of a decom-

position and tasks of an experiment, encoding the cou-
pling knowledge of the system;

(3) a set of level 4 general SESs describing the decompo-
sition of the system into parts and variants and a cor-
responding set of level 4 general SESs describing the
decomposition of experiments into individual tasks and
alternatives, encoding the decomposition knowledge of
the system; and

(4

~—

alevel 5 rule-based decision support system, which pro-
vides for the expert knowledge necessary to generate
simulation models and simulation experiments for any
given purpose, encoding the taxonomic knowledge of
the system.

KNOWLEDGE ABSTRACTION

The previously described methodology of automated model
synthesis is an entirely deductive process. The complete
knowledge of the entire model taxonomy is encoded in parts
and pieces at various levels of the five—level hierarchy. How-
ever, at least during its initial phases, modeling is a pre-
dominantly inductive process in which structural knowledge
is inferred from behavioral knowledge. The reason for this
seeming discrepancy is a concern with execution speed. In-
duction is usually too slow for real-time application. How-
ever, induction has also a place in a real-time distributed
intelligent control environment, as will be shown in this
section.

An event-based intelligent control architecture is envis-
aged. Event—based control is a discrete eventistic form of
control logic in which the controller expects to receive con-
forming sensory responses to its control commands within
prespecified time-windows.

The following simple scenario illustrates the advocated
concept of a decentralized intelligent control architecture.
The task to be solved by the envisaged high—autonomy
intelligent control system is to have the system boil two
three—minute eggs in the shell. The commander of the ex-
periment (the customer) has a fairly decent idea as to how
long this task may take, certainly no less than five minutes,
but certainly no longer than 15 minutes. This is called
a time-window (Wang and Cellier, 1991; Zeigler, 1989).
Each controller that issues a command expects an acknowl-
edgment of successful completion of the commanded task
within a prescribed time-window. Receiving the order, the
cook commands an apprentice to “go and get a pot.” The
cook knows that this task can be completed in no less than
30 seconds, but it should not take longer than two minutes.
Thus, the cook (first-level subordinate controller) operates
on his or her own time—window. If the apprentice returns
with a pot within the prescribed time-window, the cook
proceeds to the next command, which is to fill the pot with
water. Again, a time—window serves to ensure the correct
execution of the command. If the apprentice does not re-
turn in time, the cook knows that something has gone awry
and he or she knows even more: either the pot was not
where it was supposed to be or the apprentice just “died.”
Consequently, while the customer (commander) does not
receive his or her three—minute eggs within the prescribed
time-window, it is not necessary for him or her to decide
whether the stove was broken, or the kitchen was out of
€ggs, or the pot had a leak and the water was spilled. The
actual cause of failure will have been detected at a lower
level closer to its source.

In the advocated methodology, it is usually the hierar-
chically lowest controller (within the command resolution)
that detects the anomaly and calls upon the reasoner to de-
termine its cause, since each controller operates on a time—
window of its own. This is true under the assumption that
each lowest-level control loop is equipped with the neces-

sary threshold-type sensors to report back the successful
completion of the commanded task. If some of the required
sensors are not present, either because they are too expen-
sive or because the controlled quantity cannot be directly
measured, a failure will be propagated to higher-level com-
mand and control loops and must be detected at such levels
{Luh and Zeigler, 1991a, 1991b).

Each controller uses a so—called operational model to
determine the next time—window. This operational model
is not a model of the overall operation. It is a specific sub-
model synthesized to help the commander determine the
correct time—window under the specific operational condi-
tions under which it is currently functioning. Depending
on the complexity of the process involved in performing
the next command, the operational model can be a simple
table-lookup function or can involve performing multiple
simulation runs of a continuous-time model while vary-
ing ome or several model parameters. Depending on the
frequency of its use, the operational model is either pre-
compiled or generated on the fly. The reasoner uses a so—
called diagnostic model, i.e., another submodel generated to
aid the reasoner in the diagnosis of the cause of the just—
detected anomaly. Only information needed for the task at
hand will be included in the model. Execution of the di-
agnostic model may be as simple as applying an inference
engine to a number of measurement data or may involve
debugging the system by executing a potentially long list
of test commands. Since fault diagnosis is always an ex-
ception, most diagnostic models will be generated on the
fly. However, diagnostic models are also used by watchdog
monitors in scheduled maintenance activities. Such diag-
nostic models are usually precompiled.

The event-based intelligent controller operates in a
mode similar to a sampled—data controller. Figure 5 com-
pares the two control paradigms to each other.

N

A LY

tmintm tmax

a) sampled——data control

b) event—based control

Figure 5. Comparison of sampled—data and
event—based controlier.

The sampled—data controller slices time into (usually equi-
distant) pieces and checks the status of the control system
once during each sampling interval. The event—based con-
troller schedules events to happen by discretizing the state
variables themselves. For example, the event—based stove
controller monitors the water temperature in the pot. In
a2 commanded action, the stove may be requested to in-
crease the water temperature to 100 °C. It would be possi-
ble to create a time—window requesting an acknowledgment
of successful completion. However, it may be desirable to
split the temperature interval into smaller portions of 10°C
and request one acknowledgment per successful completion
of a subinterval.

The event—based operational model of the stove oper-
ates on knowledge that is automatically being abstracted
from an equivalent continuous-time operational model of
the stove. Whenever one of the local controllers needs a

pew time-window that cannot be found in its data base, it
sends a request to the time-window generator. The time—
window generator checks in its own data base whether it
possesses the necessary submodel to extract the requested
4ime—window. If this is not the case, the time-window gen-
erator commands the five-level hierarchy to generate the
required submodel from the world model. It then performs
a simulation experiment on that submodel to extract the
requested time—window. For this purpose, the model is sim-
ulated many times over a relatively short time span while
varying the model parameters within their assigned toler-
" ance ranges. This must happen in real time, i.e., while the
control of the process is ongoing. A good strategy for vary-
ing the model parameters is the sensitivity—in-the-large
analysis technique, described in (Cellier, 1986).

The time-window generator extracts behavioral knowl-
edge from the continuous—time operational model, and con-
denses this knowledge into the more-highly aggregated
form of a time—window. This time-window is then incor-
porated in an equivalent discrete—event operational model
that forms a part of the event—based intelligent controller.

Simulation software, whether continuous (e.g., ACSL)
or discrete—event {e.g., GPSS), produces behavioral infor-
mation from structural knowledge, i.e., uses a given model
(encoding the structure of a real system) to generate tra-
jectory behavior.

However, by itself, trajectory behavior is not sufficient
to support decision making. A comprehensive approach
must address the following questions:

(1) How are models generated? Simulation software as-
sumes the presence of a precoded model. Where does
this model come from? How and on the basis of what
information is it constructed?

(2) How is knowledge abstracted from behavioral informa-
tion? How can such knowledge be usefully employed in
decision making?

Odd-size

Viewed in this light, simulation is one of three activities:
modeling, simulation, and knowledge abstraction, which
are all needed for automated intelligent decision making.
A front—end module generates the model to be used by the
simulation software. A back-end module uses the simula-
tion results for knowledge abstraction.

Front—end and back—end modules are similar in form.
The front—end creates models by extracting and abstract-
ing knowledge from real-world experiments. The back-end

extracts and abstracts knowledge from simulation experi-
ments, which, if the model is valid, are replicates of poten-
tial real-world experiments. Thus, modeling and simula-
tion are actually two siblings that can be used iteratively
to abstract knowledge from systems. In an automated in-
telligent decision making system, models cannot be static
entities that are created off-line by a human modeler once
and for all ahead of their use. Instead, the processes of mod-
eling and simulation are two essential components in an au-
tomated knowledge-abstraction scheme. Models should be
retrieved from a model base or generated on the fly for im-
mediate use in a simulation experiment (Wang and Cellier,
1991). Depending on the problem, the simulation results
may, in turn, give rise to the generation of another model,
and so forth. The end—product of a recursive application of
modeling and simulation software is the abstracted knowl-
edge that can be successfully used in decision making.

MODEL-BASED INTELLIGENT
CONTROL OF AN ASTEROIDAL
OXYGEN PRODUCTION PLANT

Utilization of lunar, planetary, and asteroidal resources has
emerged as a challenging goal of space exploration (Cutler,
1988). Space mining and ore processing must necessarily
involve a high degree of automation and system autonomy
(Gothard and King, 1989; Suitor et al., 1990). Although

RF Energy

Material
I Size Selected

Cold, Spent

Astervidal(f M ial Materi 4
Mnunnll Sizer Hl;ackr g l;y::r-
51 ppe: 3 Y

o T

J M5 ml—ﬂﬂuf_cﬂndﬂnu&lmxﬂm » Heat Rejection Loop 1
iquid | Water
'n
fDM10
Qil
D “Suip —%———blﬁ-vy Hydrocarbons
olumn] lumn
13
M § M15 5 o
B8 5o , Light Hydrocarbona
M17 “and Permanent Gases
§ » Hydrogen
Gasecus Liquid B2
| it) T Oxygen e Oxygen 7
Elsctrolyts —————p{Electrolyts Elect- Oxygen = plOxygen] g » Product Oxygen
Makeup ﬁ.&m A rolyzer B9 M2l | Ligif. | M2 B0 | Stores NC Baing Delivered
20 B3 T V2
&(10 Oxygen Boiloff

e A9 & X A

Check Toggle Relief Pomp Mataring Sdids Vapor
Valve Valve Valve Vailve Paesage Solid
Cate

Scparatar Heat from Process Efficien

Figure 8. Oxygen production from chondritic asteroids.

the environments present different challenges, both terres-
trial and extraterrestrial automation of mining systems in-
volve the same basic processes (Schnakenberg, 1988) and
advanced automation technologies developed for space are
bound to have application on Earth as well.

Many near-Earth asteroids are likely to be rich in car-
bonaceous chondritic material.. Water vapor can be ex-
tracted from such material in a pyrolysis stage. The water
content of such chondritic asteroids is believed to be be-
tween 5% and 10%. Figure 6 shows a chemical process
that could be used for oxygen production from chondritic
material (Cutler, 1988, 1989, 1990).

The sizer consists of a crusher that decomposes the rock
mechanically and a sieve that lets sufficiently small mate-
rial pass and reroutes larger pieces to the crusher for further
decomposition. The material is then forwarded to an inlet
lock hopper, which accepts the presized material under vac-
uum and forwards it to the preheater under pressure. The
preheater brings the entire charge to a fixed temperature
slightly below that at which pyrolysis begins to occur. The
preheater is also responsible for controlling the gas pres-
sure, which may rise due to beginning evaporation of the
charge. The pyrolyzer devolatilizes tlie preheated feed by
the addition of microwave heat. Rapid pressure control is
important in order to keep the gas pressure inside the py-
rolyzer within acceptable bounds at all times. The heat
recovery stage is a heat exchanger that recovers a high per-
centage of the heat of the spent feed after pyrolysis. The
temperature and pressure must be controlled carefully in
order to recover as much heat as possible without condens-
ing water vapor, which would be thrown out with the spent
feed and would thereby be lost. The outlet lock hopper ac-
cepts the spent feed and discharges it to the vacuum with
little loss of the pressurized gas inside the system. This
completes the description of the top row of Fig.6.

The second row contains a condenser, which precools
the pyrolyzate vapor. A vapor liquid separator sends the
remaining gases to the third row for further processing and
lets the liquid proceed to an oil-water separator. Both
products of the oil-water separator are processed further
in the third row. This completes the description of the
second row.

The third row contains three columns. The distilla-
tion column accepts the remaining gases and the impure
water from the second row. It separates the material fur-
ther. The heavy material ends up at the bottom, while
the lightest material is at the top. The bottom will contain
hydrocarbons, which are fed to the stripping column for fur-
ther processing. The top will contain gases that can either
be disposed of or recycled for production of hydrogen. The
medium portion of the distillation column contains prepu-
rified water, which is passed on to the rendering column for
further purification. The stripping column is used to dewa-
ter the heavy hydrocarbons. The rendering column removes
the remaining heavy organic material from the prepurified
water. Its top product is pure water, which is passed on
to the water storage area to await further processing. This
completes the description of the third row.

The fourth row mixes the pure water with an elec-
trolyte, such as potash, KOH, for processing by the elec-
trolyzer. The electirolyte will invariably get contaminated
by impurities in the water and must therefore be periodi-
cally recycled to an electrolyte makeup chamber where the
quality of the electrolyte is controlled and improved when
needed. The electrolyzer produces hydrogen and oxygen.
In order to prevent losses of the oxygen product due to
leakage, an oxygen liquefier is used, which will convert the
oxygen to a form that can more easily be stored in the oxy-
gen storage area. Oxygen that boils off is captured and
rerouted to the oxygen liquefier. The heat that is produced

in both the electrolysis and the oxygen refrigeration stage
is also rerouted to the top column where it can be reused.
This completes the description of the fourth and final row.

Many things can go wrong in this system. The sizer
can get clogged due to all sorts of problems, e.g., with
electrostatic charges: Its mechanical parts can be worn.
The lock hoppers can leak reducing the pressure in the
preheater and pyrolyzer. Every single component can be
faulty. Moreover, the plant contains several local control
loops for controlling the temperature, pressure, electrolyte
composition, etc. Any one of these control loops can oper-
ate outside its foreseen range. Such faults and anomalous
operations provide the basis for the investigation of the ad--
vocated fault-tolerant intelligent control system, as shown
in Fig. 7.

Diagnoa. Model Monitor Model
of a Subsystem of a Subsystem
of the OPP of the OPP
(DEVS) (DYMOLA)
h [3 H
> 2 o 2
H H H H
- 4 i \ 4
Operat. Model Fault Diagnoser Watchdog
of a Subsystem for a Subsyatem anomaly Monitor for
of the OFP of the OPP - the OFP
(DYMOLA) (DEVS) (DEVS)
3 2 3 . s
2 H H H H £
H H H “ L z 2
o < o
y H L Y
Time-Window request Event-Based control External Model
G * Intelligent » of the OPP
for the OPP . Controller N
window | ofthe OPP (g tensing
(DEVS) {DEVS) (DYMOLA)

Figure 7. Intelligent fauit—-tolerant control
of oxygen production plant (OPP).

The ezternal model of the oxygen production plant (OPP)
represents the actual process. The testbed consists of a sim-
ulation only. Therefore, the plant itself must be represented
by an adequately detailed model of the plant. This model is
a continuous—time model. Its atomic components are coded
in DYMOLA (Elmgqvist, 1978). The coupling models are
generated by DEVS-Scheme. The actual simulation is per-
formed in either ACSL (MGA, 1986) or DESIRE (Korn,
1989), two of the continuous simulation languages for which
DYMOLA can generate code.

The eveni-based intelligent controller of the OPP is
coded in DEVS-Scheme. It performs all sensing and control
actions necessary to monitor and command the OPP. The
event—based controller is itself a hierarchical system consist-
ing of individual local controllers for particular subsystems
and more-aggregated supervisory coordinators responsible
for the overall system performance. Each local controller
operates on its own time—windows. Some of these time-—
windows are precompiled and stored in a data base, while
others depend on the current operating conditions and need
to be generated on the fly. Some of the time—windows result
from transient responses to commands to be executed. Oth-
ers are auxiliary time-windows caused by the monitoring of
continuous processes. Some commands result from discrete
actions, others are necessitated by monitoring needs. For
example, the electrolyte must be sampled periodically in
order to test for contamination. This can be accomplished
by repetitive execution of an electrolyte—testing command.

Whenever one of the local controllers needs a new time—

window that cannot be found in its data base, it sends a
request to the time—window generator. The time-window
generator checks in its own data base whether it possesses
the necessary submodel to extract the requested time-
window. If this is not the case, the time~window generator
commands the five-level hierarchy to generate the required
submodel at the 22d hierarchy level from the world model
coded at the 4'F hierarchy level. It then performs a simula-
tion experiment on that submodel to extract the requested
time—window.

The operational models of the subsystems of the OPP
are DYMOLA-coded models, similar to those used in the
external model. However, the “control” experiment per-
formed on the operational model is very different from the
control experiment performed on the external model. The
experiment performed on an operational model simulates
that model several times with varying parameters over a
fairly short time period to determine the next time-window.
This must happen in “real time,” i.e., while the external
model simulates the overall process over time. For this
reason, the corresponding signal paths in Fig. 7 have been
named “query” and “response” rather than “control” and
“sensing.”

Each local controller contains a fault—detection agent,
i.e., if the acknowledgment of completion arrives too early,
or too late, or not at all, the local controller reports this fact
as an anomaly to the fault diagnoser. The corresponding
local fault diagnoser checks by means of shallow reasoning
whether a unique cause for the anomaly can be determined.
I this is not the case, the anomaly is propagated to the next
higher supervisory level, and deep reasoning by means of
symbolic simulation (Chi and Zeigler, 1991) is used to iden-
tify the cause of the anomaly. The supervisory diagnoser
searches its data base for an appropriate diagnostic model
to determine the cause of the reported anomaly. If such
a model is not presently available, it commands the five—
level hierarchy to generate the necessary diagnostic model.
Once the required diagnostic model has been generated, the
fault diagnoser performs a symbolic simulation experiment,
which runs the diagnostic model through a number of hy-
pothesized scenarios (resulting from shallow reasoning) to
determine which of these scenarios is able to replicate the
observed anomaly. -

Contrary to the external and the operational models,
the diagnostic models are discrete—event models coded in
DEVS-Scheme. They contain all sorts of possible failures
that can be either switched on or off depending on the ex-
periment performed on these models.

The watchdog monitors are separate parallel units that
monitor the external model for anomalies. Contrary to the
fault detectors inside the control units, the watchdog mon-
itors can be turned on or off on the fly without immediate
effect on the overall control performance. Watchdog mon-
itors emulate human plant supervisors in a control room
whose purpose it is to discover potential problems in a
control system. By turning some or all of the watchdog
.monitors on, the fault—tolerance of the control system is
Increased, since the watchdog monitors may be able to de-
tect anomalies that cannot be discovered by any of the lo-
cal control units. In particular, the local control units can
only detect anomalies resulting from incorrect execution of
a commanded action. However, faults can occur that are
not related to a commanded action, but that are related to
qle break-down of equipment during steady-state opera-
tion. Such faults are detectable by the watchdog monitors.
The “control” signal back from the watchdog monitor to
the external model symbolizes scheduled maintenance ac-
tivities.

The watchdog monitors operate on their own models by
comparing measured plant behavior with expected model

behavior to discover anomalies. They are also responsible
for maintaining a logbook. The logbook contains records of
previously observed anomalies (symptoms) together with
the identified causes of these anomalies (failures) and the
performed actions (repair activities) to recover from these
failures. The logbook is useful for the human plant op-
erator, but it also supports the fault diagnosers since the
search can be executed in the sequence of most frequent oc-
currence of the same symptom in the logbook. This reduces
the time needed by the diagnoser to identify the cause of a
once—detected anomaly, which is important under real-time
conditions.

CONCLUSION

In this paper, it was shown how object—oriented, i.e., dis-
tributed modeling can help to organize the knowledge about
a system to be described. A methodology was presented
that enables to encode separately and in an organized man-
ner functional, coupling, decomposition, and taxonomic
knowledge about a system. This methodology lends itself to
the implementation of automated procedures for deductive
model synthesis. Tools for inductive model synthesis were
also introduced. The paper culminated in the description
of a decentralized intelligent fault-tolerant control system
of a fairly complex chemo-physical material handling and
processing plant.

REFERENCES

Booch, G. (1991). Object-Oriented Design with Applications,
Benjamin /Cummings, Redwood City, CA.

Cellier, F.E. (1986). “Enhanced Run-Time Experiments for
Continuous System Simulation Languages,” in: Proceedings,
SCS MultiConference on Languages for Continuous System
Simulation, San Diego, CA, pp. 78-83.

Cellier, F.E. (1990). “Hierarchical Nonlinear Bond Graphs — A
Unified Methodology for Modeling Complex Physical Sys-
tems,” in: Proceedings, European Simulation MultiConfer-
ence, Niirnberg, F.R.G., pp. 1-13.

Cellier, F.E. (1991). Continuous Syst
Verlag, New York.

Cellier, F.E., Q. Wang, and B.P. Zeigler (1990). “A Five Level
Hierarchy for the Management of Simulation Models,” in:
Proceedings, Winter Simulation Conference, New Orleans,
LA, pp. 55-64.

Chi, S.D., and B.P. Zeigler (1991). “Symbolic Discrete Event
System Specification,” in: Proceedings, Al, Stmulation and
Planning for High Autonomy, Cocoa Beach, FL.

Cutler, A.H. (1988). “Space Manufacturing,” in: Encyclopedia
of Physical Science and Technology, pp. 129-134.

Cuatler, A.H. (1989). “Economic Exploitation of Near-Earth Car-
bonaceous Asteroids,” in: Automation of Extraterrestrial
Systems for Ozygen Production, Space Engineering Research

Center, University of Arizona, Tucson, AZ, pp. II-10 to IT-

15. ‘

Cutler, A.H. (1990). “Process Design and Automation Require-
ments,” in: Proceedings, Space’90 Conference, Albuquerque,
NM, pp. 23-26. .

Davis, R.., F.E. Cellier, C. Grim, and C. Shaw (1990). “Space Sta-
tion Freedom Program — User Interface Language Specifi-
cation,” Version 2.0, NASA Standard Document: USE 1001.

Elmgqvist, H. (1978). A Structured Model Language for Large
Continuous Systems, Ph.D. dissertation, Report CODEN:
LUTFD2/(TFRT-1015), Dept. of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Goldberg, A., and D. Robson (1983). Smalltalk-80: The Lan-
guage and Its Implementation, Addison-Wesley, Reading,
MA.

Gothard, B., and B. King (1989). “Automation of Materi-
als Processing,” in: Aztomation of Eztraterrestrial Systems
for Ozygen Production, Space Engineering Research Center,
University of Arizona, Tucson, AZ, pp. IV-21 to IV-43.

Modeling, Springer—

Hu, J.F., Y.M. Huang, and J.W. Rozenblit (1989). “FRASES —
A Knowledge Representation Scheme for Engineering De-
sign,” in: Proceedings, SCS Eastern Simulation MultiCon-
ference, Tampa, FL, pp. 141-146.

Kim, T.G. (1988). A Knowledge~Based Environment for Hier-
archical Modeling and Simaulation, Ph.D. dissertation, Dept.
of Electrical & Computer Engr., University of Arizona, Tuc-
son, AZ.

Korn, G.A. (1989). Interactive Dynamic—System Simulation,
McGraw-Hill, New York.

Luh, CJ., and B.P. Zeigler (1991a). “Abstraction Morphisms for
Multifacetted Methodology: Application to Model-Based
Autonomous Systems,” submitted to IEEE, Trans. Systems,
Man, and Cybernetics.

Luh, C.J., and B.P. Zeigler (1991b). “Abstraction Morphisms for
Task Planning and Execution,” in: Proceedings, Al, Simu-
lation and Planning for High Autonomy, Cocoa Beach, FL.

MGA (1986). ACSL Reference Manual, Mitchell & Gauthier
Associates, Concord, MA.

Rozenblit, J.W., J.F. Hu, and Y.M. Huang (1989). “An Inte-
grated Entity-Based Knowledge Representation Scheme for
System Design,” in: Proceedings, NSF Design Research Con-
ference, Amherst, MA, pp. 393-408. .

Schnakenberg, G.H. (1988). “U.S. Bureau of Mines Coal Au-
tomation Research,” in: Proceedings, 3™ Canadian Sympo-
sium on Mining Automation, Montreal, Canada.

Shafer, D. (1988). Hypertalk Programming, Hayden Publishing,
Carmel, IN.

Suitor, J.W., W.J. Marner, F.E. Cellier, and L.C. Schooley
(1990). “Automation and Control of Off-Planet Oxygen
Production Pro ,? in: Proceedings, Space’90, Engineer-
ing, Construction, and Operation in Space, Vol. 1, ASCE,
New York, pp. 226-235.

Wang, Q., and F.E. Cellier (1991). “Time-Windows: An
Approach to Automated Abstraction of Continmous-Time
Models into Discrete-Event Models,” International Journal
of General Systems, special issue on modeling and simula-
tion of high—autonomy systems, to appear.

Zeigler, B.P. (1987). “Hierarchical, Modular Discrete-Event
Modeling in an Object—Oriented Environment,” Simulation,
49(5), pp. 219-230.

Zeigler, B.P. (1989). “The DEVS Formalism: Event-Based Con-
trol for Intelligent Systems,” Proceedings of IEEE, T7(1),
pp. 27-80.

Zeigler, B.P. (1990). Object-Oriented Simulation with Hierarchi-
cal, Modular Models: Intelligent Agents and Endomorphic
Systems, Academic Press, Boston, MA.

Zhang, G., and B.P. Zeigler (1989). “The System Entity Struc-
ture: Knowledge Representation for Simmlation Modeling
and Design,” in: Artificial Intelligence, Simulation and Mod-
eling (L.E. Widman, K.A. Loparo, and N.R. Nielsen, eds.),
John Wiley & Soas, New York, pp. 47-73.

