
INLINE INTEGRATION: A NEW MIXED SYMBOLIC/NUMERIC APPROACH FOR
SOLVING DIFFERENTIAL{ALGEBRAIC EQUATION SYSTEMS

Hilding Elmqvist Martin Otter Fran�cois E. Cellier

Dynasim AB Inst. f�ur Robotik & Systemdynamik Dept. of Electr. & Comp. Engr.

Research Park Ideon DLR Oberpfa�enhofen University of Arizona

S{223 70 Lund D{82230 Wessling Tucson, AZ 85721

Sweden Germany U.S.A.

Elmqvist@Dynasim.SE Martin.Otter@DLR.DE Cellier@ECE.Arizona.Edu

Abstract

This paper presents a new method for solving
di�erential{algebraic equation systems using a mixed
symbolic and numeric approach. Discretization formu-
lae representing the numerical integration algorithm
are symbolically inserted into the di�erential{algebraic
equation model. The symbolic formulae manipulation
algorithm of the model translator treats these additio-
nal equations in the same way as it treats the physical
equations of the model itself, i.e., it looks at the aug-
mented set of algebraically coupled equations and ge-
nerates optimized code to be used with the underlying
simulation run{time system. For implicit integration
methods, a large nonlinear system of equations needs
to be solved at every time step. It is shown that the
presented uniform treatment of model equations and
discretization formulae often leads to a signi�cant re-
duction of the number of iteration variables and the-
refore to a substantial increase in execution speed.
In a large mechatronics system consisting of a six

degree{of{freedom robot together with its motors,
drive trains, and control systems, this approach led
to a speedup factor of more than ten.

Keywords: Inline integration; tearing structure;
symbolic formulae manipulation; di�erential{algebraic
equation solving; simulation e�ciency.

INTRODUCTION

There is a conviction of large segments of the simula-
tion community that it is important to separate the
knowledge about the numerical integration algorithms
to be used during the execution of a continuous{time
simulation program from knowledge relating to either
the physical system to be studied or the experiment
to be performed on that system. The major reason
for this perceived need is that, in this way, the details
of the underlying numerical algorithms can be hidden
from the simulation user. The average simulationist
should not be bothered to have to think about the nu-

merics of the solution approach.

The simulation software designers do their best to
make the simulation users forget that discrete mathe-
matics are involved at all in the numerical solution
of their continuous{time simulation problems. Di�e-
rentiation or integration operators are o�ered in the
modeling language that make the user believe that
the simulation program knows how to solve di�eren-
tial equations. In reality, it is the task of either
the modeling or the simulation software to convert
the continuous{time problem to an {in some way
equivalent{ discrete{time problem, usually with varia-
ble time increments, that can then be solved through
iteration. In traditional approaches, this responsibi-
lity is assigned to the simulation software. In the here
presented new approach, it rests with the modeling
software. In either case, it is important to protect the
average simulation user from having to be aware of this
conversion.

As the demand for models of systems of ever increa-
sing complexity grew, so did the need for organizing
and encapsulating knowledge about these systems. It
was no longer su�cient to separate the knowledge ab-
out the model from the integration method and the ex-
periment description. The knowledge about the model
itself needed to be organized. This led to the design
of object{oriented modeling software, such as Dymola
(Elmqvist, 1978; Cellier and Elmqvist, 1993; Elmqvist,
1995) and Omola/Omsim (Andersson, 1994). These
languages allow the user to specify the physical laws
that govern the behavior of a physical entity in terms of
declarative equations. An interface description decla-
res, which properties (variables) of the system are sha-
red with other systems (but without de�ning the direc-
tion of information
ow), and which others are hidden
from the outside. Models of such entities can be plug-
ged together in a fashion resembling the assembly of
physical plants from their component systems.

It is, however, important to understand what
drove the design of object{oriented modeling software.

1

Object{orientation here supports the human user of
the software in organizing his or her knowledge about
the system under study. It is not the simulation run{
time software that is supported by this segmentation
of knowledge. On the contrary, if the segmentation
of knowledge into parts related to physical subsystems
were preserved down to the level of the run{time execu-
tion of the simulationprogram, the execution e�ciency
would be terrible. Thus, the �rst step in the compila-
tion of an object{oriented model consists in collecting
all the equations from the individual submodels and
from the additional equations that describe the cou-
plings between submodels into an amorphous heap of
equations, throwing all structuring information away.
This accumulated heap of equations is analyzed to �nd
an execution sequence that will compute one value for
each of the variables involved, ensuring that the sizes
of the remaining systems of tightly coupled algebraic
equation systems are minimized. This process is called
the partitioning of equations or BLT-transformation.

It turns out that any arti�cial constraint imposed
when seeking the optimal solution to the partitioning
problem is potentially harmful to the optimization of
the run{time code. In this paper, it will be shown that
even the last of the barriers, the separation between
the model and the numerical algorithms must come
down in order to enable a symbolic translator, such
as Dymola, to generate more e�cient simulation run{
time code. In the case of a large mechatronics system
consisting of a six degree{of{freedom robot together
with its motors, drive trains, and control system, this
led to a speedup factor of more than ten.

Designers of domain{speci�c simulation software
have recognized long ago that they could improve the
execution e�ciency of their simulation programs by
providing the numerical solver with structural infor-
mation about the model to be simulated. In SPICE
(Nagel, 1975), the most successful among the analog el-
ectrical and electronic circuit programs, the so{called
transient analysis (simulation) is performed by trea-
ting the node voltages as iteration variables in an im-
plicit numerical solution scheme. With the node vol-
tages assumed known, the charges stored in the capa-
citors can be computed by nonlinear static functions.
From there, the branch currents through the capaci-
tors are computed by replacing the di�erentiation ope-
rator by a discrete approximation formula. This is
done for each capacitor separately. Parasitic capaci-
tances inside the transistor models are approximated
di�erently, since they are known to be small. Several
proposals have recently been formulated to exploit the
special structure of multibody systems within the nu-
merical solver (Andrzejewski et al., 1993; Cardona and
G�erardin, 1993; Lubich et al., 1993) in order to im-
prove the execution e�ciency of special{purpose mul-

tibody system simulators.

Unfortunately, these approaches are of limited use
outside their intended application area, because only
speci�c types of systems can be handled by them, and
because the user interface becomes quickly rather com-
plicated in order to provide the numerical integrator
with the necessary information about the speci�c mo-
del structure. What has been lacking so far is a po-
werful symbolic formulae manipulation tool that can
analyze the resulting equation structure and automati-
cally generate the appropriate structuring information
for the underlying numerical system solver.

The methodology presented in this paper discusses
precisely such an approach. It is very general in scope,
and can be implemented with reasonable e�ort as part
of an object{oriented modeling tool. However, the nu-
merical solver must be modi�ed for this approach to
work. It is not feasible to translate a general model
description into a form suitable for an o�{the{shelf
numerical system solver without sacri�cing execution
e�ciency. Instead, it is important that the equati-
ons describing the numerical discretization of the inte-
gral or di�erential operators be merged with the model
equations symbolically prior to analyzing the structure
of the resulting equation system.

THE BASIC IDEA OF

INLINE INTEGRATION

When SCS, in 1967, launched a commendable e�ort to
standardize the Continuous System Simulation Lan-
guages (CSSLs) (Augustin et al., 1967), they adopted
the world view that continuous{time systems can es-
sentially be expressed as state{space models, represen-
ted through a set of Ordinary Di�erential Equations
(ODEs):

_x = f (x; t) ; x(t0) = x0 (1)

where x is the vector of state variables, t denotes time,
and f is a set of assignment statements specifying how
the derivatives are computed assuming that the state
variables are known. The computational causality thus
needs to be speci�ed in the model. The CSSL user in-
terface provided for a more convenient way of specify-
ing state{space models, but it was clearly designed as a
frontend to numerical subroutines for solving non{sti�
ODE's.

Solving (1) by any explicit integration method is
straightforward. In the most simple case, using the
forward Euler method, the derivative of the state vec-
tor is approximated by a forward di�erence formula:

_x(tn) = _xn �
xn+1 � xn

h
(2)

where xn+1 = x(tn+1) is the unknown value of x at
the new time instant tn+1 = tn + h, xn = x(tn) is the

2

known value of x at the previous time instant tn, and
h is the chosen step size. Inserting (2) into (1) leads
to the following recursion formula:

xn+1 = xn + h � f (xn; tn) ; x0 is known (3)

which is used to \solve" the ODE.

Unfortunately, explicit integration methods are no
longer well suited if systems are sti� or contain al-
gebraic loops. In such cases, implicit integration me-
thods are much more appropriate. In the simplest case,
using the backward Euler method, the derivative of the
state vector is approximated by a backward di�erence
formula, leading to:

xn+1 = xn + h � f (xn+1; tn+1) (4)

which must be solved for xn+1, given xn and tn+1. (4)
is a nonlinear equation for xn+1, which has to be sol-
ved in every time step. It can be shown that Newton
iteration has to be used to solve this equation in or-
der to maintain proper convergence properties, cf. e.g.
(Cellier, 1995); �xed{point iteration is not useful if the
system is sti�.

For a large class of implicit integration algorithms
the structure of the discretization equations are the
same, in particular:

x = h � _x+ old(x) (5)

For notational convenience, the unknown values xn+1
and _xn+1 have been abbreviated by x and _x, respec-
tively. The known scalar h depends on the step size
and on method{speci�c constants, whereas old(x) is
a function of known values of x at previous time in-
stants. Especially, the Backward Di�erence Formulae
(BDF) (Gear, 1971) of any order, which are the most
widely used formulae for numerically solving sti� sy-
stems, fall into this category. For example, the third
order BDF can be written as (�h is the step size):

xn+1 =
6
11
�h � _xn+1 +

�
18
11
xn �

9
11
xn�1 +

2
11
xn�2

�

which has clearly an equation structure according to
(5). Inserting the general discretization scheme (5)
into (1) again leads to the same nonlinear equation as
in the backward Euler case, with the only exception
that the known variables now have a di�erent inter-
pretation:

x = old(x) + h � f (x; t) (6)

For a general function f (x; t), there is no way to
avoid the (expensive) Newton iteration scheme to solve
(6) for x in any time step. However for speci�c models,
the situation is di�erent. If, for example, two linear
�lters are connected in series, as shown in �gure 1, the

u x1 x2

1 + T s1

1

1 + T s2

1

Figure 1: Two Filters in Series

overall system is described by the following equations:

T1 _x1 + x1 = u(t)

T2 _x2 + x2 = x1

Utilizing the discretization formula (5) leads to an ex-
plicitly solvable sequence of equations to compute the
four unknown variables at the new time instant:

_x1 := (u� old(x1))=(T1 + h)

x1 := h _x1 + old(x1)

_x2 := (x1 � old(x2))=(T2 + h)

x2 := h _x2 + old(x2)

As can be seen, no Newton iteration is needed for this
special type of system, because the linear equations
can be solved symbolically. Let us analyze yet another
type of system where higher derivatives appear that
are transformed to state{space form in the standard
way:

_x1 = x2 (7)

_x2 = f (x1;x2; t) (8)

Without knowing the structure of this system, a Ne-
wton iteration about 2n equations is necessary, where
n is the dimension of function f . However, inserting
the discretization formula (5) leads to:

x2 = h � f (hx2 + old(x1);x2; t) + old(x2) (9)

x1 := hx2 + old(x1) (10)

i.e., to a nonlinear system of n equations to determine
x2, and an explicitly solvable set of n equations to
compute x1.

To summarize, for the solution of non{sti� ODEs
with explicit integration methods, the traditional fun-
ction interface (1) is well suited. It is not necessary to
know the structure of the right hand side equations,
f , inside the integrator, because this information will
not help in speeding up the simulation. The situation
is completely di�erent for ODEs that are sti� or con-
tain algebraic loops. Implicit integration methods lead
to nonlinear systems of equations. If the structure of
the model equations and the discretization formula are
known, the e�ciency of the simulation can often be en-
hanced, as shown by examples. The function interface
(1) is not helpful in such a situation, since the struc-
ture of the equations, such as �lters in series or higher

3

derivatives, is not reported to the nonlinear equation
solver inside the integrator.

It is now easy to explain how some domain{speci�c
packages, as mentioned in the introduction, enhance
the e�ciency of the simulation. Information is ad-
ded to the function interface in order to report some
supported equation structure, such as the presence of
higher{order derivative equations, to the integrator.
Usually these packages use this information to solve
the nonlinear system of the discretized equations more
e�ciently.

This concept can be generalized (Elmqvist, 1993).
The generalization shall be denoted as inline integra-
tion in the sequel. Inline integration requires a mo-
di�ed integrator interface. The integrator maintains
information about the discretization of the state va-
riables, such as the known quantities h and old(x),
and provides initial estimates for the values of x and
_x at the current time instant. The modeling software
sets up the nonlinear system of discretized equations,
and solves it, utilizing the known structure of the equa-
tions, by calling upon a run{time library function for
Newton iteration on a minimal set of algebraically cou-
pled nonlinear equations. The function returns the
actual values of x and _x at the new time instant, or
complains that the Newton iteration did not converge
within a speci�c number of iterations de�ned by the
integrator. It should be noted that error estimation,
step{size and order control, details of the discretiza-
tion formula used (i.e., the computation of h from the
step size, and the evalutaion of old(x) from the known
previous values of x) are still in the domain of the
numerical solver. Only the discretization of the state
equations and the solution of the (usually nonlinear)
system of discretized equations have been moved into
the domain of the model. This modi�ed interface in-
cludes all domain{speci�c approaches that were pre-
viously in use as special cases.

The generation of the new model interface should be
made automatic, i.e., by a program. It will be shown,
how this can be done starting from an object{oriented,
high{level description of a model. There are several
subtle issues to be considered in order that such a
translation process leads to robust code. Especially, it
must be guaranteed that, in the worst case, i.e., when
no structural information can be utilized, the genera-
ted code has exactly the same numerical properties as
if the traditional standard interface would have been
used. In all other cases, it should perform better.

In order to be able to explain the details of the au-
tomatic generation of inline discretized model code,
several prerequisites are necessary that shall be dis-
cussed in the following sections: the discretization of
general continuous{time dynamical models, the block

lower{triangular (BLT) transformation of sets of alge-
braic equations, and the tearing method to formalize
the translation process of algebraically coupled equa-
tion systems exploiting structural properties of these
systems to enhance the execution e�ciency in their
solution.

THE DISCRETIZATION OF DAES

Physical systems, such as electrical circuits, mechani-
cal systems, or chemical plants, often lead naturally to
models described by sets of di�erential{algebraic equa-
tions (DAEs) of the following general form:

0 = f (_y;y; t) ; y(t0) = y0; _y(t0) = _y0 (11)

where y(t) is a vector of unknown variables that may
also appear in the equations in di�erentiated form.

The most widely used general{purpose DAE code,
DASSL (Petzold, 1983), solves (11) by using a BDF{
discretization, cf. (Brenan et al., 1989) for implemen-
tational details. In particular, _y is approximated by a
backward di�erentation formula, leading to the follo-
wing discretized equations:

0 = f

�
y � old(y)

h
;y; t

�
(12)

that must be solved for y. The standard Newton ite-
ration scheme used in DASSL to solve (12) is given by
the following equations:�

1

h
J _y + Jy

�
� �

l = �f l (_yl;yl; t) (13)

yl+1 = yl + �
l (14)

_yl+1 = _yl +
1

h
�
l (15)

where index l denotes the previous (known) iterate and
index l + 1 denotes the unknown current iterate. The
Jacobians are evaluated at one of the previous time
steps, and are held constant for as long as it is possible.
They are de�ned by:

J _y =
@f

@ _y
; Jy =

@f

@y
(16)

On a �rst glance, one may think that this type of di-
scretization scheme should also be used in inline in-
tegration. However, such an approach would lead to
unnecessary di�culties:

1. Both when calculating the Newton iteration ma-
trix as well as when updating _yl+1, division by h takes
place. The scalar h depends linearly on the step size,
thus h ! 0 as the step size approaches zero. It must
therefore be expected that di�culties will occur when
the step size becomes very small, since, in the limit, a
division by zero takes place.

4

2. The problem is even more serious than initially
expected, as can be seen when multiplying (13) by h:

(J _y + h � Jy) � �
l = �h � f l (_yl;yl; t)

For h = 0, the iteration matrix reduces to J _y. Un-
fortunately, this matrix is singular whenever algebraic
equations are present in the equation set, i.e., when
some elements of y do not appear in di�erentiated form
in the equation set. In this case, the Newton iteration
will no longer work. Consequently, the Newton itera-
tion matrix in (13) becomes ill{conditioned for small
step sizes, provided purely algebraic equations appear
in (11).

3. In order to use DASSL, consistent initial condi-
tions y0, _y0 must be provided, such that the DAE is
satis�ed at initial time. In general, it is di�cult to
provide such initial conditions. A simulation program
should support the user in this respect. If the DAE is
given in the form of (11), this is not easy.

All the aforementioned di�culties disappear, provi-
ded some small changes are made. First, it should be
explicitly noted whether a variable does or does not
appear in di�erentiated form in the model. Due to
this requirement, the DAE is speci�ed in the following
form:

0 = f (_x;x;w; t) ; x(t0) = x0 (17)

where x is the vector of unknown variables that appear
in the model in di�erentiated form, whereas w is the
vector of unknown purely algebraic variables. Note,
that dim(f) = dim(x) + dim(w), and that y = [x;w].
Second, the discretization procedure should replace x
as a function of _x and not the other way around, as
done in DASSL. If x is replaced in (17), using the
general discretization formula (5), one obtains:

0 = f (_x; h _x+ old(x);w; t) (18)

Applying standard Newton iteration to (18) leads to
the following iteration procedure:

[J _x + hJx;Jw]

�
�
l
_x

�
l
w

�
= �f l (_xl;xl;wl; t)(19)

_xl+1 = _xl + �
l
_x (20)

wl+1 = wl + �
l
w (21)

xl+1 = xl + h � �l_x (22)

Obviously, a vanishing step size will not lead to a di-
vision by zero. If h = 0, the Newton iteration matrix
reduces to:

[J _x ; Jw]

It can be easily proven that this matrix is non{singular,
provided the DAE (17) has perturbation index 1 (a ne-
cessary and su�cient condition), cf. e.g. (Otter, 1995).
In other words, if the purely algebraic equations in

the DAE are not \nasty," the iteration matrix is non{
singular in the limit h = 0.

Finally, (18) has the practical advantage that the di-
scretized DAE reduces to the original DAE (17) when
h is set to zero. This property can be exploited for
the calculation of consistent initial conditions. The
user has to provide initial conditions x0 and �rst gues-
ses for _x0, and w0. Before the integration starts, the
(Chord{) Newton iteration is replaced by a more ro-
bust (yet more expensive) Newton{Raphson iteration,
and h = 0, old(x) = x0 is set as indicated. As a result,
the discretized DAE (18) reduces to a nonlinear equa-
tion in _x0 andw0, which is solved by Newton{Raphson
iteration.

To summarize, in a fully{implicit DAE, the discre-
tization procedure has to replace x by a function of
_x in accordance with (5). Only in the ODE case, the
alternative of replacing _x by a function of x, is mea-
ningful (cf. (6)).

BLT{TRANSFORMATION

In order to be able to discuss the technique to trans-
form a general object{oriented model automatically
down to a suitably discretized system, the basic trans-
formation algorithm of object{oriented modeling lan-
guages has to be reviewed. In general, a high{level,
object{oriented model description leads directly to a
large, sparse, nonlinear system of equations that has
to be solved for the unknown variables z:

0 = h(z) (23)

By permutation of equations and variables, it is pos-
sible to transform this system of equations to a block
lower{triangular (BLT) form that can be solved in a
nearly explicit forward sequence. The basic idea is
explained by means of the following simple example
consisting of three nonlinear equations:

h1 (z1; z3) = 0
h2 (z2) = 0
h3 (z1; z2) = 0

z1 z2 z3

S1 =

2
4 1 0 1

0 1 0
1 1 0

3
5

The structure of the system of equations is described
by the structure incidence matrix S, displayed to the
right of the equations. This matrix signals whether
the kth variable (kth column) occurs in the ith equa-
tion (ith row), or not. By permuting equations and
variables, this set of equations can be brought to BLT{
form:

h2 (z2) = 0
h3 (z1; z2) = 0
h1 (z1; z3) = 0

z2 z1 z3

S2 =

2
4 1 0 0

1 1 0
0 1 1

3
5

5

This process is also called the partitioning of the set
of equations. The strictly lower triangular form of the
permuted structure incidence matrix characterices the
fact that the nonlinear equations can be solved one at
a time in a given sequence. We start by solving h2
for z2, then we can solve h3 for z1, and �nally, we can
determine z3 from h1. If the variable to be solved for
appears linearly in an equation, that equation can be
put into explicit form by simple formula manipulation.
Otherwise, a local Newton iteration is needed.

In general, it is not possible to transform the struc-
ture incidence matrix to a strictly lower{triangular
form. However, e�cient algorithms exist to transform
to block lower{triangular form, i.e., a quasi lower{
triangular form in which blocks of dimension � 1 are
present along the diagonal. The algorithm guarantees
that the dimensions of the diagonal blocks are kept
as small as possible, i.e., it is not possible to trans-
form to blocks of yet smaller dimensions just by per-
muting variables and equations. Non{trivial blocks on
the diagonal correspond to systems of equations that
have to be solved simultaneously. In other words, the
partitioning algorithm �nds algebraic loops of mini-
mal dimensions. Algorithmic details and a proof of
the mentioned property can e.g. be found in (Du� et
al., 1986).

TEARING

Tearing, introduced by (Kron, 1962), is a simple tech-
nique to reduce large systems of linear or nonlinear
algebraic equations to smaller systems of equations.
This technique has, for example, been applied succes-
sfully for static calculations in chemical engineering
(Boston, 1980; Simandl and Svrcek, 1991). Tearing
is used in the sequel to formalize the automatic gene-
ration of discretized model equations and to enhance
the run{time e�ciency of BLT transformed equations
even further.

Consider a set of nonlinear algebraically coupled
equations h to be solved for the unknown vector z:

0 = h(z) (24)

Tearing means breaking algebraic loops in the depen-
dency structure of equations and variables. A subset
of the vector z, called z1, is chosen as tearing varia-
bles. A subset of h, called h1, are chosen as residual
equations. The choices are made in such a way that
the remainder of z, called z2, can be calculated in se-
quence utilizing the remaining equations, h2, under
the assumption that the z1 variables are known, i.e.:

z2 = h2(z1) (25)

0 = h1(z1; z2) (26)

This system of equations can be solved by Newton ite-
ration over the tearing variables z1. The solver provi-
des a new guess for z1. With (25), the corresponding
variables z2 are calculated. Finally, the residual (26) is
computed and returned to the solver. As can be seen,
tearing reduces the dimension of the iterated system of
equations from dim(h1) + dim(h2) down to dim(h1).

The optimal selection of tearing variables and resi-
dual equations is not a trivial task. No e�cient algo-
rithms are currently known to automate it. Exhau-
stive search algorithms to determine an optimal tea-
ring structure are unfortunately of exponential com-
plexity. However, in (Elmqvist and Otter, 1994), it
is shown that physical insight may suggest appro-
priate tearing variables and residual equations. Often
this information can be stored in class libraries of an
object{oriented modeling language, such that the tea-
ring structure is totally hidden from the user.

In (Elmqvist and Otter, 1994), the selected tearing
variables and residual equations are uniquely speci�ed
by an operator \residue(zi)" that has to be added to
the desired model equation j, e.g. in an appropriate
class library. This operator indicates to the modeling
software that variable zi shall be used as tearing va-
riable, and that equation j shall be used as the cor-
responding residual equation. For example, tearing in
(25,26) is uniquely characterized by:

z2 = h2(z1) (27)

residue(z1) = h1(z1; z2) (28)

The tearing technique allows the automated trans-
formation of model equations to their discretized form
in a simple way. Let us assume for now that the equati-
ons of a model are speci�ed in ODE form (1). In order
to arrive at a set of discretized equations (6), one could
proceed as shown earlier in the hand calculation, i.e., _x
is replaced by (x�old(x))=h, and afterwards all equa-
tions are symbolically multiplied by h. However, such
an approach cannot easily be generalized to models
speci�ed in DAE form. Tearing provides for a much
more elegant formulation:

_x = f (x; t) (29)

x = old(x) + h � _x + residue(x) (30)

Thereby, the model equations are kept unchanged and
the additional discretization equations (30) are simply
added. The Newton solver will provide an estimate for
x, then _x is determined from the state equation (29),
and �nally, the residual of the nonlinear equation is
computed via (30) and is returned to the solver. As
a result, the tearing technique ends up with exactly
the same equations that one would derive from hand
calculation (6).

6

The tearing technique is also well suited for enhan-
cing the e�ciency of the solution of a nonlinear system
of discretized equations. Let us discuss, for example,
a nonlinear control system with linear feedback, as
shown in �gure 2. This rather typical control system

w e yu x = f (x ,u)
y = g (x)

pp
p

.x = Ax + Be
u = Cx + De

c c

c

.

controller plant

-

Figure 2: Control System With Feedback

can be described by the following equations:

e = w � y

_xc = Axc +Be

u = Cxc +De

_xp = f (xp;u)

y = g (xp)

Using the standard discretization technique described
above leads to:

y = g(xp)

e = w � y

u = Cxc +De

xc = old(xc) + h � (Axc +Be) + residue(xc)

xp = old(xp) + h � f (xp;u) + residue(xp)

That is, given the two sets of tearing variables, xc and
xp, all other variables can be calculated, especially the
set of dim(xc) + dim(xp) residual equations. As a re-
sult, the same Newton iteration is obtained as if the
discretization would have been done in the integrator.

As can be seen, the residue equations of the con-
troller are linear in the unknown controller states. It
is therefore possible to solve these equations directly,
and to remove the controller states from the iteration
variables:

y = g(xp)

e = w � y

xc = (I � hA)
�1

(old(xc) + hBe)

u = Cxc +De

xp = old(xp) + h � f (xp;u) + residue(xp)

That is, Newton iteration is applied to the much smal-
ler set of equations of dimension dim(xp). This is ad-
vantageous, if the explicit calculation of xc is cheap.
There is a lot of freedom in the implementation of a
controller law. Usually, specially structured matrices
are used, such as the controller{canonical form with

a sparse A matrix and a cheaply computable inverse.
Such structures often occur in a natural way when sim-
ple low order blocks are connected together to build up
the controller. If the Jordan{canonical form is used,
the inversion becomes trivial.

Evidently, the above example is quite generic. Ho-
wever, it illustrates well how the set of Newton itera-
tion variables in a model can be reduced by exploiting
knowledge about the model structure, here the linea-
rity of a submodel. It is important to keep the number
of Newton iteration variables as small as possible, since
this reduces the sizes of the Jacobians, and since it will
improve the convergence speed of the iteration.

INLINE INTEGRATION OF DAES

We have now all pieces together to discuss the gene-
ral algorithm to transform a DAE down to a suitable
discretized form in an automated manner.

Inline integration of a DAE:

0 = f (_x;x;w; t) ; x(t0) = x0 (31)

is done in the following �ve steps.

(1) The system is transformed to BLT{form, assu-
ming that x is known, and that w and _x are unknown.
As a result, the systems of equations of minimaldimen-
sions are determined that cannot be solved explicitly.

(2) For every xi with the property that _xi can be
explicitly solved for in the partitioned equations (i.e.,
the corresponding diagonal block of the structure inci-
dence matrix is of dimension one), add the equation:

xi = h � _xi + old(xi) + residue(xi) (32)

For all other xj, add the same equation but without
the term residue(xj).

(3) If the assigned equation of _xj or wk appears
in an algebraic loop (a diagonal block of dimen-
sion larger than one), add the term \residue(_xj)" or
\residue(wk)" to the corresponding model equation.

(4) If a declaration not to tear xi; _xj; wk or
terms of the form \residue(xi)", \residue(_xj)" or
\residue(wk)" are already present in the model equati-
ons, remove the corresponding residue operators which
have been added in (2) or (3). This rule is needed in
order to be able to select speci�c tearing structures
in the model class libraries. This feature enables the
designer of such libraries to override the default tea-
ring mechanism and select tearing structures that are
better suited for the application at hand.

(5) Transform the augmented system of equations
to BLT{form, assuming that w, _x and x are unknown,

7

thereby utilizing the tearing information. As a result,
the nonlinear systems of equations of the discretized
model equations are produced.

Let us discuss some special cases of this algorithm.

If a DAE consists of a single large algebraic loop,
in which all state derivatives _x and algebraic variables
w are involved, the above algorithm will generate the
following equations due to steps (2) and (3):

x = h � _x + old(x)

0 = f (_x;x;w; t) + residue(

�
_x
w

�
)

i.e., the already discussed basic discretized form of ge-
neral DAEs (18), where _x and w are used as Newton
iteration variables.

If a DAE can be transformed to strictly lower{
triangular form, i.e. ODE{form, then no algebraic
loops are present, and the following equations will be
generated again due to steps (2) and (3):

x = h � _x+ old(x) + residue(x)

_x = f (x; t)

i.e., the already discussed basic discretized form of
ODEs (6), where the state variables, x, are used as
iteration variables.

To summarize, in the worst case, the inline inte-
gration algorithm will produce the same discretization
form as if the discretization procedure would be done
directly in the integrator using the standard interfa-
ces. However, in most practical cases, the algorithm
will perform considerably better, i.e., either the dimen-
sion of the algebraic nonlinear system to be iterated is
smaller, or the overall system is broken down into se-
veral smaller systems that can be iterated separately.
Note that, as shown in the controller example presen-
ted in the section entitled \Tearing", it often makes
sense to eliminate linear dynamic subsystems from the
discretized equations, such that the reduced Newton
iteration contains only variables from nonlinear equa-
tions.

A MORE DETAILED EXAMPLE

Let us consider the following nonlinear plant model
and controller with complex poles.

It can be described by the following equations:

_x = f(x; u; t)

y = g(x)

_x1 = x2

u

k w2

s + 2Dws + w2 2

x = f (x, u, t)
y = g (x)

y

-

Figure 3: Nonlinear Plant With Feedback Loop

_x2 = �2!Dx2 � w2x1 +w2y

u = �kx1

This model is completely harmless from an ODE per-
spective. It presents itself already in state{space form,
and any explicit integration algorithms can solve this
problem easily, as long as the equations are not sti�.

Use of a numerical DAE solver would require the
user to specify for the solver, which are the state va-
riables, and to formulate the corresponding state equa-
tions in residual form. In the above example, it would
then apply Newton iteration to the resulting three{
variable system, in order to keep the residuals close to
zero at all times.

This model is a special case of the general control
loop discussed in the section entitled \Tearing." Con-
sequently, it is easy to automatically discretize the mo-
del using the earlier explained technique. Thereby, the
linear part of the discretized equations can be solved
explicitly, so that only the nonlinear plant equation
has to be solved by Newton iteration.

Using the object{oriented modeling language Dy-
mola, the equations of the system can be directly pro-
grammed. Optionally, Dymola transforms the equa-
tions down to discretized equations, as explained in
the last section, and outputs the result in the form of
C{code:

/* SORTED AND SOLVED EQUATIONS */

/* SYSTEM OF 7 SIMULTANEOUS NONLINEAR EQUATIONS */

/* EQUATIONS */

/* derx + residuederx = f(x,u,Time); */

/* x = h*derx + oldx; */

/* y = g(x); */

/* derx2 + linresderx2 + 2*w*D*x2 + w*w*x1 */

/* = w*w*y */

/* x2 = h*derx2 + oldx2; */

/* x1 = h*x2 + oldx1; */

/* u = k*x1; */

/* SOLVING NONLINEAR SYSTEM OF EQUATIONS */

QSol[0] = derx;

QNLnr = 1;

QNnl = 1;

8

QiOpt = 2;

QInfRev = -1;

Iter1 :

if (QInfRev > 0) {

/* NONLINEAR TEARING VARIABLES AND RESIDUES */

/* derx residuederx */

/* TORN NONLINEAR EQUATIONS */

x = h*derx + oldx;

y = g(x);

/* SYSTEM OF 3 SIMULTANEOUS LINEAR EQUATIONS */

/* EQUATIONS */

/* derx2 + linresderx2 + 2*w*D*x2 + w*w*x1 */

/* = w*w*y */

/* x2 = h*derx2 + oldx2; */

/* x1 = h*x2 + oldx1; */

/* SOLVING LINEAR SYSTEM OF EQUATIONS */

/* LINEAR TEARING VARIABLES AND RESIDUES */

/* derx2 linresderx2 */

/* TORN LINEAR EQUATIONS */

derx2 = (w*w*y - ((2*w*D + h*w*w)*oldx2

+ w*w*oldx1)) / (1 + (2*w*D + h*w*w)*h));

/* END OF TORN LINEAR EQUATIONS */

x2 = h*derx2 + oldx2;

x1 = h*x2 + oldx1;

/* END OF SYSTEM OF LINEAR SIMULTANEOUS EQUATIONS */

u = -k*x1;

residuederx = f(x,u,Time) - derx;

/* END OF TORN NONLINEAR EQUATIONS */

QRes[0] = residuederx;

}

/* UPDATE SOLUTION */

DymNon(QInfRev,QiOpt,QNnl,QSol,QRes,QJac,Qtol,

Qinfo,QD,QI,PrintEvent,QNLnr,Time,QNLfunc,

QNLjac,QNLmax,QiErr);

derx = QSol[0];

if (QInfRev > 0) goto Iter1;

if (*QiErr != 0) goto leave;

/* END OF SYSTEM OF NONLINEAR SIMULTANEOUS EQUATIONS */

/* END OF SORTED AND SOLVED EQUATIONS */

This code executes considerably faster than the DAE
code. The reason is that the number of nonlinear ite-
ration variables has been reduced from three to one.
Thereby, the Jacobians are reduced from being ma-
trices of sizes 3 � 3 to mere scalars, and the number
of iterations needed to reach convergence will also be
smaller.

Note, that the Newton iteration in the C{code is
done using \reverse communication," that is, the re-
siduum is calculated, and afterwards, the nonlinear
(Chord{) Newton iteration function DymNon is called.
When DymNon needs a new residuum calculation, the

function is left signaling the desired action via variable
QInfRef, and the code jumps again to the residuum
calculation.

MECHATRONICS EXAMPLE

In (Franke and Otter, 1993), a realistically modeled
mechatronics system consisting of a six{degree of fre-
edom robot together with its drive trains, motors, ac-
tuators, and the electronic control circuitry was de-
scribed for use as a benchmark problem. In �gure 4,
a screen dump of this system modeled with Dymola's
graphical editor, Dymodraw, is shown.

On the right side of the �gure, the six{degree of
freedom robot is shown composed of basic mechanical
components like joints and bars (Otter et al., 1993).
At every joint, a drive train Di is present. Every such
object contains a gearbox (not shown in the �gure), a
motor, and an actuator, as well as a control system.
The elasticity of the gears of the �rst three joints is
modelled by one spring for each gearbox. The elasti-
city of the last three joints is neglected. Damping and
Coulomb friction are considered in every joint. In the
upper part of �gure 4, the model of the motor and
actuator of one joint can be seen. This component is
de�ned, most naturally, as an electrical circuit. Fi-
nally, in the lower part of �gure 4, the tacho �lters
and the control system of one drive train are de�ned
in block diagram format. In the left part of �gure 4,
some component libraries are shown that are used to
build up the model.

The model consists of 12 states for the mechanical
part of the robot, two states for every gearbox with
modeled elasticity, two states for every motor/actuator
component, three states for every tacho �lter, and
three states for every controller. The overall systems
has therefore 12+3 �2+6 � (2+3+3) = 66 states. The
model is build up by about 2000 equations.

The system is sti� due to the sti� springs in the
gearboxes and due to the \fast" controllers, i.e., due
to arti�cial sti�ness. Consequently, an implicit inte-
gration algorithm is most appropriate. Available stan-
dard sti� system solvers, like LSODAR or DASSLRT,
have to perform a Newton iteration on a system of
66 algebraically coupled nonlinear equations, a formi-
dable task. The Jacobian and Hessian of the system
are matrices of 4356 elements. An LU{decomposition
of the Hessian (O(n3) Operations, n = 66) needs to
be performed whenever the Newton iteration does not
converge fast enough. A back{substitution to solve the
linear equation (O(n2) Operations) is needed once per
Newton iteration step.

By using the (semi{automatic) inline integration
procedure explained in the last sections, it is possi-

9

Figure 4: Object{Oriented View of Mechatronic Model

ble to reduce the Newton iteration from 66 equations
down to six equations. The main reason for this drastic
reduction is that most of the components have linear
dynamics (although several of these components are
coupled by nonlinear elements, such as limiters).

Let us discuss the reduction process in more detail.
The 12 state equations of the robot can be reduced
to six nonlinear equations, since the original equations
are of second order, and higher{order derivatives are
eliminated as explained in (9,10). Therefore, the sta-
tes of the robot, i.e., the angle and angular velocity
of every joint, can be considered known (the angu-
lar velocity variables are the tearing variables used for
Newton iteration, the angles are computed from the
discretization equations).

These known variables enter into the six drive trains
that are totally decoupled from each other (provided
the angle and angular velocity variables of the robot
are known), and which to a great extent have linear
dynamics. A similar reasoning as the one provided in
the section entitled Tearing shows that these systems
can be fully eliminated, resulting in the inversion of six
linear systems of equations containing either 2+2+3+
3 = 10 (a drive train of the �rst three joints) or 2+3+
3 = 8 (a drive train of the last three joints) equations.

Since the drive trains are build up by loosely coupled
�rst{ or second{order systems, the inversion of a 10�
10 system actually breaks down into the inversion of a
series of 1� 1 and 2� 2 systems.

This can easily be seen for the controller part (cf.
lower part of �gure 4). The angle q and the angular
velocity q' are known and enter from the right into
the block diagram of the control system. The �rst
block of the tacho �lter is a �rst order block. Since the
input and the discretization are known, the unknown
state kann be determined by one division. Afterwards
the output can be calculated. The next block is a
second{order system. Again, the two states can be
determined by solving a system of two equations. In
the same way, all other blocks of the control system can
be determined, �nally leading to the required value of
the controller current, ir, leaving the control system
to the right of the controller.

Note that the above description is just an analysis
of what is going on in the translator. In Dymola, the
whole procedure is done in a semi{automaticway. Pre-
sently, the user has to state in model libraries (from
knowledge about the system) which of the tearing va-
riables are associated with linear dynamic systems.

10

FUTURE RESEARCH

In this paper, we only discussed the inline implementa-
tion of BDF algorithms. However, in (Cellier, 1995), it
is shown that also implicit Runge{Kutta (IRK) codes
can elegantly be inlined. Due to their better accu-
racy properties (larger asymptotic regions) and better
stability properties (even higher{order IRKs can be
made L{stable), they represent very attractive alter-
natives to BDF algorithms for DAE solution. Pro-
fessional IRK codes implementing e.g. Radau IIa al-
gorithms are available and are widely used (Hairer et
al., 1989). Notice that a k{stage fully{implicit IRK
algorithm applied to an nth order system requires a
Newton iteration on n � k variables, i.e., the systems of
equations to be solved are even larger than in the case
of the BDF algorithms. For example, the mechatronics
problem solved using a 5th order (3{stage) Radau IIa
method would call for a Newton iteration on a 198
variable system. For this reason, it is to be expected
that inlining will lead to even more spectacular savings
when applied to IRK methods.

It should also be much easier, using the inlining tech-
nique, to study the behavior of mixed sti�/non{sti�
algorithms. It should be possible to separate sti� from
non{sti� iteration variables and apply Newton itera-
tion only to the sti� variables, whereas the non{sti�
variables are iterated using the much cheaper �xed{
point iteration method. However, this has not been
attempted yet.

CONCLUSIONS

Inline integration was proposed as a new mixed symbo-
lic/numeric approach for solving di�erential{algebraic
equation systems. Inline integration means to add the
state discretization equations symbolically to the mo-
del equations at the time of model compilation, the-
reby symbolically converting the original continuous{
time model (di�erential equation system) to a cor-
responding discrete{time model (di�erence equation
system). If an implicit integration formula is inli-
ned, the resulting di�erence equations always contain
large blocks of simultaneous, i.e., algebraically coup-
led, equations. These are then structured for enhanced
solution speed using BLT-transformation and tearing.
The goal of tearing is to further reduce the sizes of the
blocks of simultaneous equations to fairly small sets
of equations that can be solved in an e�cient manner
either symbolically at compile time or numerically at
run time.

It was shown that BLT-transformation and appro-
priate tearing cut right across all types of equations.
They do not distinguish between model equations, i.e.,
the equations that are extracted from the physical de-

scription of the system to be simulated, and numerical
equations, i.e., equations stemming from the numeri-
cal solution technique, such as the state discretization
equations. Consequently, it is important to treat both
types of equations in the same manner. This makes it
necessary to augment the model equations by the state
discretization equations symbolically at compile time
prior to determining suitable tearing structures.

The e�ectiveness of inline integration was demon-
strated by means of a large mechatronics model consi-
sting of 66 di�erential and about 2000 algebraic equa-
tions. It was possible to reduce the nonlinear system
of discretized equations in a semi{automatic fashion
from 66 down to six, i.e., by a factor of more than 10.

Inlining has been implemented as a new feature in
the modeling language Dymola, an object{oriented
modeling tool for large continuous and discontinuous
models of physical and engineering systems.

REFERENCES

Andersson, M. (1994), Object{Oriented Modeling and Simula-
tion of Hybrid Systems, Ph.D. Dissertation, Report CODEN:
LUTFD2/TFRT-1043-SE, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

Andrzejewski, T., H.G. Bock, E. Eich and R. von Schwerin
(1993), \Recent Advances in the Numerical Integration of Mul-
tibody Systems", Advanced Multibody System Dynamics, edited
by W. Schiehlen, Kluwer Academic Publishers, pp. 127{151.

Augustin, D.C., M.S. Fineberg, B.B. Johnson, R.N. Linebarger,
F.J. Sansom, and J.C. Strauss (1967), \The SCi Continuous
System Simulation Language (CSSL)," Simulation, 9, pp. 281{
303.

Boston, J.F. (1980), \Inside{out Algorithms for Multicompo-
nent Separation Process Calculations," Computer Applic. to
Chem. Engng, pp. 135{151.

Brenan, K.E., S.L., Campbell, and L.R. Petzold (1989),Numeri-
cal Solution of Initial{Value Problems in Di�erential Algebraic
Equations, North{Holland, New York.

Cardona, A. and M. G�erardin (1993), \Numerical Integration
of Second Order Di�erential{Algebraic Systems in Flexible Me-
chanism Dynamics",Proceedings NATO/ASI, Computer{Aided
Analysis of Rigid and Flexible Mechanical Systems, Vol. 1,
Troia, Portugal, June 27 { July 9, pp. 165{193.

Cellier, F.E. (1995), Continuous System Simulation, Springer{
Verlag, New York, to appear.

Cellier, F.E., and H. Elmqvist (1993), \AutomatedFormulaMa-
nipulation Supports Object{Oriented Continuous{System Mo-
deling," IEEE Control Systems, 13(2), pp. 28{38.

Du�, I.S., A.M. Erismann, and J.K. Reid (1986),Direct Methods
for Sparse Matrices, Oxford Science Publications.

Elmqvist, H. (1978), A Structured Model Language for Large
Continuous Systems, Ph.D. Dissertation, Report CODEN:
LUTFD2/(TFRT{1015), Dept. of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden.

11

Elmqvist, H. (1993), \A Novel Approach to IntegratingDAE's,"
Electronic mail message to F.E. Cellier and M. Otter, April 3.

Elmqvist, H. (1995), Dymola: Dynamic Modeling Language |
User's Guide, Dynasim AB, Lund, Sweden.

Elmqvist, H., and M. Otter (1994), \Methods for Tearing
Systems of Equations in Object{Oriented Modeling," Procee-
dings ESM'94, European Simulation Multiconference, Barce-
lona, Spain, June 1{3, pp.326{332.

Franke, J., and M. Otter (1993), The Manutec r3 Benchmark
Models for the Dynamic Simulation of Robots, Technical Report
TR R101-93, DLR, Institut f�ur Robotik und Systemdynamik,
D{82234 Wessling.

Gear, C.W. (1971), Numerical Initial Value Problems in Ordi-
nary Di�erential Equations, Series in Automatic Computation,
Prentice-Hall.

Hairer, E., C. Lubich, and M. Roche (1989), The Numerical So-
lution of Di�erential{Algebraic Systems by Runge{Kutta Me-
thods, Springer{Verlag, Berlin, Germany.

Lubich, C., U. Nowak, U. P�ohle, and C. Engstler (1993), \An
Overview of MEXX: Numerical Software for Integration of Mul-
tibody Systems", Advanced Multibody System Dynamics, edited
by W. Schiehlen, Kluwer Academic Publishers, pp. 421{426.

Kron, G. (1962),Diakoptics | The piecewise Solution of Large-
Scale Systems, MacDonald & Co., London.

Nagel, L.W. (1975), SPICE2: A computer program to simu-
late semiconductor circuits, Berkeley, University of California,
Electronic Research Laboratory, ERL{M 520.

Otter, M., H. Elmqvist, and F.E. Cellier (1993), \Modeling of
Multibody SystemsWith the Object{OrientedModeling Langu-
age Dymola," Proceedings NATO/ASI, Computer{Aided Ana-
lysis of Rigid and Flexible Mechanical Systems, Vol. 2, Troia,
Portugal, June 27 { July 9, pp. 91{110.

Otter, M. (1995), \Objektorientierte Modellierung mecha-
tronischer Systeme am Beispiel geregelter Roboter", Ph.D.-
Dissertation, Fortschritt-Berichte VDI, Reihe 20, Nr. 147, VDI-
Verlag D�usseldorf.

Petzold, L.R. (1983), \A description of DASSL: A di�eren-
tial/algebraic system solver," Scienti�c Computing, edited by
R.S. Stepleman et al., North{Holland, Amsterdam, pp. 65{68.

Simandl, J., and W.Y. Svrcek (1991), \Extension of the
Simultaneous{Solution and Inside{Outside Algorithms to Di-
stillation with Chemical Reactions," Computer and Chemical
Engng, 15(5), pp. 337{348.

12

