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Abstract. Hybrid systems are defined as systems that exhibit mixed properties of continuous—time
systems, discrete~time systems, and discrete-event systems. The paper analyzes various aspects that
need to be taken into consideration when modeling such systems for the purpose of a numerical
simulation. It addresses issues related to the convenience of the modeler when dealing with such
systems, as well as issues related to the numerical properties of the generated simulation code. It
shows that the difficulties encountered in modeling such systems are quite different in nature from
those encountered in simulating them. When addressed in their proper contexts, these two types
of problems can almost totally be decoupled from each other. A set of guidelines for the design fzf
hybrid modeling and simulation software is derived that may support future software designers in
their attempt at developing products that are both more user-friendly in terms of their modeling

capabilities and more robust in terms of their simulation capabilities.
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DISCONTINUITY HANDLING
AND STEP-SIZE CONTROL

The Continuous-System Simulation Language (CSSL) stan-
dard of 1967, on which most of today’s simulation languages
are based, does not discuss discontinuities in models at all
(Augustin et al, 1967). When the document was writ-
ten, the capabilities of the digital computers available at
that time were still so limited both in terms of speed and
memory that complex engineering models had little chance
of being handled by them in any meaningful way. Con-
sequently, more complex models were still run on analog
computers where simple discontinuities in equations don’t
pose problems.

Taking this evident oversight of the CSSL committee
into account, it is surprising to realize that the CSSL stan-
dard has nevertheless survived for a quarter of a century,
and languages designed and developed following this stan-
dard are today employed to describe models that are orders
of magnitude more complex than anything the standard
had originally been designed for. Many of the problems
tackled today by means of simulation are discontinuous in
nature. Mechanical systems, such as robots, are plagued
by dry friction, backlash, and hysteresis, sudden contact
between bodies, as well as discontinuous input trajecto-
ries. Digital electronic circuits are characterized by switch-
ing devices such as switching MOSFETs and Zener diodes,
as well as discontinuous time-dependent source elements.
The behavior of plants from the chemical process industry
is largely dictated by opening and closing valves, by heating
elements that are turned on or off, and by batches of new
raw material being added somewhere in the process at dis-
tinct points in time. All these effects result in discontinuous
plant behavior of some sort.

Part of the evident success of the CSSL standard is
due to the fact that the numerical integration algorithm, or
more precisely its step—size control component, assists the
simulation software in dealing with discontinuities. This
fact can be explained easily. All numerical integration al-
gorithms employed in today’s simulation software operate
on the basis of Taylor series approximations. Different inte-
gration algorithms vary in how they approximate the higher
state derivatives and in the number of terms of the Taylor
series expansion that they consider in the approximation
(the so—called order of the integration algorithm).

Step-size control is frequently based on the assumption
that the difference in the results obtained when repeating
the same integration step twice with two different integra-
tion algorithms is proportional to the actual, yet unknown,
error made in the numerical approximation using either
of the two techniques. This would work if one had two
matched algorithms, one of which always overestimates the
analytical solution while the other always underestimates
it, yet such that both algorithms approach the analytical
solution smoothly as the step size, k, approaches zero.

Unfortunately, such a pair of matched algorithms can-
not exist. The higher-order terms of the Taylor series ex-
pansion become less and less important as the step size is
reduced. Consequently, all integration algorithms will be-
have like an Euler (first—order) algorithm for sufficiently
small step sizes. Thus, by reducing the step size, it is al-
ways possible to get the two algorithms to agree. However,
they won’t agree on the analytical solution; instead, they
will agree on a first~order approximation.

When a discontinuity takes place within the integra-
tion step, the Taylor—Series approximation will invariably
be inaccurate since polynomials don't exhibit discontinu-



ities. Consequently, the two algorithms will disagree on
the outcome, which triggers the step—size control algorithm
to reduce the step size, and this somewhat helps to locate
the discontinuity. However, in the process, the step size is
being reduced until, eventually, the two integration algo-
rithms agree on the same, yet still incorrect, result since
both behave like Euler. This often leads to “creeping” ef-
fects (integration with very small step size), and may possi-
bly result in completely incorrect answers. This was shown
in Cellier (1986).

It is important to distinguish between different types
of discontinuities. A function f(z) is called discontinuous
if there exists at least one point, z*, where:

zligl‘ f(I) # z]-'hllz f(.'li) (1)

A function for which no such point can be found is called
continuous. A continuous function is said to have a dis-
continuous derivative if the function ¢(zr) = 0f(x)/0z
is discontinuous. A function with a continuous deriva-
tive has a discontinuous second derivative if the function
h(z) = 9g(z)/0z is discontinuous, etc. Since no generally
accepted short names for these types of functions have been
introduced in the technical literature so far, the remainder
of this paper shall refer to discontinuous functions as D-
functions, to functions with a discontinuous first derivative
as DD-functions, etc.

From a numerical perspective, D—functions pose the
most severe problems, since even the Euler integration algo-
rithm cannot deal with them. Imprudent integration across
discontinuities in D—functions will frequently lead to simu-
lation results that are entirely incorrect. DD-functions are
less malignant since the discontinuity now shows up only
in the second state derivative. The Euler algorithm will
usually be able to handle such situations since it does not
require an estimate of the second state derivative. Simula-
tions involving DD—functions will slow down in the vicinity
of the discontinuities since the integration algorithm has to
drop down to first order by using a very small step size to
clear the discontinuity, but at least, the results are most
likely to be correct (although not necessarily, since the
thyristor example mentioned in Cellier (1986) only con-
tained DD-functions). Models involving DDD—functions
will slow down less since the integration algorithm only
needs to drop down to second order, etc.

DISCONTINUITY SMOOTHING
AND NUMERICAL INTEGRATION

A remedy that is often employed by engineers is to smooth
out the discontinuity. In reality, the discontinuity may not
be as hard as the ideal model presumes, and thus, it may be
quite justifiable for the model to represent the discontinu-
ity as a continuous curve with a locally large gradient. The
smoothing can be accomplished either statically by smooth-
ing out the discontinuous function directly, or dynamically
by introducing an additional very fast time constant. The
latter approach is commonly used to circumvent algebraic
loops in model equations.

While this approach does away with the theoretical
problems of discontinuity handling, it isn’t really helpful
from a numerical perspective. Numerically, there is no dif-
ference between a discontinuity and a locally large gradient.
If an explicit Runge-Kutta algorithm is used to integrate
the state—space model, its step size will have to be reduced
in the vicinity of the large gradient in order to keep the
solution numerically stable, since the local Jacobian will
temporarily have an eigenvalue far out along the negative
real axis. That is, in the vicinity of points of high curva-
ture, very small step sizes are multiplied with very large
and inaccurately estimated higher—order derivatives, which
is numerically questionable. On the other hand, if a stiffly—
stable algorithm is used (most simulation languages offer a
BDF method (Gear, 1972) for this purpose) to avoid the
need to reduce the step size in order to keep the solution
numerically stable, the results will be even worse since BDF

algorithms are numerically awful when applied to a prob-
lem with fast changing eigenvalues of its Jacobian. Con-
sequently, discontinuity smoothing and the introduction of
additional fast eigenvalues are techniques that don’t work
very well in practice.

EVENT SCHEDULING
AND DISCONTINUITY ITERATION

From the previous exposé, it has become evident that nei-
ther step-size adjustment nor smoothing solve the problems
posed by discontinuities in the system. Adding more details
to the model to cover up its inherently discontinuous be-
havior won't help with the numerics. On the contrary, an
additional step toward abstraction should be taken.

Many of the above issues are illustrated by considering
the limiter function of Fig. 1:
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Figure 1. Limiter function.

it can be noticed that this DD—function consists of three
perfectly continuous domains connected by point disconti-
nuities in their first derivative. Since discontinuities impair
the numerical integration process as outlined above, the
integrator should be prevented from passing through any
discontinuity. To this end, the three domains are extended
in a continuous fashion, as indicated in Fig. 2.

Figure 2. Extended limiter function.

During the process of numerical integration, only one of the
three domains can be active at any one time. Demons are
installed that watch over the boundaries of the domains.
When a trajectory tries to enter an extended area, the
associated demon awakes and initiates an iteration proce-
dure to locate the boundary accurately. Once the bound-
ary has been located, the numerical integration is sus-
pended, and the discontinuity (a so—called state event) is
processed, which switches from one domain to the next.
Once the event has been processed, numerical integration
can be resumed, however, the integration algorithm must

be restarted afresh. This process was outlined in Cellier
(1979).

Some designers of CSSL-type languages have added
event scheduling mechanisms to their products. Most
prominently among the CSSL languages that offer event
handling is ACSL (Mitchell & Gauthier, 1991). In ACSL,
the limiter function can, for example, be programmed as
follows:



PROGRAM LimiterTest
constant HighLimit = 1.0, LowLimit = -1.0
logical High, Low

INITIAL
z = 2+sin(t)
High = z .ge. HighLimit
Low = LowLimit .ge. z

END!of INITIAL

DYNAMIC
DERIVATIVE
z = 2ssin(t)

if (High) then y = HighLimit
elseif (Low) then y = LowLimit
elsey = zend if

schedule LimitEvent | SetHigh .xp. z — HighLimit

schedule LimitEvent [ ResetHigh .xn. z — HighLimit

schedule LimitEvent [ SetLow .xp. LowLimit — z

schedule LimitEvent / ResetLow .xn. LowLimit — z
END!of DERIVATIVE

DISCRETE LimitEvent
High = SetHigh .or. High .and. .not. ResetHigh
Low = SetLow .or. Low .and. .not. ResetLow
END ! of DISCRETE LimitEvent

termt ¢ .ge. 10.0
END!of DYNAMIC
END ! of PROGRAM

The Boolean variables High and Low are used to keep track
of which of the three piecewise continuous curves of Fig.2 is
currently active. The value of these variables never changes
while the numerical integration is in progress. The schedule
statements are the demons that watch over the execution
of the continuous simulation model. When z — HighLimit
crosses 0.0 in positive direction (.zp.), the state event
LimitEvent is scheduled to be executed. As soon as this
demon awakes, an iteration process starts to locate the
zero crossing exactly, while the model continues to oper-
ate in the center state with High = .false. on both sides
of the discontinuity. After the iteration has converged, the
continuous simulation is suspended, the Boolean variable
SetHigh named in the schedule statement is set to .true.,
and the discrete section is executed once. This block will set
High to .true. according to the first Boolean assignment,
after which integration can resume.

Special statements have been added to initialize High
and Low in accordance with the initial value of z, so that
they carry the correct value before being used to compute
the initial value of y.

ACSL’s notation is a little clumsy. A more compact,
readable, and equivalent notation will be presented later.
However, from a numerical point of view, ACSL’s solution
usually works well. A more recent effort (Taylor, 1993)
has extended the Simnon language ((Elmqvist et ol., 1990;
Frederick and Taylor, 1989) to provide the same function-
ality that ACSL offers with a number of advantages.

Notice that the above outlined approach will not always
work. Figure 3 shows the turbulent hydraulic resistance
across a valve. The volume flow rate ¢ is computed as a
function of the pressure difference Ap.

Hydraulic Resistance in a Valve
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Figure 3. Hydraulic resistance across a valve.
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This function is of the DDD-type, and it may therefore not
be crucial to locate the discontinuity in the second deriva-
tive. It may in fact be quite dangerous to do so since, at
the place where the second derivative is discontinuous, the
first derivative happens to be infinitely large.

Trying to apply the previously advocated technique
would suggest use of the formula:

g=k-/Ap (2a)

for Ap > 0.0, and:

g= - k-v/-Ap (20)

for Ap < 0.0. Unfortunately, neither of these formulas will
work since each of the two terms is defined in ®! only within
its own range. The two formulas don’t extends naturally
and continuously into the other domain. Since the overall
function is in fact only of the DDD-type, although Eq.(1)
suggests two separate branches, it may make more sense
to program the function directly, i.e., without any event
scheduling, using the formula:

g =k -sign(Ap) - /|Ap] 3)

A worse situation is plotted in Fig. 4.
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Figure 4. Bad DD-function.

In this case, a combination of the two previous approaches
may work. The two domains could be extended using an
enhanced version of Eq.(3):

y=m-k-sign(z) - ]z 7 4)

where m is a mode parameter with a value of +1.0 for
z 2 0.0 and —1.0 for z < 0.0. Unfortunately, the zero
crossing must now be located accurately, and if the par-
tial derivative of this function turns out to be important,
this may again not work properly. Fortunately, this utterly
malignant function is not something that physics often pre-
scribes.

HYBRID OBJECT-ORIENTED
MODELING

Up to this point, the focus of the paper has been on the
numerical properties of hybrid system simulation. From
here onward, the paper will focus on the convenience of hy-
brid system modeling. As previously explained, the mech-
anism offered in ACSL to describe hybrid systems is quite
acceptable from a numerical perspective although a lkit-
tle clumsy from a modeling point—of-view. Unfortunately,
what seemed to be a minor inconvenience in this simple
example becomes a major hurdle when modeling large—
scale industrial processes. The problems encountered are
twofold:

1. While modeling, the user must constantly be aware of
the numerical procedure that is employed to simulate
his or her model. This fact was illustrated by means
of the three different notations needed to tackle the
different types of discontinuities. The primary purpose
of modeling software should be to protect the user from
a detailed knowledge of the intricacies of the underlying
numerical algorithms. The user should be enabled to



concentrate on issues related to the physics behind his
or her model, rather than being forced to spend much
time on thinking about what the simulator will do with
the model once it has been designed and encoded.

2. The topological structure of the model should reflect
the topological structure of the underlying physical pro-
cess being modeled. This is a key issue in success-
ful modeling of large-scale industrial processes. This
concept is commonly referred to as the object—oriented
programming paradigm (Cellier et al., 1991). Today's
CSSL-type languages are not object-oriented. They
provide for a structuring capability, called a macro.
However, macros are not truly modular as shown in Cel-
lier and Elmgqvist (1993). ACSL’s approach to hybrid
system modeling forces the user to encode three aspects
of one and the same physical phenomenon (the demon,
the event handler, and the continuous—time equation) in
three different places of the model. This leads to poorly
maintainable code when the model contains not one but
maybe several dozens of discontinuous functions.

Reflecting on the two difficulties outlined above, the reader
may remember an earlier remark: Discontinuity handling
did not pose any major problemsin the days of analog com-
puting. Why was that? Switching functions were simply
implemented by comparator elements, and switching took
place whenever the time for it had come. There was no
need to iterate to locate the precise time of an event, since
the analog computer programmer could rely on time being
a continuously advancing variable.

The difficulties all began with the realization that, in
a digital simulation program, time jumps forward in dis-
crete steps. Thereby it can (and will) happen that event
times are missed, which creates the need for demons to dis-
cover such mishap and for iteration algorithms to recover
from it. Worse, some integration algorithms don't even
guarantee that Time, during numerical integration, always
proceeds forward. Integration algorithms with error control
and variable step size let Time jump forward and backward
during the integration across each time-step. It is thus not
possible to write a statement like:

if (Height < 0.0) then
Velocity = —~c « Velocity
end if

in ACSL or in a Fortran subroutine calulating derivatives
to make a ball bounce when it reaches the floor. The inte-
grator might step back to a situation with Height > 0.0,
but then the Velocity has already changed its sign.

If only the modeler could rely on Time being a con-
tinuously advancing variable, most of his or her problems
would vanish at once. Thus, the answer is simple. The au-
thors of this paper decree that, in a hybrid modeling lan-
guage, Time may be perceived as a continuously advancing
variable. This ordinance relieves the modeler of the need
to think about the numerical implications of formulating
discontinuous models, and puts instead the burden on the
designer of the modeling language compiler to interpret the
model in a way as to generate code for the underlying sim-
ulation language such that it can be executed in a numer-
ically sound fashion. What does not work is that if state-
ments like the one above are mapped into if statements of
the underlying simulation language, but this does not have
to happen. It is perfectly feasible for a smart modeling lan-
guage compiler to interpret the above if statement, realize
that it implies a discontinuous function, and synthesize the
necessary schedule statements and discrete events for the
underlying ACSL program to ensure a numerically sound
execution of the generated simulation code. Alternatively,
crossing functions and event subroutines can be generated
in Fortran, for example, in accordance with the DSblock
specification (Otter, 1992). It will be shown that this sim-
ple recipe puts to the sword once and for all the need for
splitting descriptions of discontinuous functions into sev-
eral disjoint program segments. It thereby supports true
object—oriented modeling.

High-level notations will now be discussed that make it

much easier for the modeler to describe discontinuities and

events. Dymola is a language that supports these high-level
abstractions.

Dymola is a modeling language that systematically
builds on the object—oriented programming paradigm
(Elmgqvist, 1978; Cellier, 1991; Cellier and Elmqvist, 1993;
DynaSim, 1993). Dymola models are truly modular and
can be hierarchically composed in a manner that allows
to represent the topological structure of a physical system
faithfully. Dymola is a code generator that can gener-
ate code for various simulation languages, such as ACSL
(Mitchell & Gauthier, 1991), DESIRE (Korn, 1989), Sim-
non (Elmgqvist et al., 1990; Frederick and Taylor, 1989),
and SIMULINK (MathWorks, 1992). Furthermore, it can
generate code directly in plain Fortran using either the
Simnon- or the DSblock—format (Otter, 1992).

The previously mentioned limiter can be specified in
Dymola using if expressions as follows:

y =if z > HighLimit then HighLimit
elseif z < LowLimit then LowLimit else = (5)

Note the difference between if ezpressions, which always
return one value, and if statements.

This description is considerably more compact and
more convenient to write down than the previously intro-
duced ACSL code for the same purpose. Yet, the Dymola
compiler will recognize the implied state events, and will au-
tomatically generate appropriate schedule statements and
discrete sections when asked to synthesize an ACSL pro-
gram. The result is approximately the same as the pre-
viously shown ACSL program. However, Dymola employs
a more general method for variable initialization, and, of
course, the Dymola compiler wouldn’t know how to syn-
thesize semantically meaningful variable names such as
HighLimit or ResetLow.

In this way, the modeler can preserve the best of two
worlds: compact, easy-to-write, easily readable and main-
tainable, object—oriented model code at the level of the
modeling language; yet, properly executing, numerically
sound, run—time efficient simulation code at the level of
the simulation language.

It is important to realize that these are two separate
issues that can be decoupled from each other both concep-
tually and practically. Object—oriented modeling is the way
to go, yet, object-oriented simulation is quite problematic
(Cellier et al., 1991). The model language code should sup-
port a structuring of the model that reflects the topology of
the underlying physical process, but should be monolothic
with respect to the numerical necessities of the resulting
simulation program (things that logically belong together
must be describable as one piece of model language code).
On the other hand, the simulation language code should
be monolithic with respect to the structure of the underly-
ing physical processes (for reasons of run-time efficiency),
but must be appropriately structured to support the nu-
merical algorithms that ultimately execute the synthesized
simulation program.

INSTANTANEOUS EQUATIONS

Up to this point, the discussion has focused on events that
occur as an indirect consequence of discontinuities in func-
tions or function derivatives. However, this view is too
limited. Mechanisms are also needed to describe sudden
changes in the model structure, changes that cannot be
properly reflected by merely altering the expression that
assigns a value to a state derivative or an algebraic model
variable. Such mechanisms are needed, for example, to de-
scribe what happens at the boundaries of a hysteresis func-
tion, or to model computer algorithms that are used as
part of sampled data systems. Instantaneous equations are
also used to describe changes to continuous states that oc-
cur only at particular instants of time, e.g., to model the
behavior of a bouncing ball at impact.



An instantaneous equation takes the form:

when < condition > then
< equations >
end when

The equations are valid only at the instant when the con-
dition becomes true.

For example, a hysteresis function can be modeled by:

whens > Horu < —H then
y =ifu > H then 1 else —1
end when

The output y changes its value only when u becomes greater
than H or becomes smaller than —H.

Difference equations are valid at certain time instants.
They define discrete variables that usually are functions of
their own past. A previous value of a discrete state z is
referred to as old(zx).

A difference equation and the time instants when it is
valid can thus be described as:

when Time >= old(NeziTime) then

y +asold(y) =b*u

NeztTime = Time -+ SamplingRate
end when

It is also possible to change continuous state variables when
a certain condition is met (cf. the previous erroneous use
of an if statement):

when Height < 0.0 then

new(Velocity) = —c* Velocity
end when

It is essential to be able to propagate and synchronize
events. Boolean variables and Boolean equations are used
for this purpose. Boolean variables change their values due
to some relation becoming true or false or indirectly due to
some instantaneous equation.

The translation of instantaneous equations is per-
formed with an algorithm similar to the one used for if
expressions. The relations in the condition of the when
equation thus are also translated into crossing functions.

THE WARD-LEONARD SYSTEM:
AN EXAMPLE

A Ward-Leonard drive consists of three rotating machines,
two of which are used as motors, one as a generator. The
primary motor drives the generator with constant speed.
The generator, in turn, is used as a constant source of cur-
rent making the angular velocity of the secondary motor
less load—dependent. The Ward-Leonard drive is shown on
Fig. 5.
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Figure 5. Ward-Leonard drive.

It is assumed that the three machines are DC~motors. Fric-
tion effects of the bearings and suspensions are described
using a realistic friction model as shown on Fig,. 6.
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Figure 8. Friction model.

The Dymola code needed to describe the friction model is
as follows:

model type friction

terminal v, Fm, Ffr
local Forward =false, Backward =false, Moving
parameter F'd = 5.0E-5, Fc =2.0E-5, Rv = 2.0E-4

Moving = old(Forward) or old(Backward)
Forward = not Moving and Fm > Fd

or old( Forward) and v > 0.0
Backward = not Moving and Fm <-Fd

or old(Backward) and v < 0.0

Ffr= if Forward then Rv ¢« v+ Fc
else if Backward then Rv*v— Fc
else Fm

end

The friction phenomenon is described by a continuously
changing algebraic variable, Ffr, which, similarly to the
previously described limit function, switches its model in
accordance with implicitly formulated state events. Since
the switching conditions are much more complex in this ex-
ample, they are not described inside the if expression, but
are pulled out as boolean expressions. Thereby, the discrete
state variables that are used to select the correct branch of
the model are made explicit, whereas they were implicized
in the much simpler limit function.

Two boolean variables are used in the model, called
Forward and Backward. They are discrete state variables,
simultaneously assuming the role of mode selectors. The
third mode selector, not Moving, is a function (not) of a
discrete algebraic variable (Moving). Forward becomes true
if the current mode is not Moving and if the pulling force
becomes sufficiently strong, and it becomes false if the cur-
rent mode is Forward and the velocity, v, becomes negative.
Each time the discrete state variable Forward changes its
value, a state event is triggered, since Forward is used as a
condition in the if expression to compute Ffr.

The reader is invited to compare this compact descrip-
tion to the elaborate description of friction modeling given
in the ACSL manual (Mitchell & Gauthier, 1991). Yet,
the process of translating this compact description into an
equivalent ACSL formulation is completely systematic and
can be fully automated.

At this point, the motor can be described.

model type demot
submodel (friction) Fr

cut arma(uafia), field(uf/if), mech(tan/-omega)

main path P < arma — mech >

local us, psi, taum, tasR, tauFr

parameter Rg = 10.0, Rf = 25.0, Jm = 0.05, kmot = 0.5

Fr.v = omega
Fr.Fm = tauR
tauFr = Fr.Ffr

uwf = Rf *if

ua = ui + Ra * ia

psi = kmot xif

taum = psi + ia

ui = psi * omega

tauR = taum — Jm » der(omega)
tau = tauR — tauFr

end

The DC-motor model invokes a submodel of type friction
called Fr. Tt is plugged into the model by explicit assign-
ment of variables using a (Pascal-like) dot-notation. Fr.vm
denotes the vm variable of model Fr. For simplicity, the ar-
mature and field inductances were omitted.

A constant voltage source is also needed. Its model is
given below.



model type VSource
main cut A(u/-i)
parameter U0 = 1.0
u=U0
end

The load consists of a torque load and an inertial load:

model type Load
cut in(tau/omega), out(theta)
main path P < in — out >
terminal Ji, taul
tau = J1« der(omega) -+ taul
der(theta) = omega
end

At this point, the Ward-Leonard drive can be assembled.

model type W Ldrive

submodel (VSource) UO(U0 = 25.0)
submodel (demot) Motl, Gen, Mot2
submodel (Load) Ld

cut in(u/i), out(theta,omega, tau)
main path P < in —out >
terminal JI, taul

connect Moil to (reversed Gen) to Mot2 to Ld
connect U0 at Motl ; arma at Motl : field at Mot2: field
connect in at Gen : field

Ld.Jl=Ji

Ld.taul = taul
theta = Ld.theta
omega = Ld.omega
tau = Mot2.tau

end

The reader is encouraged to compare this model with the
schematic of Fig. 5. This time, more advanced connection
mechanisms have been used. Dymola’s connect statement
allows to either connect entire cuts using the at construct,
or entire paths using the to construct. Thereby bundles of
variables are connected at once. Variables to the left of the
“/” separator are across variables (like voltages of electrical
circuits), whereas variables to the right of the “/” separator
ar through variables (like currents in electrical circuits).
During compilation, connect statements are automatically
expanded to sets of individual equations.

At this point, it is important to rethink the concept of
state variables. Obviously, the angular velocities of Mot!
and Gen are identical, and therefore, they don’t both qual-
ify as state variables of the generated simulation program.
Yet, they are “state variables” of the individual models
(meaning that they are indirectly defined by means of the
der(omega)} construct). Consequently, the Ward-Leonard
drive constitutes a so—called higher-index model (Brenan
et al., 1989). The overall system order is lower than the
sum of the orders of its submodels. Dymola employs the
Pantelides algorithm (Pantelides, 1988) to automatically re-
duce higher—index models to state~space form (Cellier and
Elmgqvist, 1993).

A position control circuit involving the previously de-
fined Ward-Leonard drive is shown on Fig. 7.
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Figure 7. Position control circuit.

Beside from the drive, it contains a limiter block and the
following discrete PI-controller with antiwindup compen-
sation (Astrém and Wittenmark, 1990).

model type Plbound

cut in(err), out(u/-i)
main path P < i — out >
local z = 0.0, NeztTime = 0.0, u = 0.0, ud

parameter k = 0.06, T = 0.002, Tw = 0.01, Semple = 0.1
parameter xmazr = 10.0

when Time >= old(NeztTime) then
ud =old(z) + kxerr
« = if ud > umaz then umaz
else if ud < —umaz then —umaz else ud
z =old(z) + Sample* (kserr/T + Twx (v — ud))
NeziTime = Time + Sample
end when

end

Dymola treats discrete—time systems as a special case of
discrete—event systems.

The overall control system model can now be assem-

bled.

model W Lsystem

submodel (Plbound) PI
submodel (W Ldrive)W L

local thset, tauds, Jidin
output theta, omega, tau

connect PI to WL

thset = if Time < 50.0 then 10.0 else 5.0
taudi = if Time < 100.0 then 0.0 else 0.01
Jidin = if Time < 100.0 then 0.0 else 0.05

Pl.err = thset — theta
WL.Jl = Jldin
WL.taul = taudi

theta = WlL.theta
omega = W L.omega
tau = Wli.tau

end

If expressions are used to describe the discontinuous input
functions. Since the conditions of these if expressions are
functions of Time alone, Dymola automatically maps these
expressions into time events rather than state events.

This completes the description of the Ward—Leonard
drive system. The model is quite complex. It contains both
continuous and discrete states. It implicitly defines both
time events and state events. Finally, it is a higher-index
model. Yet, due to the object-oriented approach employed
by Dymola, each component model is fairly short and easily
readable, and Dymola’s connection mechanisms enable the
user to compose complex models in an intuitive and easily
manageable fashion.

TRANSFORMATION OF EQUATIONS

Object—oriented modeling of continuous—time systems re-
quires horizontal as well as vertical sorting of equations.
The need for vertical sorting has long been recognized. This
feature had been advocated in the CSSL language stan-
dard (Augustin et al., 1967), and is offered by most of
the contemporary continuous—system simulation languages.
Vertical sorting means that equations can be entered in
an arbitrary sequence, and the responsibility lies with the
compiler to sort the equations so that no variable is be-
ing used before it has been defined. Horizontal sorting,
on the other hand, is a child of the object—oriented world
view (Elmqvist, 1978). The need for horizontal sorting of
equations originates from the fact that resistors and en-
ergy transducers have multiple causalities. Whether the
voltage drop across a resistor “causes” current to flow, or
whether current flowing through a resistor “causes” a volt-
age drop, is not evident in advance. In fact, neither of the
two interpretations is physically correct. Voltage drop and
current flow are simply two different aspects of one and the
same physical phenomenon. Causality, in this context, is
a chimera, an invention of the numerical simulation algo-
rithm.



The simulation model may require an equation of the
type: )
u=R-i (6a)

or:

(6%)

depending on the required numerical causality of the resis-
tor, but the modeler should not be bothered by this prob-
lem.

It is the duty of the modeling software to support the
user in formulating physical knowledge. It should protect
him or her from the need to also think about the underlying
numerical algorithms that are employed during simulation
of the model. Horizontal sorting simply means that equa-
tions can be formulated in an arbitrary fashion. It is the
responsibility of the modeling compiler to solve them sym-
bolically in such a way that the required numerical causality
results.

The world view of event descriptions has taught us to
think of discrete models as sequential in nature, yet, it is
beneficial to treat discrete equations in just the same way as
continuous equations. In Dymola, this approach has been
taken. Discrete state variables and Boolean variables can
be formulated in hybrid models in exactly the same way
as continuous state variables and algebraic variables. All
relationships between variables are formulated in equation
form that are then collected by the modeling compiler into
a single monolithic block of model equations that are sorted
both vertically and horizontally, i.e. discrete equations and
continuous equations are sorted together. Only after this
has been accomplished will Dymola look at the discrete
variables once more and generate proper event descriptions
for the synthesized simulation program.

1=
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CONCLUSIONS

In this paper, concepts for modeling and simulation of
hybrid systems were presented. The numerical features
needed by a simulation language to properly handle dis-
continuities are generally well understood. Exceptions are
cases where the event density is very high or, in the limit,
reaches infinity, such as in the descriptions of discontinuous
hyperbolic partial differential equations using a method—
of-lines approximation, or in the description of nonlinear
control systems with an inconsistent switching characteris-
tic. Such problems are being tackled in a current research
effort (Taylor, 1993).

Event descriptions had been invented to serve the needs
of numerical algorithms used for simulation of dynamical
systems. While all the arguments that led to their original
conceptualization are still valid, it had not been recognized
before that there is no need to propagate these event de-
scriptions all the way from the numerical simulation algo-
rithms to the modeler’s programming interface.

Event descriptions are not convenient for the modeler.
They force the user to split descriptions of different aspects
of one and the same physical phenomenon into different
code segments in the model, and they are therefore the
death blow to any attempt at object—oriented modeling,.
Large-scale system models that are encoded using event
descriptions are difficult to develop and properly debug,
and they are even harder to read and maintain.

A new methodology was presented that hides the event
descriptions from the modeler, thereby offering him or her
an object~oriented approach to modeling hybrid systems
that is considerably more convenient to use than previously
employed techniques, and that therefore can help to reduce
the time needed for modeling complex hybrid systems, as
well as for maintaining the models once developed.

Such descriptions are automatically translated into the
format needed by the simulation environment. While it is
possible to automatically translate all potentially discon-
tinuous functions into proper event descriptions, this may
not always be desirable. For example, the compiler will
happily translate an inconsisting switching model into a

seemingly correct simulation program, but the simulator
will hang since it will try to handle infinitely many state
events within a finite amount of simulated time, which de-
plorably requires an infinite amount of real time. Therefore,
compiler options must be made available to give the user
some control over the code that is being generated.

Dymola has been used to illustrate the underlying con-
cepts, since semantics cannot be described without syntax.
However, the message given is much more fundamental.
The paper provides a description of basic mechanisms for
the formulation as well as numerical treatment of hybrid
models, as they arise all too often in engineering applica-
tions. The authors of this paper propose the Ward—Leonard
drive example as a benchmark problem for hybrid modeling
software, since the system is simple enough to be described
in full, yet, exhibits most elements of & true hybrid model.

REFERENCES

Astrém, K.J., and B. Wittenmark, Computer Controlled Sys-
tems, Second Edition, Prentice—Hall, Englewood Cliffs, N.J.,
1990.

Augustin, D.C., M.S. Fineberg, B.B. Johnson, R.N. Linebarger,
F.J. Sansom, and J.C. Strauss, “The SCi Continuous System
Simulation Language (CSSL),” Simulation, 9, pp. 281-303,
1967.

Brenan, K.E., S.L. Campbell, and L.R. Petzold, Numerical So-
lution of Initial-Value Problems in Differential Algebraic
Eguations, North~Holland, New York, 1989.

Cellier, F.E., Combined Continuous/Discrete System Simulation
by Use of Digital Computers: Techniques and Tools, Ph.D.
Dissertation, Diss ETH No 6483, ETH Ziirich, CH-8092
Ziirich, Switzerland, 1979.

Cellier, F.E., “Combined Continuous/Discrete Simulation — Ap-
plications, Techniques and Tools,” Proceedings 1986 Winter
Simaulation Conference, Washington, D.C., pp. 24-33, De-
cember, 1986.

Cellier, F.E., Continuous System Modeling, Springer—Verlag,
New York, 1991.

Cellier, F.E., and H. Elmqvist, “Automated Formula Manipula-
tion Supports Object—Oriented Continuous—System Model-
ing,” IEEE Control System Magazine, April, 1993, in press.

Cellier, F.E., B.P. Zeigler, and A.H. Cutler, “Object-Oriented
Modeling: Tools and Techniques for Capturing Proper-
ties of Physical Systems in Computer Code,” Proceedings
CADCS’91 — IFAC Symposium on Computer-Aided De-
sign in Control Systems, Swansea, Wales, UK., pp. 1-10,
July 15-17, 1991.

DynaSim AB, Dymola - User’s Manual, Research Park Ideon,
223 70 Lund, Sweden, 1993.

Elmgqvist, H., A Structured Model Language for Large Continuous
Systems, Ph.D. Dissertation, Report CODEN: LUTFD2/
(TFRT-1015), Dept. of Automatic Control, Lund Institute
of Technology, Lund, Sweden, 1978.

Elmqvist, H., K.J. Astrdm, T. Schénthal, and B. Wittenmark,
Simnon — User’s Guide for MS-DOS Computers, SSPA
Systems, Gothenburg, Sweden, 1990.

Frederick, D.K., and J.H. Taylor, SIMNON Reference Manual,
GE Corporate Research and Development, 1989.

Gear, C.W., Numerical Initial Value Problems in Ordinary
Differential Equations, Series in Automatic Computation,
Prentice-Hall, Englewood Cliffs, N.J., 1971.

Korn, G.A., Interactive Dynamic-System Simulation, McGraw—
Hill, New York, 1989.

Mathworks, Inc., The Student Edition of MATLAB for MS-DOS
or Macintosh Computers, Prentice-Hall, Englewood Cliffs,
N.J., 1992,

Mitchell & Gauthier Associates, Inc., Advanced Continuous Sim-
ulation Language (ACSL) — Reference Manual, Concord,
Mass, 1991.

Otter, M., “DSblock: A Neutral Description of Dynamic Sys-
tems,” OPEN-CACSD Electronic Newsletter, 1(3), Febru-
ary 28, 1992.

Pantelides, C.C., “The Consistent Initialization of Differential—
Algebraic Systems,” SIAM J. Sci. Stat. Comput., 9(2), pp.
213-231, 1988.

Taylor, J.H., “Toward a Modeling Language Standard for Hybrid
Dynamical Systems,” to appear in: Proc. IEEE Conf. on
Decision and Control, San Antonio, Texas, Decmeber 15—
17, 1993; also see Odyssey Research Associates Technical
Report A Proposed Modeling Language Standard for Hybrid
Dynamical Systems, February 1993.



