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1.1 INTRODUCTION

The field of simulation software was last reviewed by me in 1983 [7]. A lot has
happened since 1983. At that time, most continuous-system simulations were
still performed on either CDC or IBM mainframes. Many engineers still wrote
their simulation software in Fortran because the simulation languages of that era
were not available at the site (mainframe software tended to be quite expensive),
or not implemented on the particular hardware platform, or too slow for the in-
tended purpose, or too restricted in their modeling capabilities.

Today’s Engineering Workstations place more number-crunching power and
a larger memory allocation on the average engineer’s personal desk than the
mainframes of one decade ago had to offer to an entire enterprise. We have seen
a trend toward standardization of operating system software across different
hardware vendors with, since the design of the RISC architectures, a strong
trend toward accepting UNIX as the ‘‘universal’’ operating system language,
and C as the ‘‘universal’’ programming language. We have seen standardization
of graphics software with X-Windows becoming the de facto standard of low-
level graphics, and Open Look and Motif the (unfortunately still two) de facto
. standards of higher-level graphic functions. We have seen a standardization of
the ASCII representation of graphics in the form of the Postscript language,
which, for the first time, allows engineers and scientists to make their papers
(including figures) available electronically to their colleagues around the globe
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by placing them in so-called ‘‘anonymous FTP’’ accounts. We have finally seen
the general acceptance of the object-oriented (OO) programming paradigm as a
means of managing large pieces of code in a modular fashion with C+ + emerg-
ing as the most widely used OO programming language.

One decade ago, the operating system kernels offered on mainframes were
extremely rudimentary. This was a deliberate choice since computer manufac-
turers wanted to make a large percentage of the scarce computer cycles and
memory cells available to the end user, keeping the overhead of the operating
software (both in terms of CPU cycles and occupied memory) as small as they
could get away with. Today’s trend is just the opposite. The operating system
software is made as comfortable to use as possible, irrespective of how much
resources the operating system consumes. The time of the engineer is a consid-
erably more precious and scarcer commodity than either CPU cycles or memory
chips. After all, the Engineering Workstation is idling most of the time, waiting
for its slow single interactive user to issue the next command.

For this reason, the implementation of flexible integrated software environ-
ments was unthinkable at the time when my last survey was written. To be more
precise, the first integrated simulation environment, TESS [39], was in its early
design phase [38] around the time when my last review was written. However,
the first version of TESS, released in 1985, offered a rather crude environment
(operating) language, rudimentary graphics only, a painfully slow and not very
robust database, and was generally a far cry from what can be achieved today.
TESS deserves credit though for being visionary in predicting what simulation-
ists would ask for in terms of simulation support software in the years to come.

In light of the rapid development of computer technology over the past de-
cade, I was delighted when I was asked to undertake a new effort of surveying
the state-of-the-art of continuous-system simulation software. However,
whereas my previous review focused on features and capabilities of individual
simulation languages, the current review places its emphasis on integrated mod-
eling and simulation software environments, stating what has been achieved so
far, and daring to predict what the near future might bring in addition.

1.2 SIMULATION SCFTWARE

Many of the simulation languages that were reviewed in 1983 are still in use. If
anything, they have become more popular than ever. ACSL. [31] is still the most
widely used continuous-system simulation language on the market, and for good
reasons. It provides flexible model specification capabilities, excellent integra-
tion algorithms, and both the ACSL preprocessor and the ACSL run-time sys-
tem are satisfyingly robust.

One of the major reasons why I'did not and could not use ACSL in my re-
search projects at the time of my last review was ACSL’s lack of capabilities to
handle discontinuities properly [6]. However, shortly after my last review, the



Continuous-System Modeling ‘ 3

schedule statement was introduced into ACSL, which now allows one to handle
discontinuous models adequately. This feature is still not implemented in an op-
timal fashion because many of the built-in discontinuous functions (such as the
step function) have not been recoded to make use of the new facility, but this
does not prevent me from using ACSL; it only prevents me from using those
built-in functions.

At the time of my last review, ACSL had been fairly new on the market
and its preprocessor still contained an unhealthy number of bugs. However,
Mitchell & Gauthier offer excellent software support. When I report a problem
to them, I usually obtain a fix within 24 to 72 hours. In the mean time, ACSL
has matured tremendously. Its preprocessor is now mostly bug-free. Over the
past 2 years, I discovered only one new true bug in the ACSL compiler, which
was related to a table overflow with handling an unearthly large model (ACSL
provided for 10,000 generic variable names, whereas my program needed
more). As usual, I received a bug fix within less than a day. '

One decade ago, the interface between ACSL’s run-time software and its in-
tegration algorithms, particularly the Gear algorithm, still had a few problems.
However, in the meantime these have been fixed, and I have not discovered any
new integration problems with ACSL in a long time.

The availability of ultrafast Engineering Workstations (45 Mips or more)
makes it now feasible to apply ACSL even to very large and numerically difficult
problems such as the solution of two-dimensional parabolic partial differential
equations discretized using the method-of-lines approach.

The initial version of ACSL (running on VAX/VMS systems only) was still
fairly expensive (around $10,000) though not as outlandishly expensive as some
of its competitors. However, healthy competition and plummeting hardware
prices have driven the price of the ACSL software down to a level where it is
comfortably affordable to anyone who needs it. On a PC-based system, an ed-
ucational version of ACSL now sells for a few hundred dollars.

The only remaining major weakness of ACSL is its inability to handle alge-
braic loops adequately. Although ACSL provides for an implicit loop solver, this
tool is totally inadequate and inappropriate.

One of the major achievements of CSSL-type languages [2], such as ACSL,
is their equation sorter. Users can group equations together in a fashion that is
convenient from a modeling point of view, rather than having to worry about
properties of the underlying numerical solution algorithms that may call for a
drastically different statement sequence. The simulation preprocessor sorts the
model equations into an executable sequence. This facility is no big deal as long
as the user plays around with models consisting of 20 equations, but it becomes
most essential when the size of the model grows to several hundreds or even
thousands of equations, as this is now commonly the case.

Unfortunately, algebraic loops often cut across many different subsystems,
forcing the user to group equations together that are involved in an algebraic
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loop even if they logically belong to different subsystems. Algebraic loops are
nasty from a numerical point of view, but the user should not have to worry
about them. Use of ACSL’s implicit loop solver forces the user to again think
about the properties of the underlying numerical algorithm, which is exactly
what we tried to prevent by introducing an equation sorter.

Also, algebraic loops can be quite formidable in size, especially when mod-
eling chemical systems. A student of mine once formulated a dynamic model of
a 50-tray distillation column. He ended up with an algebraic loop involving ex-
actly 2573 equations! Agreed, my student was still fairly inexperienced when he
wrote this model.- A more experienced modeler would probably have been able
to produce a more manageable model. However, the example is still quite real-
istic. ACSL’s implicit loop solver is a rather inefficient tool for handling large
algebraic loops. In such a situation, it may be more appropriate to employ an
implicit numerical integration scheme, a so-called DAE-solver [5] that is able to
handle problems of the type

fix, x, u, t}) = 0.0 (1.1)

in place of the traditionally used explicit numerical integration schemes (the so-
called ODE-solvers) that handle problems of the type

x = fix, u, 1 ' ‘ (1.2)

I recommended strongly that Mitchell & Gauthier add one or several DAE-
solvers to their run-time package and modify the code generator of the ACSL
preprocessor to automatically invoke the DAE-solver when algebraic loops are
detected in the model (maybe while issuing a warning message to the user in-
dicating the problem). ‘

Notice, however, that the described weakness is not unique to ACSL, but is
one that all currently available CSSL-type languages have in common.

There are a few special-purpose simulation software systems that are worth
mentioning. There exist some systems geared toward simulating chemical reac-
tion dynamics, such as DIVA [25] and SpeedUp [32 and Chapter 9]. Contrary
to the traditional CSSL-type systems, these systems employ DAE-solvers in-
stead of ODE-solvers in their run-time software. DIVA has been successfully
applied to real-time simulations of bulky chemical processes such as distillation
columns. ‘

There also exist special-purpose tools for the simulation of analog electronic
circuitry. Most prevalent among those are the various dialects of Spice. As in the
case of the chemical simulation systems, circuit simulators employ implicit in-
tegration techniques to get around the algebraic loop problem. Circuit simula-
tors have been around for quite some time and could profit tremendously from
a reimplementation using modern DAE-solvers in place of the fairly primitive
Newton iteration schemes employed in currently available versions.
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Furthermore, there exist special-purpose simulators for mechanical manipu-
lators (robots). Also these systems are plagued by the same disease. Each con-
straint (coupling between neighboring limbs) introduces nasty algebraic loops
among outputs of integrators. I shall not discuss these highly spemahzed simu-
lators here in any further detail.

There exist many real-time training simulators for commercial airplanes, nu-
clear power plants, and some other complex industrial or military processes.
These software systems are highly specialized, and a discussion of the solution
techniques employed in their design does not contribute much to a general sur-
vey such as this. '

There exist a few simulation languages geared toward truly combined con-
tinuous and discrete simulation, such as COSMOS [23] and SYSMOD [41].
Combined continuous/discrete simulation [6] requires more than just event han-
dling. Such systems require at least waiting queues and enhanced capabilities for
dealing with random numbers and distribution functions, but to be used com-
fortably, they also require mechanisms for process descriptions. Most of these
systems, e.g., SIMAN [33] and SLAM {36], grew out of the discrete-event sim-
vlation world. Such systems offer only rudimentary facilities for continuous-
system simulation. SYSMOD [41] evolved from the continuous simulation
world and offers only a limited set of facilities for discrete-event simulation.
COSMOS [23] is the only simulation system currently on the market that offers
a fairly well-balanced palette of both continuous and discrete simulation capa-
bilities. However, a more detailed discussion of these software systems is beyond
the scope of this survey.

DESIRE [24] offers special facilities for modeling and efficiently simulating
artificial neural networks and fuzzy control systems. For these types of appli-
cations, DESIRE is clearly the language of choice. _

Finally, there exist special-purpose software systems for the qualitative de-
scription of continuous-time processes. The most prevalent among those sys-
tems is QSIM [26]. There also exist tools for mixed quantitative and qualitative
simulation of continuous-time processes [12]. However, also these tools are too
specialized to be discussed in more detail in a general survey such as this.

Although there exist still plenty of good reasons why special solutions may be
needed for the simulation of special processes, ACSL has become the major
workhorse for simulating effectively and efficiently large classes of continuous
systems. ACSL has its largest customer base among control engineers.

The statement made in the previous paragraph is somewhat subjective. It
is obviously influenced by my own exposure to and experience with the ACSL
language. There exist several other simulation languages, such as DESIRE [24]
and Simnon [17], with customer bases that are at least of the same order of
magnitude. However, I have very good reasons for recommending ACSL., rea-
sons that go beyond matters of personal preference and style. In the past, I have
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used many simulation languages and usually gave them up after some time be-
cause they were not flexible enough. Whenever I wanted to model a type of sys-
tem for which the software was not originally intended, I had to invent tricks
over tricks to convince the software to do what I wanted it to do. ACSL is the
first simulation language that I found that does not constrain me. When I re-
cently decided to implement mixed quantitative and qualitative models in ACSL
[12], I was able to achieve this goal quickly (with less than two weeks of work)
and without a need to invent dirty tricks. I do not know of any other simulation
language of which I could say the same.

1.3 MODELING SOFTWARE

Most simulation models coded in a CSSL-type language were still fairly short
one decade ago with larger models usually requiring ad hoc solutions (mostly
large and poorly maintainable Fortran programs). The situation has changed
drastically by now. ACSL programs containing 10,000 lines of code are no
longer a rarity. Unfortunately, ACSL’s model description capabilities, although
far superior to Fortran, are still not adequate for dealing with such large-scale
applications. Such applications call for the object-oriented (OO) programming
paradigm. Simple subsystems should be describable as atomic objects. Objects
can be interconnected to form ever larger molecular objects.

CSSL-type macros do not provide for an adequate mechanism to encapsulate
objects. This can be demonstrated by means of the simple circuit problem shown
in Figure 1.1. A block diagram of this simple electrical circuit is shown in Fig-
ure 1.2. This circuit can be encoded in the following ACSL program:

Program Circuit

Constant R1 = 100.0,R2 = 230.0,C=01E-6,L=18E-3
Constant tmx = 0.01

u0 = £(t)
iC = uR1/R1
uRR = RR * iL,

uC = INTEG(C/C, 0.0)
il = INTEG(ul/L, 0.0)

uRl = u0 — uC

ul, = u0 — uR&

i0 =1iC + iL

term(t.ge.tmx)
End
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Figure 1.1 Simple electrical circuit.
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Figure 1.2 Block diagram of electrical circuit.

The first equation describes the input to the circuit, i.e., the voltage source; the
next four equations describe the circuit elements themselves, i.e., the objects,
whereas the last three equations describe the circuit topology, i.e., the intercon-
nections between the objects (Kirchhoff’s laws).

Notice that this circuit contains two objects of type resistor, and, yet, the
equations describing these two objects look different. In the case of resistor R,
the voltage drop across the resistor seems to ‘‘cause’’ a current flow, whereas.in
the case of resistor R,, the current flow through the resistor seems to “‘cause’
a voltage drop. :

Clearly, the observed *‘causalities’’ are purely computational and have noth-
ing to do with the physics of the problem. This example demonstrates that, al-
though an equation sorter is a step in the right direction, it is obviously
insufficient for truly modular object-oriented continuous-system modeling [13].



8 Cellier

For this purpose, we require more advanced formula manipulation capabili-
ties [11]. '

It is rather inconvenient that the ACSL user must determine the (numerically)
correct causalities of dissipative elements, or more generally, the causalities of
all energy transducers (transformers exhibit exactly the same problem as resis-
tors). It would be much nicer if objects, such as a resistor, could be described
once and for all in terms of their physical properties and their interactions with
the environment. In the case of the resistor, such an approach would call for a
description of the resistor itself (Ohm’s law) and a separate description of how
this equation interacts with other equations of the neighboring components
(Kirchhoff’s laws).

However, object-oriented continuous-system modeling [13] is much more
than just a matter of convenience. State-space models suggest that each state
variable changes with time according to some law that is expressed in the cor-
responding state equation. But why does this happen? The voltage across a ca-
pacitor does not change with time unless it has a good reason for doing so.
Physics is strictly a matter of trade. The only tradable goods are mass, energy,
and momentum. Consequently, it would be much safer if the modeling environ-
ment were to enable the user to formulate mass balances and energy balances
rather than state equations. If a state equation is formulated incorrectly, a
CSSL-type simulation language will happily accept the incorrect equation and
trade it for beautiful looking multicolored graphs that may even seem plausi-
ble [9].

The modeling language Dymola [8,11,15] incorporates these concepts. In
Dymola, a resistor can be described as follows:

model type resistor
cut WireA(Va/i), WireB(Vb/ — i)
main path P < WireA — WireB >
local u
parameter R = 1.0
u=Va-—-Vb
u=R=*i

end

Ohm’s law is described in the usual way. It involves the parameter R, which has
a default value of 1.0, the local variable u, and the terminal variable i. The cut
and path declarations are used to describe the interface to the outside world.
Additional equations are formulated to specify the relations between the local
variables and the terminal variables.

Of course, the chosen approach also calls for a general mechanism to describe
the couplings between different interconnected objects. In Dymola, the above
circuit can, for example, be represented as follows:
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model circuit

submodel (vsource) UO

submodel (resistor) R1 (R = 100.0), RR (R = 20. O)
submodel (capacitor) C(C = 0.1E-6)

submodel (inductor) L(L. = 1.8E-3)

submodel Common '

node nO, nl, n2, n3

inputu

output y1, y2

connect Common at  nO,
Uo from nO to nl,
Rl - from nl to nl,
C from n2 to no,
R3 from nl to n3,
L from n3 to no

U0V =u

yl =Cu

ya& =Li

end

The submodel declaration instantiates objects from classes. For example, two -
objects of type resistor are instantiated, one named R1 with a parameter value of

R = 100.0 Q and the other named R2 with a parameter value of R = 20.0 Q.

The connect statement is used to describe the interconnections between objects.

Notice that the connecting equations (Kirchhoff’s laws) are not explicitly for-

mulated at all. They are automatically generated at compile time from the to-

pological description of the interconnections.

Upon entering the model, Dymola immediately instantiates all submodels
(objects) from the model types (classes). It then extracts the formulated equa-
tions from these objects and expands them with the coupling equations that are
being generated from the description of the interconnections between objects.
For the above example, the result of this operation is the following.

Uo V =%Vb — Va

Rl u=Va—-VDb
u=R=*i

R2 u=VvVa—-Vb
' u=R=+1

C - u=Va—Vb

C*der(u) =1

5L u=7Va—YVb

L +der(i) =u
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Common V=20

- circuit TOV =u
vyl =Cu
yR = Li

"R1Vb = CVa

Ci=Rli
R.1Va, = R2.Va
U0.Vb = R1l.Va
RRi + Rli= U0i
R2VDb = LVa
Li=R2i
CVb=LYVb -
TO.Va = CVb
Common.V = U0.Va

The first 10 of these equations are extracted from the submodels. The next 3
equations are extracted from the circuit model. The last 10 equatiofis represent
Kirchhoff’s laws. These equations are automatically generated from the connect
statements that describe the interconnections between the objects.

The partition command in Dymola solves the causality assignment problem
{11]. It also eliminates trivial equations of the type ‘ '

a=b (1.3)
The result of this operation is as follows:

Common (LVb]=0

Uo circuit.u = [RR.Va] — LVDb
C u=[Va] - LVDb ‘
Rl [u] = RR.Va —~ CVa
u =R *[i]
C C x[der(u)] = R1i
- R2 [u]=R=*Li
u = Va — [LVa]
L [ful=Va —-Vb
Lx[der(i)]=u
circuit Li+ Rli=[U0i]
[¥y1]=Cu
[yR] = Li

In each equation, the variable to be solved for is marked by square brackets.
Notice the different causalities for the two resistors.

At this point, further formula manipulation can be used to solve the equations
in order to generate a state-space model. Dymola has rules about the inverse of
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certain functions and handles the case of several linear occurrences of the un-
known variable. Solving the following equation for x

. ([x] 2 |
exp(a + sm(-b— + cx] — d)(exp(e) + 1)) - f=2g | (1.4)

- gives the result

arcsin{(In(sqrt(2g + f)) — a)/lexple) + 1)) + d

/b + ¢ (1.3)

x:

For the above circuit example, the result of the command
> output solved equations '
is as follows:

Common LVb =0

uo R2.Va = circuitu + LVD
C Va=u+ LVD
R1 u = R.Va — C.Va
i=uR
c der(u) = R1i/C
R2 u=R=+*Li
LVa=Va—-—u
L u=Va-Vb
der(i) = WL
circuit - U0i=Li+ Rli
yl =Cu
y = Li

Finally, the state-space model can be automatically encoded as a text file in any
one of a series of simulation languages. For example, the commands

> language acsl
= output program

automatically generate the following ACSL program:

e e A T e i e Al e = e . A L e e i e o i S S i S ot e e, e e e

PROGRAM circuit
INITIAL

CONSTANT . ..
R1XR = 1000, C = 0.1E-6, L. = 1.8E-3, . ..
R2XR = 0.0
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CONSTANT tmax = 001

CONSTANT . ..
u= 10.0
END $ “of INITIAL”
DYNAMIC
DERIVATIVE
o Submodel: Common.”
IXVb=0
. e — __Submodel: TO”
R2XVa = u + LXVDb
O Submodel: C”
CXVa = CXu + LXVb
e Submodel: R1”
R1Xu = RRXVa — CXVa
R1Xi = R1XwWR1XR
e Submodel: C”
CXu = INTEG(R1Xi/C, 0.0)
e e Submodel: R~
R2Xu = RRXR * LXi
LXVa = ReXVa — RRXu
L Submodel: I

e — ———_Submodel: circuit”
UO0Xi = LXi + R1Xi
yl = CXu
yR = LXi

END §$ “of DERIVATIVE”
termt (t.getmx)
END $ “of DYNAMIC”
END $ “of PROGRAM”

Notice that Dymola is not a simulation language in its own right. Dymola can be
viewed as a sophisticated macro processor because it can be used as a frontend
to a simulation language and thereby (among other things) assumes the role of
its macro processor. Dymola can also be viewed as a model generator because it
can generate models for a variety of different simulation languages. The cur-
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rently supported languages are ACSL [31], DESIRE [24], and Simnon [17].
However, the most adequate interpretation is to view Dymola as a modeling lan-
guage. Dymola has been designed to facilitate the object-oriented formulation
of models of complex continuous systems.

Dymola offers the following features:

1. Modular formulation of atomic continuous-system models (objects)

2. Hierarchical composition and interconnection of atomic and molecular ob-
‘jects into objects of ever-increasing complexity with automatic generation
of all coupling equations

3. Hierarchical data structures for connections (wires can be grouped into ca-
bles, and cables can be grouped into trunks) '

4. Support of both across and through variables in connections (the values of
all across variables connected to a node are the same, whereas the values
of all through variables connected to a node add up to zero) with automatic
generation of all coupling equations

5. Object instantiation (multiple objects can be instantiated from a single
class) '

6. Class inheritance (subclasses can inherit declarations of variables and
equations from their parent classes)

7. Equation sorting and solving (equations automatically sorted into an ex-
ecutable sequence, and each equation automatically solved for the cor-
rect variable)

8. Index reduction (algebraic loops among state variables automatically re-
duced to algebraic loops among auxiliary variables by means of symbolic
differentiation)

9. Linear algebraic loop solving (algebraic loops isolated and, if linear in the
involved variables, automatically solved by means of formula manipulation)

10. Nonlinear function inversion (analytic functions automatically inverted
during equation solving as needed)

Although Dymola was the first modeling language on the market, it is no longer
alone. Omola [29] has been recently added to the language zoo. Omola’s func-
tionality is basically equivalent to that of Dymola. Omola offers features similar
to those available in Dymola, except for linear algebraic loop solution, a feature
that is not currently offered in Omola. Contrary to Dymola which translates
models into ODE form (reduction to index 0), Omola translates models into
DAE form (reduction to index 1). Dymola supports the generation of simulation
programs in a variety of simulation languages, such as ACSL, whereas Omola
comes with its own underlying simulation system, OmSim. OmSim contains
several DAE-solvers. Dymola is now a commercially available product, whereas
Omola and OmSim are still experimental systems.
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1.4 GRAPHICAL MODEL EDITOR

Traditionally, models were always entered as text files. However, it is legitimate
to ask whether this is the most convenient way to encode models. Atomic models
are described by sets of equations, and there is nothing wrong with encoding
those as text files. After all, atomic models are usually quite small anyway. But
would it not be more convenient if each object could be associated with an icon
on the screen (to be designed interactively by use of a so-called icon editor) and
interconnections between objects could be described by means of graphical con-
nections between icons?

Graphical model editors were slow to come. TESS [39] offered a so-called
network editor (for discrete-event models) in 1985, but the networks were flat.
The network editor did not come with an icon editor to encapsulate subnetworks
as molecular objects. The first commerciaily available graphical model editors
for continuous systems were EASE+ [20], a generic model editor that comes
with a programmable target interface, i.e., can be used to generate models for
a variety of simulation languages, System-Build [22], a graphical simulation
language added to the MATRIX, [21] software, and a model editor incorporated
in Boeing’s EASY-5 simulation software [4]. Meanwhile, new graphical model
editors are thrown onto the simulation market monthly. Model-C is a competitor
of System-Build added to the CTRL-C [40] software; SimuLink was recently
added to Matlab [28]; and there also exists meanwhile a block diagram editor for
ACSL [31] called ProtoBlock. Simnon [17] offers a block diagram editor called
ISEE-Simnon. ’ ‘

Why this sudden avalanche of new products? In the past, the development of
graphics software was hampered by inadequate hardware and operating system
support and a heavy hardware dependency. Products, such as EASE+, had to be
reimplemented from scratch for each new hardware platform to which they were
ported. Consequently, these systems were very expensive. Moreover, pixel
graphics is bus-intensive. It is not meaningful to supply a fancy graphical model
editor for a terminal that is connected to a main frame computer by a 1200-baud
modem line. Only the availability of ultrafast and cheap Engineering Worksta-
tions made graphical model editors attractive. The very recent standardization of
graphics software with X for the low-level functions and Open Look and Motif
for the higher-level functions make the development of new graphics systems
much simpler, faster, and thereby cheaper. Moreover, X and its widget toolboxes
are hardware-independent, i.e., porting the software once developed to a new
platform has become a relatively easy task.

Evidently there is a market for graphical model editors. A company that does
not offer such a product is no longer competitive on the market. Consequently,
new products are rushed out onto the market as fast as the simulation software
producers can throw them together.
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Although most of these new products look slick and professional, quality has
suffered a bit under the hurry. The major problem is that all of these systems are
simple block diagram editors, i.e., they are not truly modular. They allow one to
draw on the screen a circuit as shown in Figure 1.2, but not one as shown in
Figure 1.1. (For electronic circuits, there do exist so-called schematic capture
~ programs, such as WorkView [42], that can be used to draw schematics on the
screen and that then generate Spice programs, but these are special-purpose
products for electronic circuits only.) Most of the block diagram editors mean-
while offer an icon editor, i.e., they are at least hierarchical in nature. However,
if two of these blocks share 10 variables, 10 connecting lines must be drawn
" between their icons. There is no support for hierarchical data structures. Also,
connections are strictly unidirectional, i.e., the user must specify which of the
blocks is responsible for computing each of the shared variables.

Many of the graphical model editors on the market as of today are self-
contained. They come with a very simple rudimentary simulation system inte-
grated into the software. The block diagram is simply interpreted. In some
cases, the model equations are numerically solved by a simple forward-Euler
algorithm; other products offer at least a fourth-order Runge—Kutta algorithm.
Years of development that went into today’s commercial simulation software
were simply thrown away to be able to offer a self-contained product that can be
sold cheaply and does not require collaboration with a competitor company. The
products are proudly presented at conference exhibitions, and all vendors dem-
onstrate happily that they can solve the Van der Pol oscillator problem on them.

Some designers were a little wiser and decided not to reinvent the wheel. In-
stead of making their system self-contained, they offer a frontend to an existing
simulation language, such as ACSL, thereby inheriting years of engineering that
went into the design of robust simulation software. Molecular objects are trans-
lated into simulation macros. This approach is better, but still not good enough.
The problem is that all the shortcomings of the macro solution are inherited. As
explained earlier, macros are not truly modular.

What should have been done was to design the graphical mode] editor as a
frontend to a modeling language, such as Dymola or Omola, rather than as a
frontend to a simulation language. With this approach, composition knowledge
could be expressed in terms of so-called stylized block diagrams [8). Figure 1.3 .
shows a stylized block diagram of our simple electrical circuit. Each intercon-
nection between blocks may represent multiple variables. In the above example,
each interconnection represents exactly two variables, one of the across-type
(the potential) and one of the through-type (the current). Connections between
blocks are nondirectional, i.e., the user is relieved of the burden of having to
solve the causality assignment problem manually. The code generated from the
stylized block diagram is the previously shown Dymola circuit model. Of
course, blocks in a stylized block diagram do not have to be square boxes. It is



16

I

I

Figure 1.3 Stylized block diagram of electrical circuit.
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perfectly compatible with the concept of a stylized block diagram to offer an
icon editor for the custom design of blocks. With this additional facility, the cir-
cuit diagram of Figure 1.1 can be interpreted as a stylized block diagram.
Decomposition knowledge and taxonomic knowledge are encoded in a sep-
arate window by use of a so-called system entity structure [43]. Figure 1.4
depicts a cable reel system for the deployment of deep-sea fiber-optic commu-

nication cables.

A system entity structure for the cable reel system is shown in Figure 1.5.
A decomposition that is indicated by a single vertical bar denotes a decompo-
sition into parts. Each such decomposition is associated with a stylized block

V meas
V set -
D pr—
+ amplifier

Figure 1.4 Functional diagram of a cable reel system.
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Figure 1.5 System entity structure of cable reel system.

diagram. Double-clicking on the CabSys-dec object opens up a new window that
shows the stylized block diagram of Figure 1.6. Stylized block diagrams are hi-
erarchical. For example, the motor block of Figure 1.6 contains another stylized
block diagram. Double-clicking on the Hydromotor-dec object opens up another

Fin e CabSys
Cable
Vs | Com- |CIT Con- | Ua mech | Cable
parator troller Motor Reel
Vineas Speedo- M
meter

Figure 1.6 Stylized block diagram of cable reel system.
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window that shows the stylized block diagram of Figure 1.7. A decomposition
that is indicated by a double vertical bar denotes a decomposition into variants,
a so-called specialization. For example, the motor is specialized into either a DC
motor or a hydraulic motor. Double-clicking on the Motor-spec object opens up
a new window with a rule-base editor to describe under what conditions the DC
motor should be chosen and when the hydraulic motor should be selected.

Unfortunately, the above described system is currently vaporware. There
exists a graphical frontend for Dymola, called LICS [16], but LICS was coded
10 years ago, at a time when neither the computer hardware nor the operating
software were ripe to support such a development. LICS was developed on a
VAX/11-780. It was controlled by a mouse with a home-built interface! While
LICS was running, all other log-ins to the VAX were disabled. LICS was later
ported over to a Silicon Graphics IRIS Workstation, and its name was changed
to HIBLIZ [18]. However, the software was ported with minimal changes, and
also the new version is heavily hardware-dependent. LICS (and HIBLIZ) offer
stylized block diagrams (without icon editor) and translate into Dymola. Hier-
archical decomposition is supported by means of a zoom/pan feature rather than
the system entity structure approach that has been advocated in this chapter. A
complete reimplementation of this software is needed. Using X and Motif, this
should be a much simpler task than the development of the original system.

Of course, icon editors can be used not only to custom-design boxes, but also
to custom-design connections between boxes. In this way, bond graph [10] ed-
itors also could be designed as special versions of stylized block diagrams, in the
same way as the previously shown circuit diagram can be interpreted as a special
type of a stylized block diagram. There are currently a few bond graph editors
on the market; however, those that I have had an opportunity to experience and
work with are all built in a fairly amateurish fashion employing ad hoc program-
ming techniques, i.e., they were designed in total ignorance of basic computer
science principles. A professionally built bond graph editor could be a very valu~
able element in an integrated modeling and simulation environment.

Hydro Motor
Compressor
. P,
u hydro mech
2 Servo Valve y Hmotor

Figure 1.7 Stylized block diagram of the hydromotor.
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1.5 SIMULATION ANIMATION

During simulation, users would like to see what is going on: Traditional CSSL-
type simulation software does not offer any run-time display capabilities. The
simulation is run first, and thereafter, the results can be viewed. This approach
makes a lot of sense in a main frame/terminal environment with limited re-
sources both in terms of CPU cycles and memory allocation. Today, this ap-
proach is obviously outdated. Some simulation systems, such as DESIRE {24},
offer, at least, a run-time display. A few variables can be selected that are dis-
played graphically while the simulation run is executed. However, more can be
done and has been achieved. In the context of graphical model editors, some
systems offer a *‘probe’” feature that allows the user to double-click on any con-
nection in the block diagram during the simulation run with the effect that a new
window pops up in which the selected variable is displayed. Some systems (such
as SimuLink) offer an ‘‘oscilloscope icon’’ that can be attached to any block di-
agram connection for preselected run-time displays. A “‘floating oscilloscope’
can be used to select an additional signal to be displayed on the spot.

However, even this facility is kind of primitive. It would be nice to be able to
interactively design a cockpit of an aircraft with meters, needles, and gauges,
and associate these with signals of the simulation software. Such a system has
been built on top of KEE (running on Symbolics computers). However, the types
of graphical elements needed to populate the animation depend strongly on the
application area. Chemical process control requires quite different types of an-
imations involving pictures of distillation columns, valves, and pipes. Simnon
[17] offers a real-time simulator for process control operator training, called Si-
mosa. Quite obviously, each application area has its special needs, and, yet, re-
cent advances in computer graphics make it now feasible to develop quite
general graphics systems that are flexible enough to custom-design screens for
diverse types of applications. However, these advances are so recent that simu-
lation animators that are currently on the market do not exploit them yet. Con-
sequently, all commercially available simulation animators are invariably
outdated. A new generation of simulation animators will quite certainly replace
them in the near future.

1.6 POSTANALYSIS SOFTWARE

Besides the on-line simulation animator, there is still a place for off-line analysis
of simulation resuits. After the simulation has been performed, users like to per-
form statistical analysis on simulation data, apply Fast Fourier Transforms
(FFTs) to simulation trajectories, redisplay some of the curves for a closer look,
etc. Graphical postanalysis of simulation results is a feature that traditional
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CSSL-type simulation software has offered for many years. However, the post-
analysis support offered was usually limited to the display of trajectory behavior.
This is clearly insufficient.

Already a few years ago, interfaces were created between ACSL on the one
- hand and CTRL-C [40% and Matlab [28] on the other. This is how I run all my
ACSL simulations. I never make use of the so-called ‘“ACSL run-time com-
mands’’ (which are not run-time commands in any true sense, but rather pre-
analysis and postanalysis commands-——ACSL does not provide for any
interactivity during the execution of a simulation run). Instead, I kick off the
ACSL simulation from within either the CTRL-C or Matlab environment and
import the simulation trajectories back into the environment in the form of vec-
tors and matrices. These simulation data can then be flexibly manipulated in
many ways. It is possible to look at a subset of data only (zoom), to apply a
logarithmic transformation on the data without rerunning the simulation, to su-
perpose curves in an arbitrary fashion, to apply an FFT transform to the data, to
perform statistical analysis on them, etc.

It turns out that flexible postanalysis software must make provisions for a
full-fledged high-level programming language (such as Matlab or CTRL-C) be-
cause it is impossible to foresee all meaningful postanalysis features and cast
them once and for all into a fixed set of precoded postanalysis operations to be
selected from a menu.

The postanalysis package should be intimately tied in with the environment
language (to be discussed later in this chapter). CTRL-C [40], Matlab [28], and
MATRIX, [21] are excellent examples of powerful and flexible, yet user-
friendly environment languages that can host the postanalysis software.

1.7 DOMAIN MODEL LIBRARIES

Although the previously discussed modeling software provides the capabilities
for developing object-oriented modular models of arbitrary continuous-time sys-
tems, the end user does not care to develop models for the basic modeling com-
ponents of his application area, such as transistors, compressors, robot arms,
turbines, etc., on his own.

In addition to the modeling software itself, which is domain-independent, an
integrated modeling and simulation environment should provide for domain-
dependent model libraries.

A modeling/simulation environment for electrical circuit simulation should
offer basic models of simple passive components (resistors, capacitors, induc-
tors, transformers), of active components (voltage and current sources), but also
of more complex components such as transistors (both BJTs and FETs) and di-
odes. Transistor models can be fairly sophisticated and quite complex [8]. These
models make programs, such as Spice, powerful and valuable.
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A modeling/simulation environment for electric power plants should contain
basic models of pumps, turbines, heat exchangers, pipes, etc. MMS [19] is a
modeling/simulation environment specialized for this purpose. MMS is cur-
rently available in two versions. One version contains a library of ACSL macros;
the other contains EASY-5 modules. Thus, MMS was designed and imple-
mented as a frontend to a simulation language. However, this decision places
many unnecessary constraints on the MMS user. For example, MMS modules
are characterized as either resistive modules or storage-type modules. Resistive
modules can only be connected to storage-type modules, and vice versa. This
rule encapsulates the fact that the user is indirectly responsible for solving the
causality assignment problem. MMS would be much more flexible if it were
implemented as a frontend to a modeling language rather than as a frontend to
a simulation language. One of my students is currently reimplementing MMS
in Dymola [45].

A modeling/simulation environment for thermal heating systems should con-
tain basic models of rooms, walls, windows, rockbeds, sunspaces, trompe walls,
etc. The end user should be able to make models of buildings by putting these
basic models together and should not have to worry about the equations that
describe these basic models themselves. Commercial products, such as
CALPAS 3 [3] and DOE2 [1], are successful, not because they ‘‘know’’ the
thermodynamic equations that describe conductive, convective, and radiative
heat flow, but because they protect the end user from having to apply these equa-
tions directly. The end user is being offered a set of fairly sophisticated modules
from which models of entire buildings can be thrown together within a few
hours. Another student of mine is currently implementing a new system of this
type on the basis of Dymola [45].

A modeling/simulation environment for chemical process modeling should
contain basic models of different types of separation columns (distillation col-
umns, stripping columns, rendering columns), of compressors and condensors,
of vapor/liquid separators and oil/water separators, etc. ASCEND [35] and
DESIGN-KIT [37] are modeling/simulation environments that have been de-
signed for this purpose. These systems offer a fairly nice touch-and-feel, they
are fully object-oriented, and they are carefully designed. ASCEND has been
mostly used for steady-state analysis, but the language design is not limited to
this type of application. DESIGN-KIT has a well-designed database interface.
Both systems are tailored toward chemical process engineering, i.e., they do not
make a clear separation between the domain-independent modeling language
and the domain-dependent mode! library. Thus, they are a little less general than
Dymola or Omola. I have currently two students working on a Dymola-based
implementation of this type of model library. One of my students is working on
a bond graph model of a distillation column [44]; the other student is working on
a bond graph model of an oxygen production plant for planet Mars.
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1.8 DOMAIN DATABASES

However, even availability of a domain mode] library is not sufficient. Models
cannot be simulated with equations alone; they also require data.

A BJT model in an electronic circuit simulator contains more than 50 param-
eters [8]. Collections of well-matched sets of parameter values for various types
of commercially available transistors may be equally if not more valuable than
the transistor model itself. There are companies who sell such databases as a
separate product [30]. The end user would like to describe a transistor used in
his circuit simply by providing its part number. Spice supports such a feature.

An electric power plant simulator relies heavily on data characterizing vari-
ous types of valves. It also depends on steam tables, and many other types of
data. These data items should be physically separated from the models that cap-
ture the structural relations among variables, i.e., the model equations.

A chemical process plant simulator should have access to tables of enthalpies,
evaporation temperatures, etc. Thick books have been written that are full of
such tables and other data [34]. A process plant simulator should be able to ac-
cess a computerized version of Perry’s handbook stored in an SQL database
[14], and the modeling language should provide for mechanisms to access such
a database.

In this respect, all of today’s modeling languages are deficient. Data are usu-
ally hard-coded into the models that use them. Neither Dymola nor Omola offer
special mechanisms for accessing domain databases. However, the problem can
be overcome by shifting the responsibility down to the underlying simulation
software. Many SQL databases are Fortran callable. In ACSL, calls to Fortran
subroutines can be encapsulated in macros that can then be referenced from
within the Dymola program.

TESS offers a built-in database, but TESS is geared toward discrete-event
systems, and moreover, the database is not particularly well-suited to hold per-
manent data. It is important to distinguish between sharable read-only databases
(e.g., to store Perry’s handbook) offering slow data storage but fast data re-
trieval, and nonsharable read-and-write databases for storing simulation trajec-
tories, note book files, etc., offering fast data storage but slow data retrieval.
The database provided as part of TESS is of the latter kind.

1.9 MODEL IDENTIFICATION AND
PARAMETER ESTIMATION

Even the most complete model database cannot provide numerical values for all
parameters. For example, in 2 mechanical system, numerical values of masses,
inertias, and spring constants are fairly easy to come by, but numerical values
for friction constants are almost impossible to obtain. Thus, a decent modeling
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" environment should offer facilities for estimating a subset of the model param-
eters from measurement data. :

Physical parameters can be estimated by means of nonlmear programming
packages. Such facilities are already available for ACSL, implemented in the form
of two separate optional software tools called OPTDES and SimuSolv. OPTDES
is most frequently used for mechanical and control systems, whereas SimuSolv
is mostly used for chemical process engineering and pharmacokinetics. Matlab
also offers two optimization toolboxes: a nonlinear programming toolbox (that
can be used together with SimuLink) and a system identification toolbox for the
computation of maximum likelihood estimators of linear systems.

Data to be identified often include statistical parameters of distribution den-
sity functions. There exist special programs on the market for just that purpose,
e.g., UniFit II [27]. It would be very useful if UniFit II could also be invoked
as a Matlab toolbox.

1.10 THE ENVIRONMENT LANGUAGE

At this point, it should be discussed how the various programs that were de-
scribed in the previous sections of this chapter fit together. We need some sort
of ‘“‘operating system’’ that connects all these programs. However, traditional
operating systems are concerned with file handling. For our purposes, this is too
inconvenient. What we need is a system that can manipulate data structures and,
most importantly, matrices and vectors. Such systems have been developed and
are on the market for a few years. Good candidates for the environment language
are CTRL-C [40], Matlab [28], and MATRIX, {21]. These three systems are
very similar. They are easy to use. Their touch-and-feel is that of a comfortable
pocket calculator that operates on double precision complex matrices rather than
scalars. A high-level programming language to manipulate these matrices was
also added. All of these systems offer excellent graphics capabilities for viewing
data interactively. Some of these systems offer special-purpose toolboxes for
such tasks as statistical analysis and parameter estimation. All three systems of-
fer capabilities for simulating nonlinear models; all of them also offer graphics
frontends (block diagram languages).

TESS [39] offers a much more primitive environment language: Its syntax is
that of an adventure game: a verb followed by a noun, such as: ‘*build network,”’
or ‘‘graph facility,”” or “‘report rule.”” TESS understands four different verbs and
about eight different nouns. Most combinations of a verb and a noun form a legal
sentence. Each legal sentence invokes a particular program (language) with its
own syntax and semantics. For example: ‘‘build network’’ invokes the graphical
model editor, and ‘‘build icon’’ invokes the icon editor.

Although this environment language provides for a loose framework linking
the various programs that are part of the TESS software suite together, this does
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not solve the real problems. The different modules (programs) communicate with
each other, and the user should have the possibility to exert some control over
this interaction. A true environment language, such as Matlab, will provide for
the necessary flexibility; the environment language offered in TESS does not.

1.11 THE SOFTWARE ARCHITECTURE

There exist several ways the various software tools in the integrated modeling
and simulation environment can interact with each other.

TESS [39] employs a database architecture. It is shown in Figure 1.8. In the
center of this architecture is the SDL relational database [38]. Built around this
database are the various modules that belong to the TESS software suite, such
as the network editor, the icon editor, the SLAM simulation language, the
postsimulation animator, and the postsimulation statistical analysis program.
The different modules share a common core of Fortran service routines. All
communications between the different modules go through the database. At the
outskirt of the software, the user is protected from having to call each of these
programs separately by the TESS environment language.

This architecture is very easy to realize. By demanding that all communica-
tions between modules go through the database, each module can be limited to
offer exactly three interfaces: (i) a standardized interface to the relational data-
base (ii) another standardized interface to the environment language, and (i11) a
nonstandardized interface to the user. Notice that the TESS language does not

DATABASE

Data
i“’"f“ d& Animations
TESS FORTRAN
LIBRARY

Figure 1.8 TESS architecture.
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protect the user from understanding each of the modules individually—it only
protects him from understanding the (VMS) operating system. -

Although TESS (and its competitor shell, CINEMA) are fairly primitive
from the perspective of modern window management systems and CASE archi-
tectures, these two discrete-event modeling and simulation environments are
interesting from a historical perspective. They clearly represent pioneering ef-
forts into the design of a new generation of modeling and simulation software
environments.

Another approach to be considered is the more layered architecture shown in
Figure 1.9. In this architecture, the user interacts with a (Matlab-like) environ-
ment language that is intimately linked to the read-and-write database (in Mat-
lab, this database is simply the stack). The end user calls the graphical model
editor through the environment language. The icon editor and the model library
builder can be called in the same fashion, and also the animation editor can be
called through the environment language. Once a model has been created, it is
compiled down into the textual modeling language (e.g., Omola or Dymola).
Library module calls are resolved through the link between the icon library and
the model library. The textual OO-model is then compiled further into a simu-
lation program. At this point, the object-orientation is lost. The resulting simula-
tion program is a monolithic unstructured program that is optimized for execution
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Figure 1.9 Layered environment architecture.
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speed, not for human readability. The access to the model database can be re-
solved either at compile time (by extracting the necessary data items once and
for all from the read-only SQL database and incorporating them directly into the
generated simulation program), or at run-time (by creating a link between the
simulation program and the SQL database). The former approach is more cum-
bersome, but may lead to more computationally efficient run-time code.

The interaction between the simulation program and the animation program
should probably be direct, not going through the database. Again, this decision
is based on efficiency considerations. However, it is not clear at this point
whether it is better to have the simulation program call the animation program
like a subroutine, whether the animation program should be in charge and call
the simulation program whenever it needs new data, or whether both programs
should be implemented as separate tasks with a standardized means of intertask
communication (rendezvous). The latter approach may provide for the most
medular solution, and in addition, it allows one to run the simulation task and
the animation task on two separate processors. These two tasks have to be ex-
ecuted simultaneously, and both are computation-intensive.

A system as depicted in Figure 1.9 does not currently exist for any applica-
tion domain. However, modern window management and CASE software have
.made the implementation of such a system feasible and affordable. I am con-
vinced that several such systems for different application domains will appear on
the simulation software market within the next few years.

Although the field of computer simulation has matured quite a bit over the
past decade, modeling and simulation software design can still make for an ex-
citing and rewarding research area. '

112 CONCLUSIONS

In this chapter, a new architecture for an integrated continuous-system modeling
and simulation environment has been presented. An overview of currently avail-
able software tools that might be used as components of such an integrated soft-
ware environment was also given.

This is the third survey of continuous-system simulation software that I
wrote. My first survey (1975) focused on concepts and components of continuous-
system simulation languages; the second survey (1983) compared features of an
extensive list of contemporary continuous-system simulation systems. The third
survey (1992) focuses on concepts and components of integrated continuous-
system modeling and simulation environments. Finally, 1 hope to be able to
write a fourth survey around the turn of the century in which intend to compare
features of a palette of contemporary modeling and simulation environments.

My software surveys are usually quite critical. I do not mind stepping on var-
ious vendors’ toes—after all, they are only virtual toes. In the past, my critiques
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were usually followed quickly by new releases of several of the critiqued prod-
ucts, releases that removed many of the shortcomings that were discussed in my
reviews. Whether this is purely accidental, 1 do not dare to say. However, if it is
not accidental, I believe that my software critiques have made a significant con-
tribution to the advancement of simulation science.: '

This survey has, quite noticeably, a somewhat personal touch. It could not
possibly be totally impartial or objective. The survey draws heavily from my
own personal experiences with the various software tools. This is the reason
why I decided to write this chapter in the active voice rather than in the more
traditional passive voice.  An account of personal experiences reported in pas-
sive voice reads strangely, and use of the active voice softens my statements
down since the reader is constantly reminded of the subjective nature of the
account. However, to those readers (except for software vendors) who might
feel offended by my personal writing style, I present my sincere and humble
apologies. 1 only try to serve my scientific community in the way I can do
it best.
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