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ABSIRACT

In this paper, an alternative to SPICE as an electrical circuit modeling and
simulation tool is explored. SPICE has been a very popular automated circuit analysis
tool of industry and universities, alike. A new modeling tool, Dymola, supports
object-oriented modeling and can generate state-space models for simulation in
several different simulation languages: ACSL, DESIRE, Simnon, SimuLink, and
DSblock. In Dymola, objects are mathematically modeled as implicitly described sets
of ordinary differential equations. Dymola objects may then be interconnected to
form more complex systems.

This paper develops a library of PNP and NPN bipolar junction transistor
models, and investigates use of the transistor models as subcomponents to more
complex circuits such as operational amplifiers. The simulation results are compared
to those obtained from two Spice dialects, and are discussed in terms of accuracy,
efficiency, and flexibility.

1. INTRODUCTION

Today's circuit designers use automated tools to model and simulate electronic
circuit designs prior to committing a design to a fabrication process. One of the more
popular modeling and simulation tools for electronic circuits is SPICE.

A variety of SPICE dialects exist to run on various computers from desktops to
mainframes. SPICE uses a topological modeling approach for circuit description. In
this approach, all circuit nodes are numbered and the circuit designer assigns circuit
element terminals to nodes. Consider the simple logic circuit of Figure 1.

" Figure 1. Simple Logic Inverter

In SPICE, the following description models this circuit.

Simple Logic Inverter
0

Vin 1

Vsl 0 3 6

Vs2 5 0 6

Q1 4 2 0 5 PROC35.N
Rin 1 2 5.6k
Rbias 2 3 10.0k
Rload 4 5 1.0k

.MODEL PROC35.N NPN

+ IS=1.1fA BF=100 BR=1

+ RC=500 RE=15 RB=1000

+ CJC=.3pF CJE=-,S5pF CJS=.lpF
+ VJIC=.65 VJE=.77 VJIS=.75

Note that the first character of each element name determines type of circuit element
being used: V - voltage source, R - resistor, Q - transistor. The element name is
followed by node assignments for its terminals. The node assignments are followed
by element parameter assignments. In the case of the bipolar junction transistor (BIT)
element Q1, PROC35.N refers to a . MODEL statement which allows us to group sets
of device parameters for the BJT element type.

Not all SPICE dialects use the same equations or device models. In fact, the
equations and device models used in SPICE software packages are often proprietary
and the circuit designer using a particular SPICE dialect will not normally have
visibility of the equations coded into the software. This limitation constrains the
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designers understanding of the model he is using and the relationship a particular
parameter may play in modeling physical characteristics of a device. This is
particularly true for the more complex active devices such as BJTs, junction field
effect transistors (JFETs), and metal oxide semiconductor field effect transistors
(MOSFETSs). Furthermore, many versions of SPICE do not allow the user access to
internal voltages, currents, and other circuit element parameters. These limitations
constrain ones ability to analyze and interpret simulation results relative to a particular
parameter or set of parameters.

Another limitation of SPICE as a modeling and simulation tool is its restriction
to electrical and electronic components. SPICE has no facilities to model non-
electrical systems or interfaces between electronic and non-electronic systems. SPICE
is a well proven tool for electrical and electronic circuit engineering. It provides
limited support, however, to the systems engineer designing electro-optic, electro-
mechanical, electro-biological, or electro-chemical systems.

A modeling language is needed to (1) allow the designer to directly see how a
parameter fits in the description of a device, (2) allow the designer to access internal
operating parameters and values of a device during simulation, (3) support topological
and/or power and energy flow descriptions of systems and subsystems, (4) support
hierarchical modeling, and (5) support modeling of various types of physical devices -
electronic, mechanical, biological, chemical - and coupling these devices together into
systems.

One potential modeling language is Dymola (Elmqvist 1978). Dymola is an
object-oriented modeling language and preprocessor. As a modeling language, it
allows the modeler to hierarchically decompose and describe a system and its
subsystem components in a very compact, yet easily readable, syntax. Furthermore,
Dymola allows the modeler to separately describe the model/system and the
experiment/stimulus under which to simulate the model. As a model preprocessor,
Dymola can determine the causalities, reduce the structural singularities, and solve the
algebraic loops arising from the interconnection of subsystems (submodels) and
generate a state-space description of the model in a variety of continuous system
simulation language (CSSL) -type modeling and simulation languages (Cellier and
Elmgqvist 1993). In (Cellier 1991), Dymola is proposed as an alternative to SPICE:
"If we are able to make Dymola powerful enough that it can handle arbitrarily
complex circuits containing arbitrary algebraic loops and structural singularities, we
can automatically generate a state-space mode] that will execute much more
efficiently at run-time than the currently used SPICE code."

To support his assertion, Cellier began developing a Dymola model of a bipolar
Jjunction transistor (BJT). As described in this paper and in (Hild 1993), this model
has meanwhile been developed further, and its accuracy and validity were verified
against BBSPICE (Burr Brown 1987) and PSpice (MicroSim 1988). This paper also
discusses outstanding developments needed to achieve the full benefits of using
Dymola over SPICE as envisioned by Cellier.

2. CIRCUIT MODELING USING DYMOLA

2.1, _The Basic Electri MPON
Modeling the basic circuit elements in Dymola is a straightforward process.
The following model, for example, describes the electrical characteristics of a resistor

and its interfaces.

model type resistor
parameter R=1.0
cut Wirea(vVa / 1) WireB(Vb / -i)
main path P <WireA - WireB>
local u
u=va - Vb
R*1 = u
end

For added clarity, Dymola keywords have been bolded. This description
defines an object class (model type) of type resistor. The resistive value of the
resistor is defined by the parameter R, which is set to a defauit value of 1.0. The cut
statement defines the two wires of a resistor used to connect it into a circuit. The path
statement further defines this connection as a directed path from the input cut to the
output cut. The local variable u is used to compute the voltage drop across the resistor
and Ohm's Law is used to describe the resistor itself.



Similar object class (model type) descriptions for the resistor and other basic
circuit elements - inductor, capacitor, diode, voltage source, current source, and
common (ground node) - have been developed and consolidated into a Dymola library
file of electrical components. This Dymola library file is listed in (Hild 1993). A
modeler using Dymola can simply call this library file and then use these component
descriptions in the modeling of more complex citcuits and systems.

2.2, Modeling Circuits With The Basic C

After defining and describing the model types to be used in a circuit, the next
step is to declare (instantiate) each component in the circuit and describe the
interconnections. For example, the simple passive electrical circuit of Figure 2 is
described in the following Dymola model. .

model circuit
submodel (voltage) U0
submodel (resistor) R1(R=100.0) R2(R=200.0)

submodel (capacitor) C(C=1.0E-6)
submodel (inductor) L(L=1.5E-3)
submodel common

input u

output yl1, y2

connect commen - U0 - R1 - C - common
connect U0 - R2 - L - common

Ud.u = u
yl = C.u
y2 - L.1
end
R1=100Q R2=2008
uo
yl(t) y2(t)

TC=1-°”f L-1.5mh

Figure 2. Simple Passive Element Electrical Circuit

The submodel declaration instantiates each model type (object). The parameter
value settings for an object are annotated in parentheses and override the default
settings found in the model type descriptions. The connect statements allow for a
compact description of the component interconnections in terms of two directed paths.
Finally, the three algebraic equations at the end of the model connect the input and
output parameters to the appropriate model variables. In this model, the input and
output variables are variables found within the voltage source, capacitor, and inductor
submodels. A dot notation of the type 'submodel_name.variable_name' is used to
identify the respective submodel variables.

From this description, Dymola can automatically generate the connecting
equations based on Kirchhoff's voltage and current laws. From the connecting
equations and the component description equations, Dymola can automatically
determine the causality assignments, reduce the structural singularities, and solve the
algebraic loops that result from submodel coupling.

With this background in electrical circuit modeling in Dymola, we now turn to
the development of a bipolar junction transistor model using Dymola.

3. THE BIPOLAR JUNCTION TRANSISTOR

The bipolar junction transistor is built around p-n junctions, These junctions are:

highly nonlinear in their electrical characteristics. A diode is a p-n junction with the
anode equating to the p-side and the cathode equating to the n-side of the junction.
Forward biasing the junction diode is achieved by placing the p-side at a higher
potential than the n-side.

3.1. The P-NJunction

Figure 3 provides three depictions of the p-n junction. The first depiction is of
the physical device with a heavy p+ doping concentration for the anode and a lightly
doped n- silicon base structure for the cathode. The p-n junction is depicted in the
center with electrical schematic symbols. Note that the capacitance of the junctionis a
non-linear function of the charge stored in the junction. Also, the resistance of the
junction accounts for the minimum admittance of the junction. An aggregate junction
diode schematic symbol is depicted on the right.

From Figure 3 it is seen that the current through the p-n junction is simply the
sum of currents resulting from the capacitance, admittance, and ideal diode effects of
the junction. The relationship of the current through, and the voltage across, the
junction is:
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1= 1g +ig + ig

19 = Ig*exp(ug/(Ve*Na)) - Ig
ig = Gpin*ug

iz = Cg*der(ug) = der(qe)

where I is the transport saturation current of the diode; Vy. is the thermal voltage; Ng
is the current emission coefficient; Gy ; , is the minimum admittance of the junction;
and g = Cg*ugq is the electrical charge stored in the junction capacitance. The
thermal voltage is computed from Vy = k*T/q where k is Boltzmann's constant; T
is the temperature; and q is the electrical charge of an electron.

Cathode

TﬁAnode Anode

Ly

Cathode Cathode

Figure 3. P-N Junction Models

In (Cellier 1991), the electrical charge of the junction is approximated as a
function of current and voltage with the equation:

o = Tg*lg *Vpi*Ca*(1-(1-ug/Vpi)**(1-mg))/(1-mg)

where 14 is the transit time constant of the capacitance, 1 j is the current through the
Jjunction diode which is also a function of ug, Vi, is the built-in voltage potential of
the junction, C4 is the zero-bias depletion capacitance, and mg is the exponential
grading factor of the junction.

By handling the first and second terms of g separately and taking their
derivatives with respect to the junction voltage ug, the diode diffusion capacitance
and the junction depletion capacitance respectively are obtained as follows:

Cgif = der(de-dif)
= Tg*(Ig*exp(ug/ (Ve *Ng) )}/ (VL*Ng))

cdep = der(qc-dep)/der(ud)
= Cya/(1-ug/Vpj)**mg.

This approximation of the depletion capacitance Cgep, however, has a
singularity at ug = Vypj. In (Van Halen 1988), the following approximation
equation for Cgep, is proposed to eliminate this singularity:

Cgep = Ca / (1 - (ug - O‘S*Vt*exP((ud_vbi)/vt)/vbi)**md'

From the above equations, the p-n junction can easily be modeled in Dymola
with the following description.

model type jdiode
cut Anode(Va / I) Cathode(Vb / -I)
main path P <aAnode - Cathode>
parameter ND~1 IS=1.0E-16 TD=0 CD=0 VD=0.75 MD=0.33 ->
AREA=1 GMIN=1.0E-12
external DTemp FTemp VT ISfact VvDfact
terminal Id u .
local ISv Vbi CDv ISe Ic C4if Cdep denom
{ Electrical equations }
u =Va - Vb
I = Id + Ic
Id = ISe - ISv + GMIN*u
ISe = ISv*exp(u/(VT*ND))
Ic = der(u) * (Cdif + Cdep)
Junction capacitance equations }
Cdif = TD * (ISe/(VT*ND) + GMIN) {Diffusion cap.}
Cdep = Cbv / denom {Depletion cap.}
denom = (1 - (u - 0.5*VI*exp((u-Vbi)/VT))/Vbi)**MD
{ Temperature adjustment equations }
ISv = IS*AREA*ISfact
Vbi = FTemp*VD + VDfact
CDv = CD*AREA*(1 + MD*(1 - Vvbi/VD + 4.0E-4*DTemp))
end

-~

This description introduces three more declaration statements available in
Dymola: external, terminal, and local. External parameters allow for an implicit
data exchange between the submodel and the next higher order system, i.e. externals
are like global parameters. Calling models must acknowledge the existence of
externals by declaring such variables as internal. Terminals and locals are variables
in the model that may change in value during a simulation run. Terminals support
connections to other devices while locals do not. Terminals are accessed using the dot
notation introduced earlier.



The above description also introduces the jdiode temperature adjustment
equations. The performance of a p-n junction is temperature dependent. This model
compensates for temperature effects on the transport saturation current, IS, the buiit-in
junetion potential, VD, and the zero-bias capacitance, CD. These temperature
equations were found in both (Meta-Software Inc. 1990) and the BBSPICE source
code (Burr Brown Corp. 1978).

32, Modeling The Bipolar Junction Transi

The bipolar junction transistor consists of multiple p-n junctions. The two
primary junctions are the base-collector and the base-emitter junctions. A third p-n
junction occurs across the substrate. BJTs are classified as either NPN or PNP
transistors based on the doping of the emitter, base, and collector. BJTs are further
classified as being either vertically or laterally diffused transistors depending on the
physical geometry of the device. Figure 4 shows a vertically diffused and laterally
diffused NPN transistor. For the PNP transistor the doping concentration in each
region is simply reversed.

Emitter Base Collector Emitter Base collector

Substrate
Figure 4. Vertical And Lateral NPN BIT

Substrate

From Figure 4 it is seen that the substrate p-n junction is formed with the
collector for the vertically diffused BJT, and it is formed with the base for the laterally
diffused BJT.

For the BJT a standard convention for current flow into the transistor is
specified to avoid memorization of different convention sets depending on the BJT
type. 'This standard convention is shown in Figure 5.

‘ Collector

-t—
Base Substrate

& Emitter
Figure 5. BJT Current Convention
The following Dymola statements model this BJT interface.

cut C(VC / IC) B(VB / IB) E(VE / - IE) S(VS / ISUB)
main cut CBES [C B E §] X

path BE<B-E> BC<B-C> BS<B-S> CE<C-E> CS<C-S> ES<E-S5>
path EB<E-B> CB<C-B> SB<S-B> EC<E-C> SC<S-C> SE<S-E>

‘The directed path flows given in this description allow for a compact specification for
any combination of directed flows into and out of the transistor.

Figure 6 provides a graphic model of the vertically and laterally diffused NPN
transistof. In the vertical NPN transistor, the substrate is connected to the collector.
For the lateral NPN, the substrate is connected to the base. The PNP transistor model
is the same except that the diode polarities are reversed. This is the same model as
given in (Cellier 1991).

Collector
ree

IntCollector

dbs

Substrate
(vertical)

ICo

Substrate
(lateral)

Figure 6. A Vertical And Lateral NPN Transistor Model
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Describing these four types of BJTs is straightforward using the concept of
inheritance as supported by Dymola. Using inheritance, the internal cornponents of
the BIT can be described in a generic BJT model which can then be called upon to
describe the NPN and PNP, vertical and lateral, BJTs specifically. Using this method,
the following model describes the laterally diffused NPN BJT.

model type (BJT) NPNlateral

{ Plug the internal circuits together. }
connect  rbb from B to IntB
connect xrcc from C to IntC
connect ree from IntE to E
connect dbe from IntB to IntcC
connect dbe from IntB to IntE
connect dbs from IntB to IntS
connect wire from S to Ints
connect cbex from B to IntC
connect ibe0 from IntB to IntE
connect ice0 from IntC to IntE

end

Models for the three other BJT types are contained in (Hild 1993). The model
of the interface convention given previously is part of the generic BJT model as it is
common across all BJT types. The rest of this generic BJT model is presented next.

3.3, The External Base-Collector Capacitance

The external base-collector capacitance, Cbcx, is used to model the physical
distribution of the junction charge and current flow across the base. Cbex is actually
part of the base-collector junction depletion capacitance. In (Cellier 1991) this
capacitance is modeled as a separate capacitor. The parameter XCJC is used to set the
fraction of the base-collector capacitance to be found within (internal to) the junction
diode model, whereas 1 -XCJC is used to set the fraction of capacitance in Cbcx, the
capacitance distributed across (external to) the junction diode. Rather than compute
the base-collector capacitance twice and then multiply each result by XCJC and (1-
XCJC) in determining the associated capacitance currents, we can compute the total
capacitance current once and multiply this by XCJC and (1-XCJC) to obtain the
assocjated capacitance currents internal to and distributed across the junction. This
approach to modeling the external base-collector capacitance also resolves the
degenerate system problem with the BJT model described in (Cellier 1991).

Using this approach and choosing to compute the base-collector capacitance in
the junction diode model, the Cbcx capacitance can be modeled as a dependent
current source:

model type Csource
cut A(. / I) B(. / -I)
main path P <A - B>
terminal IO
I = I0
end

where the terminal I0 statement is used to connect the dependent current to its
determinants, in this case, the base-collector junction diode where the total
capacitance current and its distribution across the base are computed.

3.4, The Tw nden n
The two dependent current sources ICO and IBO represent the DC component

of the collector current and the base current. These current sources can be modeled
with the following set of equations.

ICO = (ibe-ibe)/gb - ibc/BR - icn
IBO = ibe/BF + ibc/BR + ien + icn - ibe
icn = ISC*(exp(vbc/{(VI*NC)) - 1)
ien = ISE*(exp(vbe/(VT*NE)) - 1)

In these equations, ibc and ibe are the base-collector and base-emitter diode
currents; icn and ien are also diode currents, but they are based on the leakage
saturation current parameters ISC and ISE and the leakage emission coefficients NC
and NE. VT is the thermal voltage. BF and BR are the ideal maximum forward and
reverse beta coefficients that represent the DC current gain factors IE/IB and
IC/IB. The term gb is the base charge. SPICE models the base charge with the
following set of equations.

ql = 1/(1 - vbc/VAF - vbe/VAR)
q2 = ien/IKF + icn/IKR
gb = 0.5*ql*(1 + (1 + 4*Q2)**0.5)

Here, vbe and vbe are the voltages across the base-collector and base-emitter diodes
respectively; VAF and VAR are the forward and reverse early voltages; and IKF and
IKR are the forward and reverse high current beta roll-off (degradation) parameters.

Also, as will be disqussed later, the derivatives, with respect to vbe, of these
base charge equations will be needed for the base-emitter diode model. These
derivative equations are listed here.

dql = der(ql)
= 1/(VAR*ql*ql)



dq2 = der(g2)
(ien+ISE)/(VT*NC*IKF)

dgb = der(gb)
gb*der(ql)/ql + gl*der(q2)/sqrt(l+4*q2)

The above equations are included as part of the top level BJT model. The
computed currents ICO and IBO are connected to the dependent current source
submodels ice0 and ibe0 respectively. The current sources ice0 and ibe0 use
the same dependent current source model as given for the external base-collector
model above.

3.5, The Coll And Emitter Resi

The collector and emitter resistors of the BIT model are modeled as area
dependent resistors. The arca parameter is a scaling parameter. These resistors are
modeled as follows.

model type rce
cut A(va / I) B{(Vb / -I)
main path P <A - B>
cut Par(Rv)
parameter AREA
local u
u=VvYa- Vb
u = I*RvV/AREA
end

Note that the same model type can be used to describe both the collector
resistor, rcc, and the emitter resistor, ree. In this model, only the AREA is declared as
a parameter; the resistive value Rv has been declared as a cut. Typically, transistor
circuits are fabricated on a single chip. To minimize the number of fabrication
processes, and thus the cost of manufacturing a chip, the transistors on a chip will be
very similar and have the same parameters with the exception of the area occupied by
each transistor. So, declaring all but the AREA parameter as cuts in these models will
allow all the parameter declarations to be consolidated in a separate parameter
specification model, BJTpar. The parameters for multiple transistors can be set once
in BJTpar and then connected to the individual BITs of the circuit being modeled.

This scheme is very similar to the .MODEL statement of SPICE. This scheme
will also allow for consolidation of BIT related constants and temperature
compensation factors and equations. One such equation is for the temperature
sensitive resistor presented below. This scheme can save CPU cycles at runtime by
evaluating a common set of equations once for several transistors. The scheme also
saves on the variable name space by minimizing the number of unique variables
instantiated for multiple transistors.

The elements of an integrated circuit are temperature sensitive. From the
HSPICE manual and the BBSPICE source code, the resistance found in the collector
and emitter is a quadratic function of temperature which is modeled with the equation:

Rv = R*(1 + TR1*DTemp + TR2*DTempSq)

where TR1 and TR2 are the first and second order temperature coefficients. DTemp
and DTempSq are the difference and the difference squared of the device and room
temperature. As stated above, these temperature adjustment equations are
consolidated in the BJTpar model. )

3.6. The Base Resistance

The base resistance is the most important resistance in the BJT model and
correspondingly has a more complex model than the collector and emitter resistances.
It is a variable resistor where the resistance is dependent on the current through the
base as well as the area associated with the BJT. The SPICE model for the base
resistance is:

rbb = RBM + 3*(RB - RBM)*(tan(z) - z)/(z*tan(z))**2
with
zZ = (-1 + sqrt((1+144*ib)/(IRB*pi**2}))
/(24*sqrt (ib/IRB)/pi**2).

RBM is the minimum resistance given a high base current; RB is the maximum
resistance given a low base current; ib is the base current; pi is the constant 3.14159;
and IRB is the base current where the base resistance falls halfway between RB and
RBM. -

The above equation for z fails, however, if the parameter IRB is set to zero. In
that case, SPICE automatically switches to the simpler equation:

rbb = RBM + (RB - RBM)/gb
where gb is the base charge discussed earlier. The following Dymola model for rbb

implements this SPICE model. This implementation has commented out the base
current model and uses only the simpler base charge equations.

model type rbb
cut A(Va / I) B(Vb / -I)
main path P <A - B>
cut Par(RBv RBMv IRBv PiSq)
parameter AREA
external gb
local u R z tz
u="%Va - Vb
R = if IRBv > 0.0 ->
then (RBMv + 3.0*(RBv-RBMV)*(tz-z)/(2*tz*tz))/AREA ->
else (RBMv + (RBv - RBMv)/gb)/AREA
z = if IRBv > 0.0 ->
then (-1 + sqrt(l + 144*I/(PiSQ*IRBV*AREA))} ->
/(24*sqrt{I/{IRBV*AREA))/(PiSq)) ->
else 0.0 ’
tz = if IRBv > 0.0 then tan(z) else 0.0
R*I = u
end

For this model, P1Sq is a global constant that is included in the Par cut along
with the other model] parameters. Again, this mechanism allows consolidation of these
factors in BJTpar. The base resistor is temperature sensitive and uses the same
compensation equation as ree and rcc for the high and low current resistance
temperature adjustment.

3.2. The Base-Collector Diode

A model for the p-n junction diode was presented earlier and will form the basis
of our base-collector diode (dbc) model. Our deviation from the p-n junction diode
model is based on the development of the external base-collector capacitance model.
The goal was to calculate the base-collector depletion capacitance once and use the
internal base-collector fraction parameter XCJIC to distribute the current between the
internal and external models. In the following dbc model, Ix is the external
capacitance lcurrem and the terminal declaration of Ix allows it to be connected to the
Cbcx model.

model type dbc
cut Anode(va / I) Cathode(Vb / -I)
main path P <Anode - Cathode>
cut Par(VINR ISv TRv CJCv XCJCv VJICv MJCv GMINDCv VT)
parameter AREA
terminal Id u Ix
local ISe Ic Cdif Cdep denom
{ Electrical equations }
u=va - Vb
I = Id + Ic
Id = (ISe - ISV)*AREA + GMINDCv*u
ISe = ISv*exp(u/(VTNR))
Ic = der(u)*(Cdif+XCJCv*Cdep) {Internal cap current}
Ix = der{u)*(1-XCJCv)*Cdep {External cap current}
{ Junction capacitance equations }
Cdif = TRv * (ISe/(VTNR) + GMINDCv) {Diffusion cap}
Cdep = AREA*CJICv/denom {Depletion cap}
denom = (1-(u-0.5*VT*exp((u-VJICV)/VT))/VICV)**MICv
end

3.8, The Base-Emitter Diode

Again, the p-n junction diode model forms the basis of our base-emitter diode
(dbe) model. The base-emitter diffusion capacitance term, however, is a bit more
complex as it is dependent on the base charge as well as the base-emitter current. The
HSPICE user's manual provides the following equation for this capacitance:

Cdif =~ TF*((IS*exp(u/(VT*ND))/(VT*ND) + GMIN)/qb
- Id*der(gb)/(gb*gb)).

Applying this modification to the p-n junction diode model results in the following
dbe model. :

model type dbe
cut Anode(Va / I) Cathode(Vb / -I)
main path P <Anode - Cathode>
cut Par(VINF ISv TFv CJEv VJEv MJEv GMINDCv VT)
parameter AREA
external gb dgb
terminal Id u
local ISe Ic Cdif Cdep denom
{ Electrical equations }
u=Va - Vb
I =-1d + Ic
Id = (ISe - ISV)*AREA + GMINDCv*u
ISe = ISv*exp(u/(VTNF))
Ic = der(u) * (Cdif + Cdep)
{ Junction capacitance equations }
Cdif = TFv*((ISe/(VTNF)+GMINDCv)/gb - Id*dgb)/(gb*gb)
: {piffusion’ cap}
Cdep = AREA*CJEv/denom {Depletion cap}
denom = (1-(u-0.5*VT*exp((u-VJIEV)/VT))}/VIEV)**MIEV
end ’
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This implementation of the dbe model declares gb and its derivative dgb as
external parameters. Equations for these two globals are defined in the higher level
BJT model as presented earlier.

39, Th Di

For the substrate diode, the generic p-n junction diode model can actually be
simplified. In the case of the substrate diode, the capacitance due to diffusion
becomes negligible and this term can be eliminated from the model. ' Also, if the
substrate diode is always assumed to be reverse biased, the singularity problem at Vy, §
is avoided and the simpler depletion capacitance equation can also be used. With
these simplifications, the substrate diode model becomes:

model type dbs
cut Anode(Vva / I) Cathode(Vb / -I)
main path P <Anode - Cathode>
cut Par(VINS ISSv CJSv VJSv MJISv GMINDCv VT)
parameter AREA
local ISe Ic u Id Cdep
{ Electrical equations }
u=VvVa - Vb
I =1Id + Ic
Id = (ISe - ISSV)*AREA + GMINDCV*u
ISe = ISSv*exp(u/(VINS))
Ic = der(u)*Cdep
{ Junction capacitance equations }
Cdep = AREA*CJISV/(1-u/VJISV)**MJISv
end.

{Depletion cap}

Many of the parameters in the BJT model are dependent on the device
temperature and on the relative difference between device and room temperature.
These temperature compensation factors and other global constants are included in the
BJITpar model. A single instantiation of this mode] can then be connected to multiple
BJTs in a circuit where the parameters and temperature factors are the same across the
BJTs. The complete Dymola BIT model library is listed in (Hild 1993).

4. VERIFYING THE BJT MODEL

Now that the BIT has been modeled, the validity and usefulness of this model
as a tool to describe electrical circuits for the purpose of simulation is investigated.
SPICE previously served as the basis for developing many of the equations to build
this BJT model. Now SPICE will be used as the baseline to test the validity of this
model. All that needs to be done is to model simple transistor circuits in SPICE and in
Dymola - using the same parameters in both - and compare the results from simulating
each. For this exercise, the two Spice dialects BBSPICE (Burr Brown 1987) and
PSpice (MicroSim 1988) were used.

In BBSPICE, BJTs contain 54 different model parameters. . In PSpice, BJTs
contain 40 different model parameters. The Dymola model has implemented 48 of the
BBSPICE parameters and 34 of the PSpice parameters. The Dymola model has
omitted the same six parameters from both BBSPICE and PSpice; of the six
remaining, one is a frequency multiplier to determine excess phase, two account for
flicker noise, and three provide additional detail for high base-emitter current
modeling. For verifying the 48 parameters, we can simplify the process by setting
several of them to zero, one, or infinity. These settings effectively "turn-off" these
parameters and simplify the overall BJT model from a Gummel-Poon type transistor
model to an Ebers-Moll type model. With this approach, the number of active
parameters can be reduced to sixteen for a very simple BJT model. Assuming that the
simulation results of the simple BJT in both Dymola and SPICE are a reasonably close
match, we can then turn on the other parameters one by one and further verify the
completeness and accuracy of the Dymola BJT model as an equivalent SPICE model.

e ine Dymola Models For Simulati

Dymola is not a simulation program; it provides no simulation support. Dymola
is a modeling language. It facilitates object-oriented modeling, allowing the modeler
to formulate very complex continuous system models. After composing the model,
the modeler can use Dymola as a model preprocessor to (1) determine the
computational causalities, (2) reduce the structural singularities, and (3) solve the
algebraic loops arising from the interconnection of the subsystems (submodels).
Finally, the modeler can use Dymola as a model generator to produce a state-space
description of the continuous system in a variety of simulation languages for model
simulation and analysis. While each of the above concepts are summarized in the
following paragraphs, they are more fully addressed in (Cellier and Elmqvist 1993).

Most of the continuous system simulation languages (CSSLs) in use today
employ numerical integration algorithms that are designed to solve state-space models

of the type
x_dot = f(x,u,t).

Because the same expression may appear several times in the various state equations
forming a model, it is often more convenient and efficient to assign these expressions
to auxiliary variables. Thus, the CSSLs typically support extended state-space model
descriptions of the form
x_dot = f(x,z,u4,t)
z = g(x,z,u,t)
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where the auxiliary algebraic expressjons are assigned to the auxiliary variables, z, and
these auxiliary variables must be mutually independent. This mutual independence
restriction is to ensure that no algebraic loops are formed in the various equations of
the model. This is important, as the simulation languages employ an equation sorter to
establish an executable sequence for the state-space equations, but an equation sorter
is unable to resolve the execution sequence of mutually dependent equations.
Dymola, as a model preprocessor, facilitates the generation of state-space models that
can meet these requirements.

The computational causality of a model determines how the physical laws, as
encoded in the model equations, must be interpreted in order to obtain a program that
can be executed on a sequential machine using existing numerical algorithms. For
example, Dymola allows the resistor model to be described by Ohm's Law: U = R*IL
With this description, the current through the resistor seems to "cause" a potential drop
across the resistor. However, depending on how the resistor is interconnected with the
surrounding components of a more complex circuit model, the Ohm’s Law resistor
description may require algebraic manipulation to describe the resistor as I = R/U in
order to obtain an appropriate state-space model description of the circuit for
simulation in a CSSL-type language.

The partition command in Dymola uses a set of algorithms to symbolically
manipulate the model equations and solve the causality assignment problem. Dymola
assumes by default that the state variables of the model are all variables that appear
differentiated. Since the target simulation language is expected to use an explicit
integration algorithm, Dymola automatically declares all these state variables as
known variables in accordance with the state-space description format: x_dot =
£(x,u,t). Based on this set of known variables, Dymola determines the required
causality assignments on the state-space and auxiliary equations in order to solve for
the remaining unknown variables.

Algebraic loops commonly occur when submodels are interconnected. A
simple example is a set of two resistors in series that form a voltage divider. The
current through each of the resistors is the same based on the series connection. The
current through either of the resistors, however, is dependent on the voltage drop
across that resistor. But, the voltage drop across either of the resistors can only be
determined if the current through the resistor were already known. CSSL-type
languages cannot solve such algebraic loops as the equation sorter cannot determine
an executable sequence for mutually dependent equations.

In Dymola, the partition command detects algebraic loops when it can no
longer uniquely solve the causality assignment problem. At this point, Dymola
isolates the involved equations, determines the involved variables, and checks whether
the algebraic loop is a linear or nonlinear problem. Given a linear algebraic loop,
Dymola solves the loop through symbolic formula manipulation. Dymola can also
identify common sub-expressions and will define auxiliary variables and equations for
them to further support computational efficiencies in the simulation language model.
Depending on the setting of Dymola's compiler options, the partition command may
further simplify the problem by eliminating unnecessary equations and expressions
such as "a=0" and any terms multiplied by "a" in other equations.

Structurally singular problems occur in systems that contain more energy
storing elements than eigen modi. Such systems are also known as degenerate
systems. A structurally singular linear electrical circuit, for example, contains more
capacitors and/or inductors than is indicated by the order of its transfer function. In
structurally singular problems, the additional differentiators are true differentiators -
they cannot be eliminated from the system or solved as integrators. As with algebraic
loops, structurally singular systems often result from the interconnection of
subsystems. Dymola can detect structurally singular problems during solution of the
causality assignment problem by noting any integrators - energy storage elements -
that assurne differential rather than integral causality.

Dymola supports solving structurally singular problems with the differentiate
command. The command initiates an algorithm that assumes all state variables -
variables that appear differentiated - ate knrown. It then looks for constraints between
these variables. For each constraint, it generates new equations that are symbolically
differentiated versions of the constraint equations. In the case of a chain of equations
resulting from auxiliary variables, all equations in the chain are differentiated. The
process is repeated to account for second or higher order derivatives that would also
be considered known. After executing the differentiate command, Dymola no longer
assigns any variables to the set of known variables automatically. It is up to the user
to explicitly declare which variables are to be used as state variables, i.e. known
variables. In this manner, all constraints are retained and the dimension of the state
vector is reduced. The state variables that are removed from the state vector by the
differentiation process are computed from the constraints.

42, P ing The BIT Ciceuit Models For Simulati

In verifying the BJT model, three different circuit models were used to test the
model: an NPN inverter circuit, a PNP circuit, and a twelve transistor Operational
Amplifier (OPAMP) circuit. The Dymola script files to process each of these circuits
follows the same basic approach. This approach can be described as follows.

First, the differentiate command is executed to ensure structurally singular
problems are avoided by reducing the dimension of the state vector. At the end of the
differentiation process, Dymola does not automatically assume any state variables as
known variables; the state variables must be explicitly chosen. Within the BJT model,
the energy storage elements are the three junction diodes. In (Cellier 1991), the
capacitive junction current is defined as I, = der(Qg). Using this equation,



defining Q, as the state variable for each junction diode would seem to be a natural
choice. However, using Q, as a state variable leads to a nonlinear algebraic loop
which can only be solved iteratively at run time. Instead, choosing the junction
voltage Ug as the state variable solves the problem. After differentiation, a linear set
of equations for Ug, T4, and I, results which can be solved through formula
manipulation by the partition command. The partition command is discussed below.
The BJT model described in this paper further avoids this problem by eliminating the
junction capacitive charge equation for Q.. Instead, the junction diffusion and
depletion capacitance equations are defined and used to define the capacitive junction
current I . Thus, the natural choice for the BJT state variables now becomes Ug-

After differentiating the model and declaring its state variables, the initial
conditions for these state variables are set. In SPICE, the initial conditions may be
automatically found and set by iterating on a DC operating point. This solution
corresponds to algorithms already employed in modern differential algebraic equation
(DAE) solvers which can find a consistent set of initial conditions. While Dymola
embraces the DAE notation, ACSL does not yet support this feature. To compensate,
the initial conditions automatically computed in BBSPICE were copied into the
Dymola script file to set the initial conditions for ACSL. In PSpice, the internal
voltages of a BJT are unavailable to the modeler. This inhibited further checks for
consistencies between the three models on initial conditions.

Next, the partition command is given to determine causality assignments and
solve algebraic loops in the model equations. This processing step results in a set of
solved equations. This solved set of equations is then used to generate an ACSL
program ready for simulation,

43 Numerical I o Of Electrical Circui

During the verification of the BJT models, three different numerical integration
algorithms - as implemented in ACSL - were tried: 2nd Order Runge-Kutta(ialg=4),
4th Order Runge-Kutta (ialg=5), and Gear(ialg=2). Due to the limitations of these
numerical integration algorithms in solving stiff problems, careful selection of the
integration step size and certain model parameters - the diode saturation currents IS
and ISS; the diode depletion capacitances CIC, CJE, and CI8; and the transit times TF
and TR - was required in order to have a model that is stable and solvable without an
excessive number of integration steps. - The most sensitive trade-off is between the
saturation currents, the depletion capacitances, and the integration step size. Holding
the saturation current parameters constant and increasing the capacitance values
allows us to also increase the integration step size. However, the increased
capacitance also causes the response time of the transistor to increase such that the
total simulation time must also increase to capture a complete simulation of the
transient analysis. Thus, increasing the capacitance values relative to the saturation
currents can cause the number of integration steps required to go up. Decreasing the
capacitance allows us to reduce the total simulation time required, but the decrease in
capacitance also causes faster transient response times in the transistor. Now the
integration step size must be reduced to keep numerical integration of the problem
stable. Reducing the integration step size now requires additional integration steps to
be computed to integrate over the total simulated time.

In both cases, the required number of integration steps goes up. And as the
number of steps goes up, the CPU clock cycles and the required memory for the
execution of the simulation goes up. In the case of the NPN and PNP circuit
simulations discussed next, the parameter sets used stil! required 8000 integration
steps in ACSL to maintain numerical integration stability while simulating over the
full transient analysis. While the saturation current and capacitance parameters used
may not reflect any real BIT, these parameters do allow the NPN and PNP circuits to
be simulated and the accuracy of the Dymola models verified against the equivalent
SPICE models.

Running the simulation on a VAXcluster, a typical simulation time for the NPN
model was approximately 5 seconds for BBSPICE and 31 seconds for the Dymola
generated ACSL model. For the PNP model, simulation times were approximately 6
seconds for BBSPICE and 45 seconds for ACSL. For the OPAMP model, simulation
times were approximately 15 seconds for BBSPICE and 254 seconds for ACSL. The
PSpice models were run on an 80286 based personal computer (no math co-processor)
making simulation time comparisons less meaningful. For the record, PSpice
simulation times were approximately 4, 5, and 15 minutes for the NPN, PNP, and
OPAMP models respectively.

4.4, The NPN BJT

The simple inverter circuit of Figure 1 is used to verify the NPN BIT model.
The simulation is a transient analysis of the circuit with a stepped (pulsed) input
signal. The Dymola, BBSPICE, and PSpice models are all configured with the same
parameter sets. Complete descriptions of the models and parameter sets tested may be
found in (Hild 1993).

Figure 7 depicts the simulation plots for the simple NPN inverter circuit. For
the voltage plots, the input voltage at the base and the ou?ut voltage at the collector
are plotted. The emitter and substrate voltages are not of much interest as they are
held constant by the ground (common) and voltage supply terminals respectively, see
Figure 1. The current plots IC, IB, IE, and IS correspond to the collector, base,
emitter, and substrate currents respectively. As can readily be seen, simulation of the
Dymola NPN BJT model provides a fairly accurate representation of its SPICE
counterparts.
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Figure 7. Simple NPN Inverter Simulation Plot
4.5, The PNP BJT

To model and test the Dymola PNP BIT, a circuit very similar to the NPN
inverter circuit was used. The PNP test circuit is depicted in Figure 8. ' Again, the
simulation is a transient analysis of the circuit with a stepped (pulsed) input signal.
The Dymola, BBSPICE, and PSpice models use the same set of parameters. Complete
descriptions of the models and parameter sets tested may be found in (Hild 1993).

Figure 8. PNP Test Circuit

Figure 9 depicts the simulation plots of the PNP circuit. For the voltage plots,
the input voltage at the base and the output voltage at the emitter are plotted. The
collector and substrate voltages are not of much interest as they are held constant. The
current plots IC, IB, IE, and IS correspond to the collector, base, emitter, and substrate
currents respectively. As is readily seen in Figure 9, simulating the Dymola PNP
model provides a very accurate representation of its PSpice counterpart and a fairly
accurate representation of its BBSPICE counterpart.
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Figure 9. PNP BF=10.0 Circuit Simulation Plot
1.6 NPN And PNP Model Di .

The discrepancies in the plotted trajectories could be the result of numerical
integration errors, differences in the models, or both. To check for integration errors,
the simulation programs were executed using different integration algorithms. In
BBSPICE, the same plots are obtained when using either GEAR or TRAP as the
integration algorithm. In Dymola, the same plots are obtained when using 2nd or 4th
Order Runge-Kutta or Gear. The student version of PSpice had no options for
integration algorithm selection. Thus, numerical integration error can be discounted
as the source of discrepancies.

The differences in the resulting trajectories are characteristic of the differences
in the equations used to form the BJT models. For the Dymola model, the equations
were developed from (Cellier 1991), (Meta-Software Inc. 1990), (Van Halen 1988),
and the scanning of BBSPICE source code. While the BBSPICE source code serves
as the most comprehensive source of information, it is also the most difficult to read
and interpret. For this reason, the BBSPICE source code was used primarily to verify
the use of equations extracted from other sources. Thus, some of the equations in the
Dymola BJIT model are different from those in BBSPICE and PSpice. These equation
differences cause the discrepancies in trajectories resulting from the simulations of all
three models: Dymola, BBSPICE, and PSpice.

3. MORE COMPLEX CIRCUIT MODELING

Now that fairly decent NPN and PNP BJT models have been designed, we can
explore using these models in more complex circuits. For this purpose, consider the
twelve transistor operational amplifier (OPAMP) of Figure 10. This OPAMP consists
of both NPN and PNP transistors. Figure 11 depicts an inverter circuit based on the
OPAMP as a sub circuit. The OPAMP inverter circuit is simulated over a stepped
input signal for a transient signal analysis. The results of this simulation are shown in
Figure 12. From these simulation results, it is seen that the Dymola model provides a
fairly accurate description of the circuit when compared to the SPICE models.
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Figure 12. OPAMP Simulation Plot



6. CONCLUSIONS

Dymola is a very powerful, object-oriented, continuous-systern modeling tool.
Its automated formula manipulation capabilities allow it to determine causality
assignments, reduce structural singularities, and solve algebraic loops formed from the
coupling of subsystems. From these formula manipulations, Dymola can generate
state-space models for system simulation and analysis in a variety of different
simulation languages. Dymola currently supports ACSL, DESIRE, Simnon,
SimuLink, and DSblock.

The Dymola BJT models developed in this study are very readable and quickly
understandable descriptions of NPN and PNP transistors. The NPN model is a fairly
accurate representation of its SPICE equivalents. The accuracy of the PNP model,
however, is dependent upon the complexity of the model used. For the more complex
PNP model, i.e. the parameters BF, BR, ISE, ISC, IKF, IKR turned on, the model
provides a very accurate representation of its SPICE equivalents.

The Dymola BJT model can be easily adapted to an improved set of equations
that better model real devices . One possible adaptation may be to better account for
temperature dynamics in a system. Most SPICE dialects, if not all, assume a static
temperature environment. The Dymola BJT could be adapted to model temperature
dynamics by adding in a set of equations to account for the power dissipated by the
components and to account for heat flow between components. Similarly, the BJT
could be easily adapted for interconnection with other types of subsystems - chemical,
mechamﬁd, or biological - providing more diversity in the types of systems modeled
and simulated.

Dymola has been proven to support the modeling of complex electrical circuits
and is capable of preprocessing them into state-space models ready for simulation.
Simulation of circuits involving nonlinear devices like BITs, however, requires
numerical integration algorithms capable of handling these numerically stiff - very
negative eigenvalued - problems. The algorithms available in ACSL proved to be
poorly suited to deal with the numerical stiffness of these BJT circuit models. Even
the Gear algorithm performed poorly on these highly nonlinear models. All
algorithms required very small step sizes which then required additional CPU cycles
and memory to numerically integrate and save the results of the problem. This was
the sole reason for the careful BJT parameter selection described in subsection 4.3. In
order to overcome these difficulties, a DAE formulation may be more suitable, a
formulation that is already supported by Dymola, but not yet by ACSL, the simulation
language that was available to us, since the process of converting the model to an
explicit ODE form destroys some of the natural sparsity of the mode! equations, and
since the DAE solver is believed to be better suited to suppress spurious solutions of
the numerical integration.
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