OBJECT-ORIENTED SWITCHING POWER CONVERTER MODELING
USING DYMOLA WITH EVENT-HANDLING

John S. Glaser, Frangois E. Cellier, and Arthur F. Witulski
Department of Electrical and Computer Engineering
University of Arizona, Tucson AZ 85721
Email: glaser @hermes.ece.arizona.edu, cellier@ece.arizona.edu, witulski@ece.arizona.edu

ABSTRACT

The Dymola modeling language has been shown to be useful
for modeling electrical networks in an object-oriented manner. The
ability of Dymola to handle time and state events in an objected-
oriented manner also makes it particularly suitable for modeling
switching power converters, whose models may generate
thousands of events over a simulation run.

The object-oriented nature of Dymola is well suited for
modeling complex power supply systems. Circuit designers may
develop and test their converter models; systems designers may use
these as building blocks in larger systems without needing detailed
knowledge of the converter models. This is demonstrated by means
of an example wherein a complete converter system is developed
beginning from the component level.

Keywords: object-oriented, simulation, Dymola, switching
power converter, power supply.

I. INTRODUCTION

The ability of the modeling software Dymola to model events
in an object-oriented manner makes it a useful tool for the
modeling of switching power converters and power systems.
Switching events can be modeled at the electrical component level,
along with standard electrical component models. The circuit
designer can “wire” these component models together according to
the design of his or her particular power converter, in order to
develop a converter model. A power systems designer can then
connect the circuit designer’s converter model with other system
components in the development of a complete power system. At
each level, the modeling is completely object-oriented. The circuit
designer need not know the details of event-handling nor
component modeling. Likewise, the power system designer does
not care about the detailed workings of the converter models that
s/he employs; s/he only cares that the models work. In this paper,
the object-oriented modeling of a complete power supply system,
from the component to system level, will be demonstrated by
means of a practical example.

Simulation of electronic switching power converters is a
problematic task for a number of reasons. Such converters operate
by using switches to change the configuration of an energy-storage
(inductor-capacitor) network at frequencies up to several
megahertz, and the time constants of the network are usually one or
more orders of magnitude larger than the switching period. Each
switching event is, in an ideal sense, a discontinuity. Typical power
converter simulations can run for hundreds or thousands of
switching cycles, which can create problems for simulation
software that does not have explicit mechanism for handling
discontinuities (events). Among these problems are long simulation
times due to decreased integration time steps in the region of the
discontinuity, lack of convergence, and erroneous simulation
results.

The standard software for circuit simulation, SPICE (and its
derivatives), is not well suited to power converter simulation due to

its lack of explicit event handling (Quarles er al. 1993). While
there exists other simulation software, such as SIMPLIS, which is
designed specifically for power converter simulation, this software
is unsuitable for more general circuit problems (Lee and Wilson
1992). This paper proposes the use of the general purpose
modeling language Dymola in conjunction with the standard
simulation language ACSL to simulate switching power converters
(Elmqvist 1993). ACSL has both state and time event handling,
which makes it well suited for switching converter simulation;
however, it is unsuitable for circuit designers since it requires an
unfamiliar state-equation model of the converter in question
(Mitchell and Gauthier 1991). Furthermore, ACSL is not object-
oriented, rendering the development of complete power supply
system models difficult. Dymola solves both problems: First, a set
of electrical component models can be developed. These

" components include the standard linear components such as

141

resistors, inductors and capacitors. In addition, simple switch and
diode component models are developed that contain the event
descriptions. Second, the circuit designer can connect the
components together in a netlist format similar to SPICE, and need
not worry about simulation events or discontinuities. Such a circuit
model may in turn be used as a component in a larger system, in
keeping with the object-oriented nature of Dymola. Dymola
generates an ACSL program from the model, which can then be
compiled and run under ACSL.

. SWITCHMODE POWER CONVERTERS

Switch-mode power converters find use in nearly every
system that requires electrical power due to their high efficiency
and high power density. Some examples are dc-dc converters, ac-
dc rectifiers, and dc-ac inverters. This section gives a brief
overview of switching power converters. Operation, modeling, and
simulation are discussed.

HIA. Switching Power Converter Operation

Switch-mode power converters operate by the periodic
storage and release of electrical energy in capacitors and inductors.
The flow of energy is controlled by means of switches. These
switches are divided into two classes, time-event driven and state-
event driven. Time-event driven switches are controlled by some
periodic waveform external to the converter network, and are
usually implemented with transistors. State-event driven switches
are controlled by the state variables of the converter network, i.e.,
the inductor currents and capacitor voltages; such switches are
usually implemented with diodes.

Figure 1 illustrates the common buck-boost converter (a) and
its simplest operating mode (b). The converter is controlled by
modulating the duty cycle D of a constant-frequency control signal
applied to the switch S, hence this converter is classified as a
pulse-width modulated (PWM) converter. Switch D} is a diode,
and is controlled by voltage and current waveforms internal to the
converter network. The values of L and C are chosen such that the

s, D, 1

' 7.
1 iL I‘ - -
v, Lot C=— v, RZ V (@
+ +

ey

Si
I e
b b b 7>l
P\/\/\/\ ©
T > t

Figure 1. Buck-boost converter (a) and major
waveforms (b).

_ circuit’s time constants are large compared to the period of the
switching signal applied to S7. This will cause an average dc
output voltage V = DV,/(1 - D) which will have a small variation
superimposed due to the switching behavior of the circuit. The

detail behavior of switching power converters can be found in -

many texts and references, including (Cuk 1983).

1IB. Switching Converter Modeling

Switch-mode converter models can be divided into two
classes: instantaneous and averaged. Non-averaged models are just
the circuit model of the converter and as such are time-varying and
discontinuous due to their periodically switched nature (Fig. 1 is a
instantaneous model). Such models accurately model component
waveforms and large-signal behavior. They are useful for
verification of operation, determination of operating points,
transient phenomena, stress analysis, operating mode changes, etc.
However, these models are of limited utility for the study of
frequency response, stability analysis of closed-loop systems, etc.
Furthermore, these models have the simulation difficuities
mentioned in the introduction.

Averaged models are circuit or equation models in which the
time-variations due to the switching behavior have been averaged,
resulting in a continuous time-invariant model. Averaged models
are much more amenable to mathematical analysis, frequency
response analysis, closed-loop stability studies, and so forth. Such
models are limited to frequencies much less than the switching
frequency. Furthermore, averaged models cannot normally model
more than one operating mode of a converter (Middlebrook and
Cuk 1976).

IIC. Utility Of Simulation Events in Converter Modeling

The use of events can improve both the speed and accuracy of
simulation (Cellier 1995). Suppose we are using a simulation
program without explicit event handling. At each discontinuity,
integration step size decreases markedly, since the simulator
“perceives” the discontinuity as a sudden increase in the apparent
magnitude of the system’s eigenvalues. After the event is over, the
step size usually increases slowly due to the conservative nature of
typical integration algorithms. In the actual system, the eigenvalues
may change slightly or not at all during each event, allowing the
same step size as before the event, but the integration algorithm has

no way of knowing this. If events occur with sufficient frequency,
the integration algorithm step size remains much smaller than the
dynamic behavior of the system justifies, thus lengthening the
simulation run unnecessarily. Furthermore, it has been shown that
lack of event handling can result in erroneous simulation results
without any indication of error (Cellier 1995). These errors are due
to the failure of most integration error estimation methods at

. extremely small step sizes, and they can result in convergence to

the wrong solution without any warning.

Another disadvantage of programs without explicit event
handling is that they may generate huge amounts of superfluous
data, due to the very small step sizes in the region of each
discontinuity. If the events are few and far between, this may not
be a problem, but if they are numerous and closely spaced, as with
switching converters, a program without event handling may
generate a volume of data an order of magnitude larger than one
that has explicit event handling. While one may attempt to alleviate
this problem by specifying a larger output communication interval,
by doing so one may miss event times, causing the output plots to
be inaccurate (and look very strange) from aliasing of the data. A
simulation language with explicit event handling will always catch
each event exactly, and generate only one extra point per event.
Such a program will always record data at the event times, so one’s
Pplots will be accurate.

Non-averaged models make good use of simulation events. A
instantaneous model uses events to describe each switch opening
and closing. Since event-handling simulation software recognizes
discontinuities, it can store all state variables at the time of an
event, and restart the integration with the same step size after the
discontinuity is over. Furthermore, the simulation is no longer
susceptible to erroneous convergence due to error estimation
failure.

Although not covered in this paper, simulation events are also
useful for constructing multi-mode averaged models. One of the
limitations of averaged models is their inability to operate across
mode boundaries. For simulation purposes, one may include more
than one model description and switch between them according to
operating point.

HI. DYMOLA MODELING OF ELECTRICAL NETWORKS

It has been shown in (Cellier 1991) that Dymola may be used
for topological modeling of linear electrical networks. The
topological description of the circuit can be given in a netlist
format similar to that used by SPICE, a necessary property for its
use by circuit designers already familiar with SPICE. Dymola
solves the circuit description and computes a set of state equations,
from which it can generate a model in a number of simulation
languages. ACSL is preferred due to its event-handling capability.

The Dymola language uses an object-oriented (hierarchical)
modeling method that is well suited to circuit modeling. Each
electrical component can be developed into a model, which can in
turn be used as part of a larger model, similar to subcircuits in
SPICE. In addition, mode] parameters, even those at the bottom of
the hierarchy, are always easily accessible; however, they need not
be carried up the hierarchy, which would result in increasingly
unwieldy model descriptions. Of course, Dymola is a general
purpose modeling language not limited to electrical circuits.

Dymola has been extended to handle event descriptions in a
high-level object-oriented manner (Elmgqvist, Cellier and Otter
1993). This makes Dymola extremely useful for modeling
switching power electronic circuits. The switching event
descriptions are simply included in switch models, which can then
be used like any other circuit components. The following sections
describe models of electrical components.

142

IITA. Linear Circuit Modeling

Many switching converters can be accurately modeled with
linear components such as resistors, capacitors, inductors,
transformers, etc. We first define a class that describes terminal
behavior for various comiponents. The component descriptions then
call this description and inherit its terminal definitions. For
example, the following listing describes terminal behavior of all
two-terminal (one-port) devices:

model class OnePort

ocut WireA(va/i), WireB(Vb/-i)

main path AB <WireA - WireB>

tezrminal p

local v
v =Va - Vb
p = V¥i
end

Dymola keywords appear in bold type. The model class
command defines an object class of type OnePort. The cut
command defines the terminal connections of an electrical
component, and the path command created a directed path from
one cut to another, i.e. a port. The local variable v defines the
voltage drop across the port, while p computes the power into the
port.

Components are now easily described. For example, a
capacitor is given by:

model class (OnePort) Capacitor
paramster C=1.0

C*der(v) = i
ond

This model inherits the terminal description given by model
class OnePort. The capacitance is given by the parameter C, with
a default value of 1.0. The capacitor behavior is described by the
differential equation. Other components (resistors, inductors,
sources, ground, etc.) are similarly described. They are collected
into a library file which can be called by a Dymola model.

INB. Event-Based Switch & Diode Models
An ideal switch can be considered to be a controlled resistor
that has either zero or infinite resistance depending on whether the
switch is on (closed) or off (open), respectively (Elmqvist, Cellier
and Otter 1993). A Dymola model of an ideal switch is given by:
model class (OnePort) Switchl
terminal On

0 = if On then Vv else i
end

The terminal statement declares a variable On that may be
connected to another model; this allows control of the switch. The
if statement will generate an appropriate event description in the
target simulation language, thus allowing the simulation to
properly handle the switching event.

A diode can be considered a special kind of switch whose
state is controlled by its terminal variables. An ideal diode has two
possible states: (1) v< 0= On=false, or (2)i>0 = On = true.
Figure 2 describes the characteristic of an ideal diode. A Dymola
model is given by:

model class (SwitchO) Diode0

new(On) = v > 0 or i >0
end

This model inherits the SwitchO behavior. The state of the
switch is controlled by the switch’s internal variables. On a zero-
crossing of either i or v, an event is generated. The new statement
resets the boolean variable On according to the boolean value of

143

the right-hand side of the diode equation. The value of On changes
only at the time of the event, so that between events, On can be
considered a constant.

i A
i
+ i>0
v

- v<O0

Figure 2. Ideal diode behavior.

Note that in the SwirchO models, the computational caunsality
of the switch differs according the value of v and i, and is thus
indicated by the state of the On variable, so that the switch can take
on either possible causality. Hence, both causalities must be
compatible with the circuit. In practical terms, this means that an
ideal switch cannot in general occur in a cutset whose only other
elements are inductors and/or current sources, nor in a loop with
only capacitors and/or voltage sources. This makes physical sense,
as we cannot interrupt the current in an inductor nor
instantaneously discharge a capacitor.

Unfortunately, this creates problems. Consider the operation
of the buckboost converter of Fig. 1. For t € (19, t7), S is closed,
and the inductor current ramps up with slope (Vg - V)/L. The
voltage across the diode D during this time is Vg, so Dj is open.
At t=1}, §] is opened. The inductor current must go somewhere,
so it flows through D}, turning it on. However, the simulation
program will not see it this way. It views Dj as a switch, thus we
have a cutset consisting of two switches (S7 and D) and an
inductor. The simulation runs until S; opens, at which point the
simulation dies due to a division by zero.

There are a number of possible solutions to this problem. The
first, and most obvious, is to make the diode into a non-ideal
switch by giving it finite non-zero “on” and “off” resistances.
Below is a Dymola model for such a non-ideal switch, Switchl.
We then create a Diodel model identical to DiodeQ, except that it
calls Switchl.

model class (OnePort) Switchl
terminal On

paramster Ron=1.0E-4, Roff=1.0E4

0 = i£ On then v-i*Ron else v-i*Roff
end

This solves the problem, but not without drawbacks. For
instance, in the case of the buck-boost converter of Fig. 1, there
exists a mode of operation known as “discontinuous conduction
mode” where, during each switching cycle, the inductor current
becomes zero while S} is off. This results in D} turning off as well.
The large off resistance of D} in series with L results in a stiff
system, which may create other problems, including long
simulation times. This is seen in Section IV of this paper. Another
solution has been proposed in (Cellier 1995), but this is not yet
formulated in an object-oriented manner.

IIC. Modulator Models

There are two common switch control waveforms for
switching converters. The most common today are pulse-width
control and frequency control, achieved by means of pulse-width
modulators (PWMs) and voltage-controlled oscillators (VCOs).
Both waveforms can be generated by the same system, shown in
Fig. 3.

1.0

Reset

Figure 3. General purpose switching modulator. VE controls the
switching frequency of Vout, VD the duty cycle.

This is represented by the following Dymola model. The
terminal variable D is a boolean variable used to turn a switch on
or off. The when-endwhen construct senses when the integrator
output exceeds unity and generates a corresponding event
description in the target simulation language. The integrator state x
is reset at the event time with the Init statement. Note that this

model has two voltage inputs, vI and v2, which modulate -

frequency and duty-cycle respectively. The terminal structure is
inherited from the model class TwoPort, much like the model class
OnePort previously ‘defined. Note that a SPICE model of this
modulator requires at least two comparators along with several
dependent sources and other components.

model class (TwoPort} Modulator
parameter KFreg=1.0, KD=1.0, F0=0.0
parameter RinFreg=1.0E6, RinD=1.0E6
terminal D
local x=0.0, xref, Freguency
vl = RinFreg*il
v2 = RinD*i2
xref = KD*v2
Frequency = FO + KFreg*vl
D = x < xref
der (x) = Frequency
when not x<1 then
init(x) = 0
ondwhen
and

A pulse-width modulated signal can also be constructed
directly, without requiring an integrator (state variable). The
simpler Dymola model below accomplishes the task. Note that this
model includes a start time T'start before which the output is false.
This variable can be used to offset the phase of converters in a
multiple-converter system, a commonly used method to reduce
switching noise.

model class (OnePort) PWM1

paramster K=1.0, Ts, Tstart=0.0, Rin=1.0E6

terminal D

local x, xref, Nextime, Start=true

v = i*Rin
Xref = K*v

D
x

X < Xref amnd not Time<Tstart
if Time < Tstart them 0 ->
else (Time - Nextime)/Ts + 1
when {(not Time < Nextime) or Start then
new (Nextime) = 1f ->»
Start and (Tstart<0 or Tstart>Q) ->
then Tstart else Nextime+Ts
new(Start) = false
endwhen

144

There are simpler ways to model this system even in Dymola,
but this model accurately represents commercially available PWM
integrated circuits.

A compietely equivalent SPICE model is several times more
complex, since it must be specified as a circuit.

IV. DYMOLA MODELS OF CONVERTER SYSTEMS

The following section develops a converter model by
connecting the various components defined in the previous section.
This model is then used as part of a larger system.

The example given is the flyback converter, shown in Fig. 4.
The flyback converter is functionally equivalent to the buck-boost
converter, but is more commonly used due to the isolation and
tumns ratio provided by the transformer.

S1

Pinta Pin2a
P . °
+ 1 L) +
In b L1 — Ve Out
[~@

Pin1b Pin2b

Figure 4. Flyback converter.

First, we define a terminal structure compatible with all
single-input-single-output converters. This model class is similar to
that for TwoPort, but reflects conventions used in power converter
design:

model class Converter
cut Pinla(Via/ila), Pinlb(Vib/ilb)
cut Pin2a(V2a/i2a), Pin2b(v2b/i2b)
cut Portl[Pinla, Pinlb], Port2([Pin2a, Pin2b])
path In<Pinla - Pinib>, Out<Pin2a - Pin2b>
main path P <Portl - Port2>
local v1, v2
vl = Via - V1b
vz = V2a - V2b
end

Now, we construct the converter by connecting the various
electrical components together. Each type of component used in
the model is called by the submodel statement. Each submodel
statement declares the components used in the model and their
parameters. In this example, the parameters for the components L1,
Cl, and transformer T'1 are also parameters of the model class
Flyback0. The terminal D is used to turn switch Sw1 on or off. The
node statement is used to connect the cuts of the various
components together; note that nodes and cuts are structural
equivalents. The flyback converter model is:

model class (Converter) Flyback0
submodel (Inductor) L1 (L=L)
submodel (Capacitor) C1(C=C)
submodel (TransformerQ)
submodel (Switch0) swl
submwdel (Diodel) D1 {vd=va)
paramster L, C, n, Vd
terminal D
node nl, n2
connect Ll from Pinla to nl
connect Swl from nl to Pinlb
connect <In> T1 from Pinla to nl
connect <Out> Tl from Pin2b to n2
connect D1 from n2 to Pin2a
connect Cl from Pin2a to Pin2b
Swli.On = D

Tl {n=n)

ond

Fiyback
Convertar <
Vg = > Rload
Fly
Vceontrol

Figure 5. Flyback converter system.

The Flyback0 model can now be used in a larger system. The
simplest example of this is to connect a voltage source to the input
and a resistive load to the output, shown in Fig5. A PWM is
needed to supply the switching signal to the converter.

The following Dymola program represents the system of
Fig. 5:

model circuit

submodel (VSource) Vg, Vcontrol

submodel (Resistor) RLoad(R=5)

submodel (Flyback0) Fly(L=200E-6, C=22E-6, ->
n=1, Vd=0.7)

submodel (PWM1l) PWM(Ts=1.67E-5)

submodel Common

node n0, nl, n2, n3

output iLoad, vLoad
connect Common at nd
connect Vg from nl te n0
connect RLoad from n2 to nl
connect <In> Fly from nl to no
connect <Out> Fly from n2 to nl
connect PWM from n3 to no

connect Vcontrol from n3 to nl

Vg.v 40

Vcontrol.V = 1/3

Fly.D PWM.D

vLoad RLoad.v

iLoad RLoad.i

end

This model is compiled by Dymola into an ACSL model,
which is then simulated. The results of this simulation and a
SPICE3 simulation of this system are plotted in Fig. 6. The two
results are virtually identical. Unfortunately, a fair speed
comparison was not possible, as the available version of ACSL
was run on a DEC VAX/VMS system, and SPICE3 was only
avajlable on UNIX systems. For the record, the simulation CPU
times were 19.12 seconds on the VAX and 80.52 seconds on a
color NeXTStation (25MHz 68040). In addition, the ACSL run
generated 1280 data points, and SPICE generated over 20,000!
Finally, note that in order to obtain an accurate SPICE simulation,
the maximum allowed time-step was 0.1 microseconds. Larger
time-steps resulted in convergence to erroneous results, but they
did not cause a failure to converge, i.e. there was no indication that
something had gone awry. This is a much more serious problem
than slow simulation speed, for obvious reasons.

The above simulation runs very fast, and the use of the
nonideal switches does not cause any problems due to stiffness.
The reason for the latter is that for the given parameters, the
converter runs in “continuous conduction mode (CCM)” meaning
one of the two switches is always on. As a result, the system never
becomes stiff. However, for some applications, the so-called
“discontinuous conduction mode (DCM)” is the operating mode of

145

Dymola CCM Simulation

25~
20
] VLoad
15 /
10j IL
5 {
ol(Tl Tt L3 2] L 28 BAL] LER BRI L] LA TFT rrryrnmT
0 0204 0608 1 12 14 16 18 2

Time [ms]
Figure 6. Dymola and SPICE3 simulation results for the system of
Fig. 5, operating in CCM (continuous conduction mode).

Dymola DCM Simulation

R ——)

'R Y WY T R

[

- - NN

0 02 04 06 08 1

12 14 16 18 2
Time [ms]
Figure 7. Dymola and SPICE3 simulation results for the system of
Fig. 5, operating in DCM (discontinuous conduction mode).

choice. In this mode, all switches are off for an interval during each
switching cycle. If we reduce the value of L (the inductor) in the
submodel Fly to 50uH and increase the load resistance Rload to
20Q, the converter will operate in DCM (simulation results for a 1
millisecond run are shown in Fig. 7). The simulation time for a 2
millisecond run has increased to 94.69 seconds for ACSL on the
VAX and 92.26 for SPICE3 on the NeXTStation (ACSL generated
about 1500 data points, much less than the nearly 22,000 generated
by SPICE). In this case, the system becomes stiff for a fraction of
each switching period, and the ACSL simulation slows drastically.
What is worse is that the ACSL implementation of the Gear
algorithm is unsuitable for simulation of switching converters, as it
handles the discontinuities goorly (or not at all). Hence, we are
stuck with using the 5th order variable-step Runge-Kutta
algorithm. This is not a good algorithm for stiff systems,
contributing to the slow simulation speed.

The use of non-ideal diode models can cause another problem
due to introduction of artificial stiffness. In the Dymola model for

the system of Fig. 5, note that the ideal Swirch0 model was used.
We can get away with this since non-ideal diode DI is actually
modeled as a variable resistance, thus Sw1 is always in an algebraic
loop. If, however, we model-Sw. with the non-ideal switch model
Switchl, and run the converter in DCM, the inductor current
exhibits extremely small, rapid oscillation about zero. This
oscillation will cause the diode to turn on and off dozens of times
each switching period, slowing the simulation to a crawl (although
the results remain accurate).

There are at least two solutions to these problems. First, since
Dymola can formulate models as a differential-algebraeic equation
(DAE), one may use a simulator that handles DAE systems. This
does away with the switch causality problem, but one may pay a
penalty in decreased simulation efficiency versus an ODE
formulation, particularly if the system is not normally stiff. Second,
one may use an extension of the Pantelides algorithm (Cellier
1995). This allows one to use ideal switches and will result in an
ODE formulation of the problem. However, Dymola does not yet
implement this in an automated, object-oriented manner.

V1. CONCLUSION

As demonstrated in the previous sections, the Dymola
language allows the modeling of power converter systems in a
completely objected-oriented manner. One can develop electrical
component models with which one can build power converter (and
other) circuits. A topological circuit description similar to that used

by SPICE can be used to develop such converter models, much as -

the FlybackO model was developed in this paper. Behavioral
models of more complex components can also be developed, as
demonstrated by the Modulator and PWM 1 models given in
Section IITIC. All these models can be used together to model a
complete system. Dymola will translate the models and their
connections into a set of differential equations and generate from
the latter a complete simulation model in a choice of several
simulation languages.

The use of simulation events aids the simulation of switching
power converters in several ways. It can help increase simulation
speed and accuracy, and it can substantially reduce the size of the
data set without loss of information. Unfortunately, most
simulation languages that handle events, e.g. ACSL, require a
formulation of the system in terms of differential equations; this
formulation is unwieldy for all but the simplest of circuits. In
addition, most circuit designers are unfamiliar with such a
description. The problem is worsened by the fact that most
simulation languages are not object oriented, making the modeling
and simulation of practical systems difficult; this is especially true
when one must include event scheduling. Dymola solves both these
problems at once: First, it allows event descriptions to be handled
in a high-level manner by placing them inside a component model.
Second, Dymola is inherently object-oriented, and the event-
description-containing models are no exception. They can be
employed in a system just like any other model.

Some of the problems encountered with the use of ideal
switch models are discussed. In an ODE formulation of a problem,
ideal switches can in general only be used when placed in an
algebraic loop. Unfortunately, this creates problems in nearly all
switching converters. The simplest solution, making the switches
into variable resistances, can in some circumstances introduce
artificial stiffness into the system, slowing the simulation speed.
Other solutions include the use of a simulation language with a
DAE solver, or perhaps an extension of the Pantelides algorithm to
generate a ODE system where all switches end up in algebraic
loops.

A practical example is given by means of the commonly used
flyback converter. A converter model is constructed from common
circuit components in the Dymola modeling language. This model
is then used as a component in a larger system consisting of a
PWM modulator model, along with a load and source. This model
is compiled and simulated in ACSL. The results are consistent with
those obtained by SPICE.

References

Cellier, F. 1991. Continuous System Modeling. Springer-Verlag
New York Inc., New York, NY.

Cellier, F. to be published 1995. Continuous System Simulation.
Springer-Verlag New York Inc., New York, NY.

Cuk, S. 1983. Advances in Switched-Mode Power Conversion,
Vol. 2. TESLAco, Pasadena, CA.

Elmqvist, H. 1993. Dymola - User’s Manual. DynaSim AB,
Research Park Ideon, Lund, Sweden,.

Elmgqvist, H.; F. Cellier; and M. Otter. 1993. “Object-Oriented
Modeling Of Hybrid Systems.” Proceedings of the 1993 European
Simulation Symposium (ESS’93), pp. 31-41.

Lee, E. S. and T. G. Wilson. 1992. “Electrical Design Inspection:
A Methodology for Using Circuit Simulation in the Design and
Development of Electronic Power Supplies.” In 1992 IEEE Power
Electronics Specialists Conference Record, pp. 34-45.

Middlebrook, R.D. and S. Cuk. 1976. “A General Unified
Approach to Modelling Switching-Converter Power Stages.” 1976
IEEE Power Electronics Specialists Conference Record, pp. 73-89.

Mitchell & Gauthier Associates, Inc. 1991. Advanced Continuous
Simulation Language (ACSL) Reference Manual. Concord, MA.

Quarles, T.; A.R. Newton, D.O. Pederson, A. Sangiovanni-
Vincentelli. 1993. SPICE3 Version 3f3 User’s Manual. Department
of Electrical Engineering and Computer Sciences, University of
California, Berkeley, CA.

146

