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ABSTRACT 
The general purpose modeling language Dymola is used in 

conjunction with the ACSL simulator to provide an environment for 
the simulation of power electronic systems. The object-oriented 
nature of Dymola, along with its high-level handling of discrete 
events, makes it ideally suited to modeling switching converters and 
complete systems of several converters. Converter models can be 
constructed using a netlist format similar to SPICE. These models 
can then be used as components in more complex systems. This is 
demonstrated by example with a regulated dc-dc converter system. 

I. INTRODUCTION 
Simulation of switching power converters is a problematic task 

for several reasons. Such converters operate by using switches to 
change the configuration of an energy-storage (inductor-capacitor) 
network at frequencies up to several megahertz, and at least some of 
the network time constants are one or more orders of magnitude 
larger than the switching period. Each switching event is, in an ideal 
sense, a discontinuity. Typical power converter simulations can run 
for hundreds or thousands of switching cycles, which can create 
problems for simulation software that does not have explicit 
mechanism for handling these discontinuities (events). Among these 
problems are long simulation times, lack of convergence, and 
convergence to an erroneous solution. 

The standard software for circuit simulation, SPICE (and its 
derivatives), is not well suited to power converter simulation due to 
its lack of true event handling [ I ] .  This paper proposes the use of the 
general purpose modeling language Dymola [3] in conjunction with 
the standard simulation language ACSL [4] to simulate switching 
power converters. ACSL has true event handling, which makes it 
well suited for switching converter simulation; however, it is 
unsuitable for circuit designers since it requires an ODE (ordinary 
differential equation) model of the converter in question. 
Furthermore, ACSL is not object-oriented, rendering the 
development of even moderately complex power supply system 
models difficult. Dymola solves both problems: it can convert a 
circuit description into a set of ODES, and i t  is object-oriented, i.e. 
models can be reused as components in larger systems. 

Model development proceeds in the following manner. First, a 
set of electrical component models are developed. These 
components include the standard components such as resistors, 
inductors and capacitors. In addition, simple switch and diode 
component models are developed that contain the switching event 
descriptions. Second, the circuit designer can connect the 
components together to form a circuit such, and need not worry 
about simulation events or discontinuities. Next, such a circuit 
model may in tum be used as a component in a system, such as a 
multiple converter power supply. At each level, the modeling is 
completely object-oriented. Dymola generates an ACSL program 
from the model, which is compiled and run under ACSL. 

In this paper, the object-oriented modeling of a complete power 
supply system, from the component to system level, will be 
demonstrated by modeling and simulation of a regulated power 
supply system. 

11. SWITCHMODE POWER CONVERTERS 
Switch-mode power converters, due to their efficiency and high 

power density, .find use in nearly every system that requires 
electrical power. This section gives a brief overview of switching 
power converter operation, modeling, and simulation. 

IIA. Switching Power Converter Operation 
Switch-mode power converters operate by the periodic storage 

and release of electrical energy in capacitors and inductors. The flow 
of energy is controlled by means of switches, which are divided into 
two classes, time-event driven and state-event driven. Time-event 
driven switches are controlled by some periodic waveform external 
to the converter network, and are usually implemented with 
transistors. State-event driven switches are controlled by the state 
variables of the converter network, i.e., the inductor currents and 
capacitor voltages; such switches are usually implemented with 
diodes. 

It is helpful to review the operation of a simple pulse-width- 
modulated (PWM) switching power converter. Figure 1 illustrates 
the common buck-boost converter (a) and its main operating mode 
(b), continuous conduction mode or CCM. The converter is 
controlled by modulating the duty cycle D of a control signal 
applied to the switch SI. Switch DI  is a diode, and is controlled by 
voltage and current waveforms internal to the converter network. 
The values of L and C are chosen such that the circuit's time 
constants are large compared to the period of the switching signal 
applied to SI. This causes a dc output voltage V = DVg/(l -, D )  
which will have a small ripple superimposed due to the switching 
behavior of the circuit. The detailed behavior of switching power 
converters can be found in many texts and references, including [ 5 ] .  

S, 

Figure I .  Buck-boost coiiverter (a)  arid major 
waveforms (b). 
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IIB. Switching Converter Modeling 
Switch-mode converter models can be divided into two classes: 

instantaneous and averaged. Instantaneous models are simply the 
circuit model of the converter and as such are time-varying and 
discontinuous due to their periodically switched nature (Fig. 1 shows 
an instantaneous model). Such models accurately model component 
waveforms and large-signal behavior. They are useful for 
verification of operation, determination of operating points, transient 
phenomena, stress analysis, operating mode changes, etc. However, 
these models are of limited utility for the study of frequency 
response, stability analysis, etc. Furthermore, these models have the 
simulation difficulties mentioned in the introduction. 

Averaged models are circuit or equation models in which the 
time-variations due to the switching behavior have been averaged 
out, resulting in a continuous time-invariant model. Averaged 
models are much more amenable to mathematical analysis, 
frequency response analysis, closed-loop stability studies, and so 
forth. Such models are usually limited to frequencies much lower 
than the switching frequency. 

IIC. Utility Of Simulation Events in Converter Modeling 
The use of events can improve both the speed and accuracy of 

simulation [6] .  Suppose we are using a simulation program without 
true event handling, e.g. SPICE, to simulate an instantaneous model 
of a switching converter. At each discontinuity, the integration step 
size decreases markedly, since the simulator “perceives” the 
discontinuity as a sudden increase in the apparent magnitude of the 
system’s eigenvalues. After the event is over, the step size usually 
increases slowly due to the conservative nature of typical integration 
algorithms. In the ideal system, the eigenvalues may change slightly 
or not at all during each event, allowing the same step size as before 
the event, but the integration algorithm doesn’t know this. If events 
occur with sufficient frequency, the integration algorithm step size 
remains much smaller than the dynamic behavior of the system 
justifies, thus lengthening the simulation run unnecessarily. For 
example, in a typical switching converter, step size may be on the 
order of nanoseconds at the edge of a switching waveform, although 
a transient phenomenon may last milliseconds. Furthermore, it has 
been shown that lack of event handling can result in erroneous 
simulation results without any indication of error [6] ,  an occurrence 
undoubtedly experienced by many who use SPICE for converter 
simulations. These errors are due to the failure of most integration 
error estimation methods at extremely small step sizes, and they can 
result in convergence to the wrong solution without waming. 

Another disadvantage of programs without explicit event 
handling is that they may generate huge amounts of superfluous 
data, due to the very small step sizes in the region of each 
discontinuity. If the events are few and far between, this may not be 
a problem, but if they are numerous and closely spaced, as with 
switching converters, a program without event handling may 
generate a volume of data an order of magnitude larger than one that 
has explicit event handling. While one may attempt to alleviate this 
problem by specifying a larger output communication interval, by 
doing so one may miss event times, causing the output plots to be 
inaccurate (and in some cases look very strange). 

These problems occur because software such as SPICE does not 
properly handle events. To explain this statement, consider what it 
means to possess true event recognition and handling. Most 
simulation programs, recent versions of SPICE included, can 
recognize that an event has occurred. For example, a statement of 
the form “if v > Vm, then transistor Q I explodes” recognizes a 
certain event and spells out a consequence. What this statement does 
not do is guarantee that the consequence occurs at the time of the 
event. Recall that a simulator solves the system at discrete time 

points. Consider our example event above, and say that at time point 
tn ,  v < V m ,  but at the next time point tn+ 1, v > Vmv Most 
software will just assume that the event occurred at time tn+l, and 
continue from there. For the consequence ‘‘Qr explodes”, the exact 
event time tevenr probably doesn’t matter, but in many cases, it 
matters greatly. The problem is intensified if the system has slow 
dynamics between event times, e.g. switching power converters. In 
this case, a typical variable time-step integration routine will use a 
large time-step, and the error between the perceived event time tn+l 
and the actual event time tevenl can be substantial. A program that 
handles events properly will, upon occurrence of an event, employ a 
routine to search for the exact time tevent. It will then re-compute 
the system with Ievent as the end-point of the simulation, store the 
appropriate variables, and restart the simulation at time revent. 

An instantaneous model makes good use of simulation events, 
since they use events to describe each switch opening and closing. 
Since event-handling simulation software recognizes discontinuities, 
it can store all state variables at the time of an event, and restart the 
integration with the same step size after the discontinuity is over. 
Furthermore, the simulation is no longer susceptible to erroneous 
convergence due to error estimation failure in the integration 
routine. 

Although not covered in this paper, simulation events are also 
useful for constructing multi-mode averaged models. One of the 
limitations of averaged models is that different models are required 
for different operating modes. For simulation purposes, one may 
include more than one model description and switch between them 
according to the operating point. 

111. DYMOLA MODELING OF ELECTRICAL NETWORKS 
It has been shown in [7] that Dymola may be used for 

topological modeling of linear electrical networks (non-linear 
models are discussed in Section V). The topological description of 
the circuit can be given in a netlist format similar to that used by 
SPICE. Dymola solves the circuit description and computes a set of 
state equations, from which it can generate a model in a number of 
simulation languages. ACSL is preferred due to its event-handling 
capability. 

The Dymola language uses an object-oriented (hierarchical) 
modeling method well suited to circuit modeling. Electrical 
components are developed into models, which can be used as part of 
larger models, similar to subcircuits in SPICE. In addition, model 
parameters and variables, even those at the bottom of the hierarchy, 
are always easily accessible; however, they need not be carried up 
the hierarchy, preventing unwieldy model descriptions. Of course, 
Dymola is a general purpose modeling language not limited to 
electrical circuits. 

Dymola handles event descriptions in a high-level object- 
oriented manner [8]. This makes Dymola extremely useful for 
modeling switching power electronic circuits. The switching event 
descriptions are simply included in switch models, which can then 
be used like any other circuit components. The following sections 
describe models of electrical components. 

IIIA. Linear Circuit Modeling 
Many switching converters can be accurately modeled with 

linear components such as resistors, capacitors, inductors, 
transformers, etc. We first define a class that describes terminal 
behavior for various components. The component descriptions then 
call this description and inherit its terminal definitions. For example, 
the following listing describes terminal behavior of all two-terminal 
(one-port) devices: 



model class OnePort 
cut WireALVa/ii, WireB(Vb/-ii 
main path AB <WireA - WireB, 
local v 

v = Va ~ Vb 
p = v * i  

end 

Dymola keywords appear in bold type. The model class 
command defines an object class of type OnePort. The cut 
command defines the terminal connections of an electrical 
component; note that each cut defines two variables, in this case 
electric potential and current. The path command creates a directed 
path from one cut to another, i.e. a port. The local variable v defines 
the voltage drop across the port. 

Components are now easily described. For example, a capacitor 
is given by: 

model class (OnePort) Capacitoi 
parameter C = l  . O  

C*der(v) = i 
end 

This model inherits the terminal description and equations given 
by model class OnePort. The capacitance is given by the parameter 
C, with a default value of 1.0. The capacitor behavior is described 
by the differential equation, where der@) is the derivative of x. 
Other components (resistors, inductors, sources, ground, etc.) are 
similarly described. They are collected into a library file which can 
be called by another Dymola model. 

IIIB. Event-Based Switch & Diode Models 
An ideal switch can be considered to be a controlled resistor that 

has either zero or infinite resistance depending on whether the 
switch is on (closed) or off (open), respectively [8]. A Dymola 
model of an ideal switch is given by: 

model class (Oneport) Switch0 
terminal On 

0 = if On then v else i 
end 

The terminal statement declares a variable O n  that may be 
connected to another model; this allows control of the switch. The if 
statement generates an appropriate event description in the target 
simulation language, thus allowing the simulation to properly handle 
the switching event. 

A diode is a special kind of switch whose state is controlled by 
its terminal variables. An ideal diode has two possible states: (1) 
v 5 0 3 On =false, or ( 2 )  i > 0 a On = true. Figure 2 describes the 
characteristic of an ideal diode. A Dymola model is given by: 

model class (Switch01 Diode0 
new(On1 = v > 0 or i > 0 

end 

This model inherits the Switch0 behavior. The state of the switch 
is controlled by the switch’s internal variables. On a zero-crossing of 
either i or v, an event is generated. The new statement resets the 
boolean variable On according to the boolean value of the right-hand 
side of the diode equation. The value of On changes only at the time 

Figure 2. Ideal diode behavior. 

of the event, so that between events, On remains constant. 
When using ideal switches, one must deal with the issue of 

computational causality [7, 91. In brief, computational causality 
deals with the fact that the description of an electrical (or other ) 
component relates two or more variables by some defining equation. 
In an ODE formulation of a problem, one of these variables, the 
effect, must be given as a function of the other(s), the cause(s). For 
some components, e.g. inductors and capacitors, this causality is 
fixed due to the fact that numerical integration is practical, but 
numerical differentiation is not. For example, to solve the inductor 
equation, we integrate the current to get the voltage, hence the 
current is the cause, and the voltage is the effect. A resistor, on the 
other hand, can take either possible causality, hence its causality is 
determined by surrounding components in the system. If the system 
is such that for some given component, either causality is possible, 
that component lies in what is called an algebraic loop. Note that 
causality is an artifact of the method of computer solution, and has 
little or nothing to do with physical cause and effect. 

In the Switch0 models, the computational causality of the switch 
differs according to the value of v and i, and is thus indicated by the 
state of the O n  variable, so that the switch can take on either 
possible causality. Hence, both causalities must be compatible with 
the circuit, i.e. the switch must lie in an algebraic loop. In practical 
terms, this means that an ideal switch cannot in general occur in a 
cutset whose only other elements are inductors andlor current 
sources, nor in a loop with only capacitors and/or voltage sources. 
This makes physical sense, as we cannot interrupt the current in an 
inductor nor instantaneously discharge a capacitor. 

Unfortunately, this creates problems. Consider the operation of 
the buckboost converter of Fig. 1. For t E (to, t i ) ,  SI is closed, and 
the inductor current ramps up with slope (V V)/L The voltage 
across the diode D I  during this time is Vg,  so 5; is open. At t = t i ,  
SI is opened. The inductor current must go somewhere, so it flows 
through DI. tuming it on. However, the simulation program will not 
see i t  this way. It views D I  as a switch, thus we have a cutset 
consisting of two switches ( S I  and D I )  and an inductor. The 
simulation runs until Si opens, at which point the simulation dies 
due to a division by zero. 

There are a number of possible solutions to this problem. The 
first, and most obvious, is to make the diode into a non-ideal switch 
by giving it finite non-zero “on” and “off” resistances. The result of 
this is that the topology of the circuit never changes, only some 
component values. Below is a Dymola model for such a non-ideal 
switch, Switchl. We then create a Diode1 model identical to DiodeO, 
except that it calls Switchl. 

model class (OnePorti Switchl 
terminal On 
parameter Ron=l.OE-4, Roff=:.OEB 

0 = if On then v-i’Ron else v-i*Roff 
end 

This solves the problem, but not without drawbacks. For 
instance, in the case of the buck-boost converter of Fig. 1, suppose 
the converter is operating in discontinuous conduction mode 
(DCM), so that during each switching cycle, the inductor current 
becomes zero while S I  is off. This results in DI turning off as well. 
The large off resistance of D I  in series with L results in a stiff 
system, i.e. one whose eigenvalues differ by orders of magnitude. 
This may create other problems, including long simulation times. 
This is seen in Section IV of this paper. Another solution has been 
proposed in [6], but this is not yet formulated in an object-oriented 
manner. 

IIIC. Modulator Models 
There are two common switch control waveforms for switching 

converters. The most common today are pulse-width control and 
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Figure 3. General purpose switching modulator. VF controls the 

frequency control, achieved by means of pulse-width modulators 
(PWMs) and voltage-controlled oscillators (VCOs). Both 
waveforms can be generated by the same system, shown in Fig. 3. 

This is represented by the following Dymola model. The 
terminal variable D is a boolean variable used to turn a switch on or 
off. The when-endwhen construct senses when the integrator output 
exceeds unity and generates a corresponding event description in the 
target simulation language. The integrator state x is reset at the event 
time with the init statement. Note that this model has two voltage 
inputs, v l  and v 2 ,  which modulate frequency and duty-cycle 
respectively. The terminal structure is inherited from the model class 
TwoPorr, much like the model class OnePort previously defined. 
Note the simplicity of the model. 

switching frequency of Vout, VD the duty cycle. 

model class (Twoport) Modulator 
parameter KFreq=:.O, KD=l.O, FO=O.O 
parameter RinFreq=l.OE6, RinD=l.OE6 
terminal D 
local x=O.O, xref, Frequency 

vl = RinFreq*il 
v 2  = RinD"i2 
xref = KD'v2 
Frequency z FO + KFreq*vl 
D = x c xref 
der(x) = Frequency 
when not xcl then 

endwhen 
init(x) = D 

end 

A pulse-width modulated signal can also be constructed directly, 
without requiring an integrator. The Dymola model below 
accomplishes the task. Note that this model includes a start time 
Tstart before which the output is zero. This variable can be used to 
offset the phase of converters in a multiple-converter system, a 
commonly used method to reduce switching noise. 

model class (Oneport) P W M ~  
parameter K=1.0, Ts. Tstart=O.O, R . r . = l . O E E  
terminal D 
local x, xref, Nextme, Start-true . J = l  '*Rin 
xref = K*V 
D = x < xref and not T;m?<Tstart 
x = if Time < Tstart then 0 -.> 

when (not Time c Nextime) or S t a r t  then 

S t a r t  and (Tstart<O or Tscar-.,O) -i 
then Tstart else NexEime+Ts 

else (Time - Nextimel/Ts i 1 

new(Nextime) = if ->  

new(Start) = false 
endwhen 

end 

IIID. ERROR AMPLIFIER MODEL 
A practical converter system requires a feedback loop to regulate 

the output. Part of this feedback loop is an error amplifier that 
compares the converter output voltage to some reference voltage. 
The following is a behavioral model given of a linear amplifier. It 
includes input and output resistance, a single pole response, and an 
output voltage limiter. The ability to use a behavioral model allows a 
very simple description. 

model class ( O p A m p )  OpAmpl 
submodel (Resistor) Rinput(R=Rin), Routput(R=Routi 
submodel (Limiter) Lim(LowLimit=Vlow,-> 

submodel IVSourcei Voutput 
submodel Common 
parameter Rin=lEG, Rout=l, Gain=lE6, PoleFreq=lO 
parameter Vhigh=lS, Vlow=-15 
local v 
node no, nl 

HighLimit=Vhigh) 

connect Rinput from InPlus to InMinus 
connect Voutput from nl to nO 
connect Routput. from nl to Out 
connect Common at nO 
der(v) = PoleFreq*(Gain*Vin-v) 
Lim.x = v 
Lim.y = V0utput.V 

end 

Iv. DYMOLA MODELS OF CONVERTER SYSTEMS 
The following section develops a converter model by connecting 

the various components defined in the previous section. This model 
is then used as part of larger systems. The first system is a simple 
open-loop system that allows discussion of some of the issues 
involved with simulation of power converters, and includes a 
comparison with SPICE. The second system is a closed-loop 
regulated system. 

IVA. FLYBACK CONVERTER MODEL 
The example given is the flyback converter, shown in Fig. 4. 

The flyback converter is functionally equivalent to the buck-boost 
converter, but is more commonly used due to the isolation and turns 
ratio provided by the transformer. 

PinPa s1 D1 

+ 
In 

T -  D - 

Pin1 b PinPb 

Figure 4. Flyback converter. 

First, we define a terminal structure compatible with all single- 
input-single-output converters. This model class is similar to that for 
Twoport, but reflects conventions used in power converter design: 

model class Converter 
cut Pinla(Vla/ilai , Pinlb(Vlb/ilb) 
cut Pin2aiV2a/i2a). Pin2b(VZb/i2b) 
cut Portl[Pinla, Pinlbl, Port2 [iinaa, Pin2bl 
path In<Pinla ~ Pinlb,, Out<Pin2a .- P i n % S >  
main path P -Par:; ~ Fort2, 

local vl, v2 
Vl I Vla V l h  
v2 = V2a ~ v2h 

end 

Now, we construct the converter by connecting the electrical 
components together. Each submodel statement declares the 
components used and their parameters. In this example, the 
parameters for the components L1, C I ,  and transformer TI are also 
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parameters of the model class FlybackO, i.e. we can specify their 
values when we use the flyback model as part of a larger system. 
The terminal D is used to turn switch S w l  on or off. The node 
statement is used to connect the cuts, or wires, of the various 
components together; note that nodes and cuts are structural 
equivalents. The flyback converter model is: 

model class (Converter) Flyback0 
submodel (Inductor) Ll(L=L) 
submodel (Capacitor) Cl(C=C) 
submodel (TransformerO) T1 (n=n) 
submodel (SwitchO) Swl 
submodel (Diodel) D 1  (Vd=Vd) 
parameter L, C, n, Vd 
terminal D 
node nl, n2 

connect L1 from nl to Pinlb 
connect Swl from Pinla to nl 
connect <In> T1 from nl to Pinlb 
connect < O - t >  TI from Pir.2b to n2 
connect D1 from n2 to Pin2a 
connect C1 from Pin2a to Pin2b 
Swl.On = D 

end 

IVB. OPEN LOOPSYSTEM 
The Flyback0 model can now be used in a larger system. The 

simplest example of this is to connect a voltage source to the input 
and a resistive load to the output, shown in Fig 5. A PWM is needed 
to supply the switching signal to the converter. 

The following Dymola program represents the system of Fig. 5: 
model circuit 

submodel (VSource) Vg, Vcontrcl 
submodel (Resistor) RLoad(R=5) 
submodel (Flyback01 Fly(L=200E-F, C=2iE-6, - >  

submodel ( PWMl ) PWM (Ts= 1 . 6 7 E -  5 
submodel Cormon 

n=l, Vdz0.71 

node no, nl, n2. n3 
output iLoad, vLoad 

connect Common at nO 
connect Vg from nl to nO 
connect RLoad from n2 to nO 
connect <In> Fly from nl to n0 
connect <Out> Fly from n2 to nO 
connect PWM from n3 to nO 
connect Vcontrol from n3 to n0 
vg.v = 40 
Vcontro1.V = 1/3 

vLoad = Ricad.~ 
iLoad = RL0ad.i 

F1y.D = PWM.D 

end 

This model is compiled by Dymola into an ACSL model, which 
is then simulated. The results of this simulation and a SPICE3 
simulation of this system are shown together in Fig. 6, where the 
load voltage and converter inductor current are plotted. The two 

Flyback 
Converter 

Fly 

Rload 

- - - - 
D 

results are virtually identical. The different simulators were not 
available on the same machine, so the results were normalized to the 
machine running ACSL for the fastest simulation (the actual CPU 
times are given in parentheses). ACSL was run on a DEC 
VAXNMS system, and SPICE3 on a color NeXTStation. The 
simulation times were 1.0 (19.12 seconds) for ACSL and 5.0 (80.52 
seconds) for SPICE3. In addition, the ACSL run generated 1280 
data points, and SPICE generated over 20,000! Finally, note that in 
order to obtain an accurate SPICE simulation, the maximum allowed 
time-step was 0.1 microseconds. Larger time-steps resulted in 
convergence to erroneous results, but they did not cause a failure to 
converge, i.e. there was no indication (other than operator 
experience) that something had gone awry. This is a much more 
serious problem than slow simulation speed, for obvious reasons. 

The above simulation runs very fast, and the use of the nonideal 
switches does not cause any problems due to stiffness. The reason 
for the latter is that for the given parameters, the converter runs in 
continuous conduction mode (CCM) meaning one of the two 
switches is always on. As a result, the system never becomes stiff. 
However, in a real system, one cannot count on always operating in 
CCM, so the converter was simulated to run in discontinuous 
conduction mode (DCM). In this mode, all switches are off for an 
interval during each switching cycle. If we reduce the value of L (the 
inductor) in the submodel F l y  to 50pH and increase the load 
resistance Rload to 20R, the converter will operate in DCM 
(simulation results are shown in Fig. 7). The simulation time for a 2 
millisecond run has increased to 4.9 (94.69) seconds for ACSL and 
5.9 (92.26 seconds) for SPICE3. ACSL generated about 1500 data 
points, much less than the nearly 22,000 generated by SPICE. In this 
case, the system becomes stiff for a fraction of each switching 
period, and the ACSL simulation slows drastically. A solution to this 
would be to use an integration routine that handles stiff systems, e.g. 
the Gear algorithm; unfortunately, the ACSL implementation of the 
Gear algorithm is unsuitable for simulation of switching converters, 
as it cannot handle the discontinuities. Hence, we are stuck with 
using the 5th order variable-step Runge-Kutta algorithm. This is a 
poor algorithm for stiff systems, and contributes to the slow 
simulation speed. 

Dymola CCM Simulation 
25 

20 

15 

10 

5 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Time [ms] 
Figure 6. Dymola and SPICE3 simulation results for  the system of 
Fig. 5, operating in CCM (continuous conduction mode). 

Figure 5. Flyback converter system 
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Dymola DCM Simulation 
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Figure 7. Dymola and SPICE3 simulation results for the system of 

Fig. 5, operating in DCM (discontinuous conduction mode). 
The use of non-ideal diode models can cause another problem 

due to introduction of artificial stiffness. In the Dymola model for 
the system of Fig. 5, note that the ideal Switch0 model was used for 
S w l .  We can get away with this since the non-ideal diode DI is 
actually modeled as a variable resistance, thus Swl is always in an 
algebraic loop. If, however, we model Swl with the non-ideal switch 
model Switchl, and run the converter in DCM, the inductor current 
exhibits extremely small, rapid oscillation about zero. This 
oscillation will cause the diode to tum on and off dozens of times 
each switching period, slowing the simulation to a crawl, although 
the results remain accurate. 

There are at least two solutions to these problems. First, since 
Dymola can formulate models as a differential-algebraic equation 
(DAE), one may use a simulator that handles DAE systems. This 
does away with the switch causality problem, but one may pay a 
penalty in decreased simulation efficiency versus an ODE 
formulation, particularly if the system is not normally stiff. Second, 
one may use an extension of the Pantelides algorithm [6]. This 
allows one to use ideal switches and will result in an ODE 
formulation of the problem. However. Dymola does not yet 
implement this in an object-oriented manner. 

IVC. CLOSED LOOP SYSTEM 
In this section, an error amplifier and feedback loop is added to 

Flyback0 

L=250pH Ts=l6.7p~ 

load 
+ n2 =0.5 

Vload 

Figure 8. Regulatedflyback converter system. 842 

the system (Fig. 8), and the system simulated for a startup transient 
and a jump in input voltage from 5OV to 40V. The simulation CPU 
time for an 8ms run was 98.61 seconds, and Fig. 9 shows the results 
(almost 480 switching cycles). The Dymola model is given below. 

model circuit 
submodel (VSource) Vg, Vref 

submodel (FlybackO) Fly(L=250E-6, C=470E-6, n=4, -> 

submodel (PWM1) PWM(Ts=1.67E-5, Dmax=0.5. --> 

submodel (OpAmpl) Ampl(Rin=lE6. Gain=2, - >  

submodel Common 

submodel (Resistor) RL(R=0.5). Ri(R=lE4), Rf(Rz2E4) 

Vd=O.7) 

Dmin=O.O2) 

PoleFreq=37.7) 

parameter Tjump = 4E-3 
node no, nl, n2, n3, n4, n5 
output iL, iload, vLoad. Vvco, Vin 

connect Common at nO 
connect Vg from n l  to nO 
connect RL from n2 to nO 
connect <In> Fly from nl to nO 
connect <Out> Fly from n2 to nO 
connect PWM from n3 to nO 
connect AmE1:Out at n3 
connect Vref from Amp1:InPlus to nO 
connect Ri from n2 to Amp1:InMinus 

Vg.V = Vin 
Vref.V= 5 
F1y.D = PWM.D 
iLoad = RL.i 
vLoad = RL.v 
i L  = F1y::Ll.i 
vvco = PWM.V 
Vin = if Time < Tjump then 50 else 4 0  

end 

5 I 
L 

0 'I 
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9 0 9 9 9 9 9  
0 0 0 0 0 0 0  

Figure 9. Simulation results for  the regulated flyback system of 

V. NONLINEAR SYSTEMS 
The reader has perhaps noticed that all the models used in this 

paper are piecewise linear. This is not a limitation of Dymola itself, 
but the fact that ACSL requires an ODE (ordinary differential 
equation) formulation of equations in order to simulate them. In this 
case, the task of Dymola is to convert the circuit descriptions into a 
set of ODEs and a system of simulataneous algebraic equations. The 
system of algebraic equations must be solved for the variables 
required by the ODEs. If linear, the system can be solved explicitly, 
but if nonlinear, it must be solved iteratively at each time-step. 
Recently, Dymola has extended in manner that, when it discovers 
systems of nonlinear simulataneous equations, automatically adds 

Fig. 8. 



code to the ACSL model to solve these equations via Newton 
iteration [IO]. 

VI. CONCLUSION 
As demonstrated in the previous sections, the Dymola language 

allows the modeling of power converter systems in a completely 
objected-oriented manner. One can develop electrical component 
models with which one can build power converter (and other) 
circuits. A topological circuit description similar to that used by 
SPICE can be used to develop such converter models, much as the 
Flyback0 model was developed in this paper. Behavioral models of 
more complex components can also be developed, as demonstrated 
by the Modulator, PWMI, and OpAmp models given in Sections 
IIIC and IIID. All these models can be used together to model a 
complete system. Dymola will translate the models and their 
connections into a set of differential equations and generate from the 
latter a complete simulation model in a choice of several simulation 
languages. 

The use of simulation events aids the simulation of switching 
power converters in several ways. It can help increase simulation 
speed and accuracy, and it can substantially reduce the size of the 
data set without loss of information. Unfortunately, most simulation 
languages that handle events, e.g. ACSL, require a formulation of 
the system in terms of ordinary differential equations; this 
formulation is unwieldy for all but the simplest of circuits. The 
problem is worsened by the fact that most simulation languages are 
not truly object oriented, making the modeling and simulation of 
practical systems difficult; this is especially true when one must 
include event scheduling in the models. Dymola solves both these 
problems at once: First, it allows event descriptions to be handled in 
a high-level manner by placing them inside a component model. 
Second, Dymola is inherently object-oriented, and the event- 
description-containing models are no exception. They can be 
employed in a system just like any other model. 

Some of the problems encountered with the use of ideal switch 
models are discussed. In an ODE formulation of a problem, ideal 
switches can in general only be used when placed in an algebraic 
loop. Unfortunately, this creates problems in nearly all power 
electronic switching converters. The simplest solution, making the 
switches into variable resistances, can in some circumstances 
introduce artificial stiffness into the system, slowing the simulation 
speed. Other solutions include the use of a simulation language with 
a DAE solver, or perhaps an extension of the Pantelides algorithm to 
generate an ODE system where all switches end up in algebraic 

A practical example is given by means of the commonly used 
flyback converter. A converter model is constructed from common 
circuit components in the Dymola modeling language. This model is 
then used as a component in a larger system consisting of a PWM 
modulator model, along with a load and source. This model is 
compiled and simulated in ACSL. The results are consistent with 
those obtained by SPICE. Finally, a error amplifier and feedback 
loop are added to the converter to build a closed-loop regulated 
system, which is then simulated succesfully. 

loops. 
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