
OB JECT-ORIENTED POWER SYSTEM MODELING USING
THE DYMOLA MODELING LANGUAGE

John S. Glaser, FranGois E. Cellier, and Arthur F. Witulski
Department of Electrical and Computer Engineering

University of Arizona, Tucson A Z 85721
Email: glaser@ hermes,ece.arizona.edu, cellier@ece.arizona.edu, witulski@ece.arizona.edu

ABSTRACT
The general purpose modeling language Dymola is used in

conjunction with the ACSL simulator to provide an environment for
the simulation of power electronic systems. The object-oriented
nature of Dymola, along with its high-level handling of discrete
events, makes it ideally suited to modeling switching converters and
complete systems of several converters. Converter models can be
constructed using a netlist format similar to SPICE. These models
can then be used as components in more complex systems. This is
demonstrated by example with a regulated dc-dc converter system.

I. INTRODUCTION
Simulation of switching power converters is a problematic task

for several reasons. Such converters operate by using switches to
change the configuration of an energy-storage (inductor-capacitor)
network at frequencies up to several megahertz, and at least some of
the network time constants are one or more orders of magnitude
larger than the switching period. Each switching event is, in an ideal
sense, a discontinuity. Typical power converter simulations can run
for hundreds or thousands of switching cycles, which can create
problems for simulation software that does not have explicit
mechanism for handling these discontinuities (events). Among these
problems are long simulation times, lack of convergence, and
convergence to an erroneous solution.

The standard software for circuit simulation, SPICE (and its
derivatives), is not well suited to power converter simulation due to
its lack of true event handling [I] . This paper proposes the use of the
general purpose modeling language Dymola [3] in conjunction with
the standard simulation language ACSL [4] to simulate switching
power converters. ACSL has true event handling, which makes it
well suited for switching converter simulation; however, it is
unsuitable for circuit designers since it requires an ODE (ordinary
differential equation) model of the converter in question.
Furthermore, ACSL is not object-oriented, rendering the
development of even moderately complex power supply system
models difficult. Dymola solves both problems: it can convert a
circuit description into a set of ODES, and i t is object-oriented, i.e.
models can be reused as components in larger systems.

Model development proceeds in the following manner. First, a
set of electrical component models are developed. These
components include the standard components such as resistors,
inductors and capacitors. In addition, simple switch and diode
component models are developed that contain the switching event
descriptions. Second, the circuit designer can connect the
components together to form a circuit such, and need not worry
about simulation events or discontinuities. Next, such a circuit
model may in tum be used as a component in a system, such as a
multiple converter power supply. At each level, the modeling is
completely object-oriented. Dymola generates an ACSL program
from the model, which is compiled and run under ACSL.

In this paper, the object-oriented modeling of a complete power
supply system, from the component to system level, will be
demonstrated by modeling and simulation of a regulated power
supply system.

11. SWITCHMODE POWER CONVERTERS
Switch-mode power converters, due to their efficiency and high

power density, .find use in nearly every system that requires
electrical power. This section gives a brief overview of switching
power converter operation, modeling, and simulation.

IIA. Switching Power Converter Operation
Switch-mode power converters operate by the periodic storage

and release of electrical energy in capacitors and inductors. The flow
of energy is controlled by means of switches, which are divided into
two classes, time-event driven and state-event driven. Time-event
driven switches are controlled by some periodic waveform external
to the converter network, and are usually implemented with
transistors. State-event driven switches are controlled by the state
variables of the converter network, i.e., the inductor currents and
capacitor voltages; such switches are usually implemented with
diodes.

It is helpful to review the operation of a simple pulse-width-
modulated (PWM) switching power converter. Figure 1 illustrates
the common buck-boost converter (a) and its main operating mode
(b), continuous conduction mode or CCM. The converter is
controlled by modulating the duty cycle D of a control signal
applied to the switch SI. Switch DI is a diode, and is controlled by
voltage and current waveforms internal to the converter network.
The values of L and C are chosen such that the circuit's time
constants are large compared to the period of the switching signal
applied to SI. This causes a dc output voltage V = DVg/(l -, D)
which will have a small ripple superimposed due to the switching
behavior of the circuit. The detailed behavior of switching power
converters can be found in many texts and references, including [5] .

S,

Figure I . Buck-boost coiiverter (a) arid major
waveforms (b).

837 0-7803-2730-6195 $4.00 0 1995 IEEE

http://hermes,ece.arizona.edu
mailto:cellier@ece.arizona.edu
mailto:witulski@ece.arizona.edu

IIB. Switching Converter Modeling
Switch-mode converter models can be divided into two classes:

instantaneous and averaged. Instantaneous models are simply the
circuit model of the converter and as such are time-varying and
discontinuous due to their periodically switched nature (Fig. 1 shows
an instantaneous model). Such models accurately model component
waveforms and large-signal behavior. They are useful for
verification of operation, determination of operating points, transient
phenomena, stress analysis, operating mode changes, etc. However,
these models are of limited utility for the study of frequency
response, stability analysis, etc. Furthermore, these models have the
simulation difficulties mentioned in the introduction.

Averaged models are circuit or equation models in which the
time-variations due to the switching behavior have been averaged
out, resulting in a continuous time-invariant model. Averaged
models are much more amenable to mathematical analysis,
frequency response analysis, closed-loop stability studies, and so
forth. Such models are usually limited to frequencies much lower
than the switching frequency.

IIC. Utility Of Simulation Events in Converter Modeling
The use of events can improve both the speed and accuracy of

simulation [6] . Suppose we are using a simulation program without
true event handling, e.g. SPICE, to simulate an instantaneous model
of a switching converter. At each discontinuity, the integration step
size decreases markedly, since the simulator “perceives” the
discontinuity as a sudden increase in the apparent magnitude of the
system’s eigenvalues. After the event is over, the step size usually
increases slowly due to the conservative nature of typical integration
algorithms. In the ideal system, the eigenvalues may change slightly
or not at all during each event, allowing the same step size as before
the event, but the integration algorithm doesn’t know this. If events
occur with sufficient frequency, the integration algorithm step size
remains much smaller than the dynamic behavior of the system
justifies, thus lengthening the simulation run unnecessarily. For
example, in a typical switching converter, step size may be on the
order of nanoseconds at the edge of a switching waveform, although
a transient phenomenon may last milliseconds. Furthermore, it has
been shown that lack of event handling can result in erroneous
simulation results without any indication of error [6] , an occurrence
undoubtedly experienced by many who use SPICE for converter
simulations. These errors are due to the failure of most integration
error estimation methods at extremely small step sizes, and they can
result in convergence to the wrong solution without waming.

Another disadvantage of programs without explicit event
handling is that they may generate huge amounts of superfluous
data, due to the very small step sizes in the region of each
discontinuity. If the events are few and far between, this may not be
a problem, but if they are numerous and closely spaced, as with
switching converters, a program without event handling may
generate a volume of data an order of magnitude larger than one that
has explicit event handling. While one may attempt to alleviate this
problem by specifying a larger output communication interval, by
doing so one may miss event times, causing the output plots to be
inaccurate (and in some cases look very strange).

These problems occur because software such as SPICE does not
properly handle events. To explain this statement, consider what it
means to possess true event recognition and handling. Most
simulation programs, recent versions of SPICE included, can
recognize that an event has occurred. For example, a statement of
the form “if v > Vm, then transistor Q I explodes” recognizes a
certain event and spells out a consequence. What this statement does
not do is guarantee that the consequence occurs at the time of the
event. Recall that a simulator solves the system at discrete time

points. Consider our example event above, and say that at time point
tn , v < V m , but at the next time point tn+ 1, v > Vmv Most
software will just assume that the event occurred at time tn+l, and
continue from there. For the consequence ‘‘Qr explodes”, the exact
event time tevenr probably doesn’t matter, but in many cases, it
matters greatly. The problem is intensified if the system has slow
dynamics between event times, e.g. switching power converters. In
this case, a typical variable time-step integration routine will use a
large time-step, and the error between the perceived event time tn+l
and the actual event time tevenl can be substantial. A program that
handles events properly will, upon occurrence of an event, employ a
routine to search for the exact time tevent. It will then re-compute
the system with Ievent as the end-point of the simulation, store the
appropriate variables, and restart the simulation at time revent.

An instantaneous model makes good use of simulation events,
since they use events to describe each switch opening and closing.
Since event-handling simulation software recognizes discontinuities,
it can store all state variables at the time of an event, and restart the
integration with the same step size after the discontinuity is over.
Furthermore, the simulation is no longer susceptible to erroneous
convergence due to error estimation failure in the integration
routine.

Although not covered in this paper, simulation events are also
useful for constructing multi-mode averaged models. One of the
limitations of averaged models is that different models are required
for different operating modes. For simulation purposes, one may
include more than one model description and switch between them
according to the operating point.

111. DYMOLA MODELING OF ELECTRICAL NETWORKS
It has been shown in [7] that Dymola may be used for

topological modeling of linear electrical networks (non-linear
models are discussed in Section V). The topological description of
the circuit can be given in a netlist format similar to that used by
SPICE. Dymola solves the circuit description and computes a set of
state equations, from which it can generate a model in a number of
simulation languages. ACSL is preferred due to its event-handling
capability.

The Dymola language uses an object-oriented (hierarchical)
modeling method well suited to circuit modeling. Electrical
components are developed into models, which can be used as part of
larger models, similar to subcircuits in SPICE. In addition, model
parameters and variables, even those at the bottom of the hierarchy,
are always easily accessible; however, they need not be carried up
the hierarchy, preventing unwieldy model descriptions. Of course,
Dymola is a general purpose modeling language not limited to
electrical circuits.

Dymola handles event descriptions in a high-level object-
oriented manner [8]. This makes Dymola extremely useful for
modeling switching power electronic circuits. The switching event
descriptions are simply included in switch models, which can then
be used like any other circuit components. The following sections
describe models of electrical components.

IIIA. Linear Circuit Modeling
Many switching converters can be accurately modeled with

linear components such as resistors, capacitors, inductors,
transformers, etc. We first define a class that describes terminal
behavior for various components. The component descriptions then
call this description and inherit its terminal definitions. For example,
the following listing describes terminal behavior of all two-terminal
(one-port) devices:

model class OnePort
cut WireALVa/ii, WireB(Vb/-ii
main path AB <WireA - WireB,
local v

v = Va ~ Vb
p = v * i

end

Dymola keywords appear in bold type. The model class
command defines an object class of type OnePort. The cut
command defines the terminal connections of an electrical
component; note that each cut defines two variables, in this case
electric potential and current. The path command creates a directed
path from one cut to another, i.e. a port. The local variable v defines
the voltage drop across the port.

Components are now easily described. For example, a capacitor
is given by:

model class (OnePort) Capacitoi
parameter C = l . O

C*der(v) = i
end

This model inherits the terminal description and equations given
by model class OnePort. The capacitance is given by the parameter
C, with a default value of 1.0. The capacitor behavior is described
by the differential equation, where der@) is the derivative of x.
Other components (resistors, inductors, sources, ground, etc.) are
similarly described. They are collected into a library file which can
be called by another Dymola model.

IIIB. Event-Based Switch & Diode Models
An ideal switch can be considered to be a controlled resistor that

has either zero or infinite resistance depending on whether the
switch is on (closed) or off (open), respectively [8]. A Dymola
model of an ideal switch is given by:

model class (Oneport) Switch0
terminal On

0 = if On then v else i
end

The terminal statement declares a variable O n that may be
connected to another model; this allows control of the switch. The if
statement generates an appropriate event description in the target
simulation language, thus allowing the simulation to properly handle
the switching event.

A diode is a special kind of switch whose state is controlled by
its terminal variables. An ideal diode has two possible states: (1)
v 5 0 3 On =false, or (2) i > 0 a On = true. Figure 2 describes the
characteristic of an ideal diode. A Dymola model is given by:

model class (Switch01 Diode0
new(On1 = v > 0 or i > 0

end

This model inherits the Switch0 behavior. The state of the switch
is controlled by the switch’s internal variables. On a zero-crossing of
either i or v, an event is generated. The new statement resets the
boolean variable On according to the boolean value of the right-hand
side of the diode equation. The value of On changes only at the time

Figure 2. Ideal diode behavior.

of the event, so that between events, On remains constant.
When using ideal switches, one must deal with the issue of

computational causality [7, 91. In brief, computational causality
deals with the fact that the description of an electrical (or other)
component relates two or more variables by some defining equation.
In an ODE formulation of a problem, one of these variables, the
effect, must be given as a function of the other(s), the cause(s). For
some components, e.g. inductors and capacitors, this causality is
fixed due to the fact that numerical integration is practical, but
numerical differentiation is not. For example, to solve the inductor
equation, we integrate the current to get the voltage, hence the
current is the cause, and the voltage is the effect. A resistor, on the
other hand, can take either possible causality, hence its causality is
determined by surrounding components in the system. If the system
is such that for some given component, either causality is possible,
that component lies in what is called an algebraic loop. Note that
causality is an artifact of the method of computer solution, and has
little or nothing to do with physical cause and effect.

In the Switch0 models, the computational causality of the switch
differs according to the value of v and i, and is thus indicated by the
state of the O n variable, so that the switch can take on either
possible causality. Hence, both causalities must be compatible with
the circuit, i.e. the switch must lie in an algebraic loop. In practical
terms, this means that an ideal switch cannot in general occur in a
cutset whose only other elements are inductors andlor current
sources, nor in a loop with only capacitors and/or voltage sources.
This makes physical sense, as we cannot interrupt the current in an
inductor nor instantaneously discharge a capacitor.

Unfortunately, this creates problems. Consider the operation of
the buckboost converter of Fig. 1. For t E (to, t i) , SI is closed, and
the inductor current ramps up with slope (V V)/L The voltage
across the diode D I during this time is Vg, so 5; is open. At t = t i ,
SI is opened. The inductor current must go somewhere, so it flows
through DI. tuming it on. However, the simulation program will not
see i t this way. It views D I as a switch, thus we have a cutset
consisting of two switches (S I and D I) and an inductor. The
simulation runs until Si opens, at which point the simulation dies
due to a division by zero.

There are a number of possible solutions to this problem. The
first, and most obvious, is to make the diode into a non-ideal switch
by giving it finite non-zero “on” and “off” resistances. The result of
this is that the topology of the circuit never changes, only some
component values. Below is a Dymola model for such a non-ideal
switch, Switchl. We then create a Diode1 model identical to DiodeO,
except that it calls Switchl.

model class (OnePorti Switchl
terminal On
parameter Ron=l.OE-4, Roff=:.OEB

0 = if On then v-i’Ron else v-i*Roff
end

This solves the problem, but not without drawbacks. For
instance, in the case of the buck-boost converter of Fig. 1, suppose
the converter is operating in discontinuous conduction mode
(DCM), so that during each switching cycle, the inductor current
becomes zero while S I is off. This results in DI turning off as well.
The large off resistance of D I in series with L results in a stiff
system, i.e. one whose eigenvalues differ by orders of magnitude.
This may create other problems, including long simulation times.
This is seen in Section IV of this paper. Another solution has been
proposed in [6], but this is not yet formulated in an object-oriented
manner.

IIIC. Modulator Models
There are two common switch control waveforms for switching

converters. The most common today are pulse-width control and

839

Figure 3. General purpose switching modulator. VF controls the

frequency control, achieved by means of pulse-width modulators
(PWMs) and voltage-controlled oscillators (VCOs). Both
waveforms can be generated by the same system, shown in Fig. 3.

This is represented by the following Dymola model. The
terminal variable D is a boolean variable used to turn a switch on or
off. The when-endwhen construct senses when the integrator output
exceeds unity and generates a corresponding event description in the
target simulation language. The integrator state x is reset at the event
time with the init statement. Note that this model has two voltage
inputs, v l and v 2 , which modulate frequency and duty-cycle
respectively. The terminal structure is inherited from the model class
TwoPorr, much like the model class OnePort previously defined.
Note the simplicity of the model.

switching frequency of Vout, VD the duty cycle.

model class (Twoport) Modulator
parameter KFreq=:.O, KD=l.O, FO=O.O
parameter RinFreq=l.OE6, RinD=l.OE6
terminal D
local x=O.O, xref, Frequency

vl = RinFreq*il
v 2 = RinD"i2
xref = KD'v2
Frequency z FO + KFreq*vl
D = x c xref
der(x) = Frequency
when not xcl then

endwhen
init(x) = D

end

A pulse-width modulated signal can also be constructed directly,
without requiring an integrator. The Dymola model below
accomplishes the task. Note that this model includes a start time
Tstart before which the output is zero. This variable can be used to
offset the phase of converters in a multiple-converter system, a
commonly used method to reduce switching noise.

model class (Oneport) P W M ~
parameter K=1.0, Ts. Tstart=O.O, R . r . = l . O E E
terminal D
local x, xref, Nextme, Start-true . J = l '*Rin
xref = K*V
D = x < xref and not T;m?<Tstart
x = if Time < Tstart then 0 -.>

when (not Time c Nextime) or S t a r t then

S t a r t and (Tstart<O or Tscar-.,O) -i
then Tstart else NexEime+Ts

else (Time - Nextimel/Ts i 1

new(Nextime) = if ->

new(Start) = false
endwhen

end

IIID. ERROR AMPLIFIER MODEL
A practical converter system requires a feedback loop to regulate

the output. Part of this feedback loop is an error amplifier that
compares the converter output voltage to some reference voltage.
The following is a behavioral model given of a linear amplifier. It
includes input and output resistance, a single pole response, and an
output voltage limiter. The ability to use a behavioral model allows a
very simple description.

model class (O p A m p) OpAmpl
submodel (Resistor) Rinput(R=Rin), Routput(R=Routi
submodel (Limiter) Lim(LowLimit=Vlow,->

submodel IVSourcei Voutput
submodel Common
parameter Rin=lEG, Rout=l, Gain=lE6, PoleFreq=lO
parameter Vhigh=lS, Vlow=-15
local v
node no, nl

HighLimit=Vhigh)

connect Rinput from InPlus to InMinus
connect Voutput from nl to nO
connect Routput. from nl to Out
connect Common at nO
der(v) = PoleFreq*(Gain*Vin-v)
Lim.x = v
Lim.y = V0utput.V

end

Iv. DYMOLA MODELS OF CONVERTER SYSTEMS
The following section develops a converter model by connecting

the various components defined in the previous section. This model
is then used as part of larger systems. The first system is a simple
open-loop system that allows discussion of some of the issues
involved with simulation of power converters, and includes a
comparison with SPICE. The second system is a closed-loop
regulated system.

IVA. FLYBACK CONVERTER MODEL
The example given is the flyback converter, shown in Fig. 4.

The flyback converter is functionally equivalent to the buck-boost
converter, but is more commonly used due to the isolation and turns
ratio provided by the transformer.

PinPa s1 D1

+
In

T - D -

Pin1 b PinPb

Figure 4. Flyback converter.

First, we define a terminal structure compatible with all single-
input-single-output converters. This model class is similar to that for
Twoport, but reflects conventions used in power converter design:

model class Converter
cut Pinla(Vla/ilai , Pinlb(Vlb/ilb)
cut Pin2aiV2a/i2a). Pin2b(VZb/i2b)
cut Portl[Pinla, Pinlbl, Port2 [iinaa, Pin2bl
path In<Pinla ~ Pinlb,, Out<Pin2a .- P i n % S >
main path P -Par:; ~ Fort2,

local vl, v2
Vl I Vla V l h
v2 = V2a ~ v2h

end

Now, we construct the converter by connecting the electrical
components together. Each submodel statement declares the
components used and their parameters. In this example, the
parameters for the components L1, C I , and transformer TI are also

840

parameters of the model class FlybackO, i.e. we can specify their
values when we use the flyback model as part of a larger system.
The terminal D is used to turn switch S w l on or off. The node
statement is used to connect the cuts, or wires, of the various
components together; note that nodes and cuts are structural
equivalents. The flyback converter model is:

model class (Converter) Flyback0
submodel (Inductor) Ll(L=L)
submodel (Capacitor) Cl(C=C)
submodel (TransformerO) T1 (n=n)
submodel (SwitchO) Swl
submodel (Diodel) D 1 (Vd=Vd)
parameter L, C, n, Vd
terminal D
node nl, n2

connect L1 from nl to Pinlb
connect Swl from Pinla to nl
connect <In> T1 from nl to Pinlb
connect < O - t > TI from Pir.2b to n2
connect D1 from n2 to Pin2a
connect C1 from Pin2a to Pin2b
Swl.On = D

end

IVB. OPEN LOOPSYSTEM
The Flyback0 model can now be used in a larger system. The

simplest example of this is to connect a voltage source to the input
and a resistive load to the output, shown in Fig 5. A PWM is needed
to supply the switching signal to the converter.

The following Dymola program represents the system of Fig. 5:
model circuit

submodel (VSource) Vg, Vcontrcl
submodel (Resistor) RLoad(R=5)
submodel (Flyback01 Fly(L=200E-F, C=2iE-6, - >

submodel (PWMl) PWM (Ts= 1 . 6 7 E - 5
submodel Cormon

n=l, Vdz0.71

node no, nl, n2. n3
output iLoad, vLoad

connect Common at nO
connect Vg from nl to nO
connect RLoad from n2 to nO
connect <In> Fly from nl to n0
connect <Out> Fly from n2 to nO
connect PWM from n3 to nO
connect Vcontrol from n3 to n0
vg.v = 40
Vcontro1.V = 1/3

vLoad = Ricad.~
iLoad = RL0ad.i

F1y.D = PWM.D

end

This model is compiled by Dymola into an ACSL model, which
is then simulated. The results of this simulation and a SPICE3
simulation of this system are shown together in Fig. 6, where the
load voltage and converter inductor current are plotted. The two

Flyback
Converter

Fly

Rload

- - - -
D

results are virtually identical. The different simulators were not
available on the same machine, so the results were normalized to the
machine running ACSL for the fastest simulation (the actual CPU
times are given in parentheses). ACSL was run on a DEC
VAXNMS system, and SPICE3 on a color NeXTStation. The
simulation times were 1.0 (19.12 seconds) for ACSL and 5.0 (80.52
seconds) for SPICE3. In addition, the ACSL run generated 1280
data points, and SPICE generated over 20,000! Finally, note that in
order to obtain an accurate SPICE simulation, the maximum allowed
time-step was 0.1 microseconds. Larger time-steps resulted in
convergence to erroneous results, but they did not cause a failure to
converge, i.e. there was no indication (other than operator
experience) that something had gone awry. This is a much more
serious problem than slow simulation speed, for obvious reasons.

The above simulation runs very fast, and the use of the nonideal
switches does not cause any problems due to stiffness. The reason
for the latter is that for the given parameters, the converter runs in
continuous conduction mode (CCM) meaning one of the two
switches is always on. As a result, the system never becomes stiff.
However, in a real system, one cannot count on always operating in
CCM, so the converter was simulated to run in discontinuous
conduction mode (DCM). In this mode, all switches are off for an
interval during each switching cycle. If we reduce the value of L (the
inductor) in the submodel F l y to 50pH and increase the load
resistance Rload to 20R, the converter will operate in DCM
(simulation results are shown in Fig. 7). The simulation time for a 2
millisecond run has increased to 4.9 (94.69) seconds for ACSL and
5.9 (92.26 seconds) for SPICE3. ACSL generated about 1500 data
points, much less than the nearly 22,000 generated by SPICE. In this
case, the system becomes stiff for a fraction of each switching
period, and the ACSL simulation slows drastically. A solution to this
would be to use an integration routine that handles stiff systems, e.g.
the Gear algorithm; unfortunately, the ACSL implementation of the
Gear algorithm is unsuitable for simulation of switching converters,
as it cannot handle the discontinuities. Hence, we are stuck with
using the 5th order variable-step Runge-Kutta algorithm. This is a
poor algorithm for stiff systems, and contributes to the slow
simulation speed.

Dymola CCM Simulation
25

20

15

10

5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]
Figure 6. Dymola and SPICE3 simulation results for the system of
Fig. 5, operating in CCM (continuous conduction mode).

Figure 5. Flyback converter system
84 1

Dymola DCM Simulation
40

35

30

25

20

15

10

5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [ms]
Figure 7. Dymola and SPICE3 simulation results for the system of

Fig. 5, operating in DCM (discontinuous conduction mode).
The use of non-ideal diode models can cause another problem

due to introduction of artificial stiffness. In the Dymola model for
the system of Fig. 5, note that the ideal Switch0 model was used for
S w l . We can get away with this since the non-ideal diode DI is
actually modeled as a variable resistance, thus Swl is always in an
algebraic loop. If, however, we model Swl with the non-ideal switch
model Switchl, and run the converter in DCM, the inductor current
exhibits extremely small, rapid oscillation about zero. This
oscillation will cause the diode to tum on and off dozens of times
each switching period, slowing the simulation to a crawl, although
the results remain accurate.

There are at least two solutions to these problems. First, since
Dymola can formulate models as a differential-algebraic equation
(DAE), one may use a simulator that handles DAE systems. This
does away with the switch causality problem, but one may pay a
penalty in decreased simulation efficiency versus an ODE
formulation, particularly if the system is not normally stiff. Second,
one may use an extension of the Pantelides algorithm [6]. This
allows one to use ideal switches and will result in an ODE
formulation of the problem. However. Dymola does not yet
implement this in an object-oriented manner.

IVC. CLOSED LOOP SYSTEM
In this section, an error amplifier and feedback loop is added to

Flyback0

L=250pH Ts=l6.7p~

load
+ n2 =0.5

Vload

Figure 8. Regulatedflyback converter system. 842

the system (Fig. 8), and the system simulated for a startup transient
and a jump in input voltage from 5OV to 40V. The simulation CPU
time for an 8ms run was 98.61 seconds, and Fig. 9 shows the results
(almost 480 switching cycles). The Dymola model is given below.

model circuit
submodel (VSource) Vg, Vref

submodel (FlybackO) Fly(L=250E-6, C=470E-6, n=4, ->

submodel (PWM1) PWM(Ts=1.67E-5, Dmax=0.5. -->

submodel (OpAmpl) Ampl(Rin=lE6. Gain=2, - >

submodel Common

submodel (Resistor) RL(R=0.5). Ri(R=lE4), Rf(Rz2E4)

Vd=O.7)

Dmin=O.O2)

PoleFreq=37.7)

parameter Tjump = 4E-3
node no, nl, n2, n3, n4, n5
output iL, iload, vLoad. Vvco, Vin

connect Common at nO
connect Vg from n l to nO
connect RL from n2 to nO
connect <In> Fly from nl to nO
connect <Out> Fly from n2 to nO
connect PWM from n3 to nO
connect AmE1:Out at n3
connect Vref from Amp1:InPlus to nO
connect Ri from n2 to Amp1:InMinus

Vg.V = Vin
Vref.V= 5
F1y.D = PWM.D
iLoad = RL.i
vLoad = RL.v
i L = F1y::Ll.i
vvco = PWM.V
Vin = if Time < Tjump then 50 else 4 0

end

5 I
L

0 'I
u 3 c D b z % 8 ; 5 0 0 0 0

9 0 9 9 9 9 9
0 0 0 0 0 0 0

Figure 9. Simulation results for the regulated flyback system of

V. NONLINEAR SYSTEMS
The reader has perhaps noticed that all the models used in this

paper are piecewise linear. This is not a limitation of Dymola itself,
but the fact that ACSL requires an ODE (ordinary differential
equation) formulation of equations in order to simulate them. In this
case, the task of Dymola is to convert the circuit descriptions into a
set of ODEs and a system of simulataneous algebraic equations. The
system of algebraic equations must be solved for the variables
required by the ODEs. If linear, the system can be solved explicitly,
but if nonlinear, it must be solved iteratively at each time-step.
Recently, Dymola has extended in manner that, when it discovers
systems of nonlinear simulataneous equations, automatically adds

Fig. 8.

code to the ACSL model to solve these equations via Newton
iteration [IO].

VI. CONCLUSION
As demonstrated in the previous sections, the Dymola language

allows the modeling of power converter systems in a completely
objected-oriented manner. One can develop electrical component
models with which one can build power converter (and other)
circuits. A topological circuit description similar to that used by
SPICE can be used to develop such converter models, much as the
Flyback0 model was developed in this paper. Behavioral models of
more complex components can also be developed, as demonstrated
by the Modulator, PWMI, and OpAmp models given in Sections
IIIC and IIID. All these models can be used together to model a
complete system. Dymola will translate the models and their
connections into a set of differential equations and generate from the
latter a complete simulation model in a choice of several simulation
languages.

The use of simulation events aids the simulation of switching
power converters in several ways. It can help increase simulation
speed and accuracy, and it can substantially reduce the size of the
data set without loss of information. Unfortunately, most simulation
languages that handle events, e.g. ACSL, require a formulation of
the system in terms of ordinary differential equations; this
formulation is unwieldy for all but the simplest of circuits. The
problem is worsened by the fact that most simulation languages are
not truly object oriented, making the modeling and simulation of
practical systems difficult; this is especially true when one must
include event scheduling in the models. Dymola solves both these
problems at once: First, it allows event descriptions to be handled in
a high-level manner by placing them inside a component model.
Second, Dymola is inherently object-oriented, and the event-
description-containing models are no exception. They can be
employed in a system just like any other model.

Some of the problems encountered with the use of ideal switch
models are discussed. In an ODE formulation of a problem, ideal
switches can in general only be used when placed in an algebraic
loop. Unfortunately, this creates problems in nearly all power
electronic switching converters. The simplest solution, making the
switches into variable resistances, can in some circumstances
introduce artificial stiffness into the system, slowing the simulation
speed. Other solutions include the use of a simulation language with
a DAE solver, or perhaps an extension of the Pantelides algorithm to
generate an ODE system where all switches end up in algebraic

A practical example is given by means of the commonly used
flyback converter. A converter model is constructed from common
circuit components in the Dymola modeling language. This model is
then used as a component in a larger system consisting of a PWM
modulator model, along with a load and source. This model is
compiled and simulated in ACSL. The results are consistent with
those obtained by SPICE. Finally, a error amplifier and feedback
loop are added to the converter to build a closed-loop regulated
system, which is then simulated succesfully.

loops.

References
Quarles, T.; A.R. Newton, D.O. Pederson, A. Sangiovanni-Vincentelli,
SPICE3 Version 353 User’s Manual, Department of Electrical
Engineering and Computer Sciences, University of Califomia,
Berkeley, CA, 1993.
Elmqvist, H., Dymola - User’s Manual, DynaSim AB, Research Park
Ideon, Lund, Sweden, 1993.
Mitchell & Gauthier Associates, Inc., Advanced Continuous Simulation
Language (ACSL) Reference Manual, Concord, MA, 1991 .
Cuk, S., Advances in Switched-Mode Power Conversion, Vol. 2 .
TESLAco, Pasadena, CA, 1983.
Cellier, F., Continuous System Simulation. Springer-Verlag New York
Inc., New York, NY, in press.
Cellier, F., Continuous System Modeling. Springer-Verlag New York
Inc., New York, NY, 1991.
Elmqvist, H.; F. Cellier; and M. Otter, “Object-Oriented Modeling Of
Hybrid Systems,” Proceedings of the 1993 European Simulation
Symposium (ESS’93), pp. xxxi-xli..
F. Cellier; .M. Otter; and Elmqvist, H, “Bond Graph Modeling of
Variable Structure Systems,” Proceedings ICBGMP5, Second
International Conference on Bond Graph Modeling and Simulation, Las
Vegas, Nevada, January 15-18, pp.49-55.

[IO] Elmqvist, H.; M. Otter: and F. Cellier ,“Inline Integration: A New
Mixed SymbolicMumeric Approach for Solving Differential-Algebraic
Equation Systems,” Proceedings of the 1995 European Simulation
Multiconference, Prague, Czech Republic, June 5-7, 1995, in press..

a43

