
OBJECT{ORIENTED MODELING:
A TOOL SUPPORTING FLEXIBLE AUTOMATION

FRAN�COIS E. CELLIER

Department of Electrical and Computer Engineering, The University of Arizona,
Tucson, Arizona 85721-0104, U.S.A.

e mail: Cellier@ECE.Arizona.Edu

URL: http://www.ece.arizona.edu/~cellier

ABSTRACT

This paper presents the concepts of and ideas behind the object{oriented modeling
paradigm in the context of rapid prototyping of complex physical system designs. It is
shown that object{oriented modeling software is an essential tool in 
exible manufactur-
ing, which helps reduce both the cost and the time needed to manufacture customized
goods using pre{fabricated components.

KEYWORDS: object{oriented modeling, software reuse, rapid prototyping,

exible manufacturing

INTRODUCTION

For more than 30 years, engineers have been describing physical systems through either linear or
nonlinear state{space models. The modeling and simulation tools developed during this era, such
as ACSL [1], re
ect this emphasis on causal models.

Physics, however, is essentially acausal [2]. It is one of the most deep{rooted myths of engineering
that algebraic loops in models result from neglected fast dynamics. This myth is based upon the
engineers' infatuation with state{space models. Since state{space models are what the engineers
know, they believe that this is also how the universe operates. Whenever they encounter an algebraic
loop in a model, they introduce a \small capacitor" (a storage element) to break it, and claim that
they actually represent the physical realities more faithfully in this way.

It was Sir Isaak Newton himself who was one of the spiritual fathers of the myth about causality.
His law of actio et reactio stipulates that someone commits a willful act (the actio) to which the
universe reacts (the reactio). He distinguishes between perpetrators and victims, between the culprit
and the innocent.

Unfortunately, physics doesn't work that way. There is no physical experiment in the world that
could distinguish whether someone drove his car into a tree, or whether it was the tree that drove
itself into the car. To this date, no{one has come up yet with a convincing physical foundation of
the concept of free will.

Well, maybe this doesn't matter. Engineering is all about simpli�cations, reasonable compro-
mises, useful working hypotheses | much more so than about truth. Maybe, thinking about cause
and e�ect relationships helps the engineer conceptualize his or her task better or more easily, and
therefore, it makes sense to pretend that the universe is a causal one, even though physics seems to
indicate that causality is a mere illusion?

It turns out that this is not the case. Chasing after the chimera of the physical whodunit makes
understanding the mechanisms of physics, modeling them in terms of mathematical equations for
the purpose of simulating these models to predict the future, more di�cult rather than easier.



Every respectable electrical engineer knows that there are two types of electrical resistors. There
is the current{
ow{causes{voltage{drop type that obeys the law

u = R � i (1)

and there is the voltage{drop{causes{current{
ow type that obeys the di�erent law

i =
u

R
(2)

and consequently, his or her toolbox must contain two types of mathematical models for dealing
with these two species of resistors.

In reality, there is of course only one type of resistor, and the law describing it is:

u � i = T �
_S (3)

with the constraint that:

u�R � i = 0 ; R > 0 (4)

i.e., the law describes the conversion of electrical into thermal energy without a loss, and the con-
straint ensures that this conversion is irreversible, i.e., that a resistor cannot be used to produce
electrical energy from heat.

The need to distinguish between di�erent hypothetical types of otherwise identical objects, such
as resistors, makes the life of the engineer very di�cult indeed. It is this arti�cial necessity that is
the main obstacle to complexity. If a system contains one resistor, the modeler needs to take into
consideration 2 possible models. However, if the system contains 10 resistors, there are already 1024
di�erent possibilities to take into consideration.

The object{oriented modeling paradigm does away with the need to describe physical laws
through cause{and{e�ect relationships, and this makes it possible to describe even very complex
processes with ease and con�dence.

FLEXIBLE MANUFACTURING

Recent years have shown an increasing demand for pre{fabricated goods with lots of options that the
customer can choose from. This is a compromise between mass{fabrication and individual customer
design, whereby the customer is provided with as much 
exibility as feasible in in
uencing the
�nal product without driving either cost or delivery time very much up in comparison with the
mass{fabricated product.

In earlier years, this compromise had simply not been available. Components of systems had
not been designed for reuse, and any modi�cation in design required a substantial re{evaluation,
which made such systems almost as expensive or possibly even more expensive than individually
designed ones. The markets for 
exible manufacturing depend heavily on the ability of the producer
to maximize 
exibility, while keeping the cost down and providing as fast a response time as possible
on customized orders.

These demands can only be met by a high degree of 
exible automation in evaluating and
optimizing individualized designs. This goes hand in hand with a demand for 
exible modeling and



simulation tools, whereby hardware components are described by corresponding software modules
that must be combinable in at least the same 
exible manner as the hardware components themselves.

Both the cost of redesign and the time needed to accomplish it depend directly on the modularity
and 
exibility of the modeling and simulation tools available for the task at hand. The object{
oriented modeling paradigm o�ers a good answer to all these demands.

SOFTWARE COST AND DEVELOPMENT TIME

The main factors that help reduce both the cost and development time of software are:

1. Reusability: A software design methodology that ensures optimal reusability of software com-
ponents is the most essential factor in keeping the software development and maintenance cost
down.

2. Abstraction: Higher abstraction levels at the user interface help reduce the time of software
development as well as debugging. The conceptual distance between the user interface and
the �nal production code needs to be enlarged. Software translators can perform considerably
more tasks than they traditionally did.

The object{oriented modeling concept helps in both areas. It ensures optimal reusability of com-
ponent models while supporting a high degree of abstraction. It is thus optimally suited to support

exible manufacturing in the rapid and cost{e�ective development of customized product designs.

OBJECT{ORIENTED MODELING: A KEY TECHNOLOGY FOR
SOFTWARE REUSABILITY AND HARDWARE/SOFTWARE CO{DESIGN

In order to be able to model physical systems in a truly modular fashion, the modeling environment
must re
ect the acausal nature of physics. Models (object descriptions, or object class descrip-
tions) must be collections of physical laws pertaining to the described object, and not assignment
statements. The interface points of a model must be collections of variables that can be shared
between models, not a list of input and output variables. Connections between objects must be
non{directional. A connection between two objects simply declares that these two objects share a
set of variables.

This concept has been coined the object{oriented modeling paradigm. It was originally invented
in the late seventies independently by Tom Runge [3] and Hilding Elmqvist [4] as part of their
respective Ph.D. dissertations.

The object{oriented modeling paradigm shares many of the properties of object{oriented pro-
gramming. Its main characteristics can be summarized as follows [2]:

� Encapsulation of knowledge: The modeler must be able to encode all knowledge related to a
particular object in a compact fashion in one place with well{de�ned interface points to the
outside.

� Topological interconnection capability: The modeler should be able to interconnect objects
in a topological fashion, plugging together component models in the same way as an experi-
menter would plug together real equipment in a laboratory. This requirement entails that the
equations describing the models must be declarative in nature, i.e., they must be acausal.

� Hierarchical modeling: The modeler should be able to declare interconnected models as new
objects, making them indistinguishable from the outside from the basic equation models.
Models can then be built up in a hierarchical fashion.



� Object instantiation: The modeler should have the possibility to describe generic object classes,
and instantiate actual objects from these class de�nitions by a mechanism of model invocation.

� Class inheritance: A useful feature is class inheritance, since it allows the encapsulation of
knowledge even below the level of a physical object. The so encapsulated knowledge can then
be distributed through the model by an inheritance mechanism, which ensures that the same
knowledge will not have to be encoded several times in di�erent places of the model separately.

� Generalized Networking Capability: A useful feature of a modeling environment is the capabil-
ity to interconnect models through nodes. Nodes are di�erent from regular models (objects)
in that they o�er a variable number of connections to them. This feature mandates the
availability of across and through variables, so that power continuity across the nodes can be
guaranteed.

The �rst task of the model compiler must be to extract all the physical laws from the submodel
instantiations, adding the connection equations that are derived from the model topology. This set
of equations generally constitutes a higher{index di�erential{algebraic equation (DAE) system, i.e.,
an implicit model of the type:

f (x; _x;w;u; t) = 0 (5)

where x is a set of state variables, w is a set of algebraic variables, u is a set of inputs, and t is the
time. The number of state variables is usually larger than the degrees of freedom of the system, i.e.,
the true model order.

MIXED SYMBOLIC AND NUMERIC MODEL PROCESSING: THE KEY
TO RUN{TIME EFFICIENCY OF GENERATED SIMULATION CODE

It has been recognized for some time that DAEs play an important role in physical system modeling
[5]. Due to the intrinsically acausal nature of physics, most models do not lead naturally to an
explicit ordinary di�erential equation (ODE) model of the form:

_x = f (x;u; t) (6)

that can be solved with regular ODE solvers. The tendency has been to solve the resulting DAE
set directly using a numerical DAE solver. Several powerful DAE solvers have been made available
meanwhile, including DASSL [6] and Radau [7].

The problems with this approach are twofold. On the one hand, these numerical DAE solvers
are not suited for solving higher{index DAE systems. A symbolic algorithm is known [8] that makes
it possible to automatically reduce the index of a DAE system down to index 1. This algorithm is
very fast (linear complexity) and completely harmless, i.e., it does not lead to an explosion of the
size of the model, one of the major drawbacks of many symbolic formula manipulation algorithms,
and if implemented right, does not have any numerical drawbacks, such as drifting of state variables.

The resulting index 1 DAE system can now be solved numerically by means of a standard DAE
solver, or it can be reduced further symbolically to an explicit ODE form using a graph{theoretical
algorithm of linear complexity [9]. This transformation is not harmless, though, and whether or not
it is e�cient to make this transformation depends on the application. However, the transformation
to explicit form is not essential, since most larger physical models are very sti�, i.e., it is necessary
to use an implicit integration algorithm anyway, and consequently, not much is gained by an explicit
model formulation.



The second problem relates to the size of the Newton iteration needed as part of the DAE solver.
If the resulting index 1 DAE model contains n state variables (x) and k implicitly coupled algebraic
variables (w), DASSL would need to iterate on (n + k) variables using Newton iteration once per
integration step. The �fth{order Radau algorithm will even need to iterate on 3(n + k) variables.
Newton iteration instead of �xed{point iteration is needed because a �xed{point iteration would
destroy the numerical stability properties of the algorithm that were the primary reason for using
an implicit method in the �rst place. This means that a linear system of equations of size n + k

(or 3(n + k) respectively) needs to be solved once per integration step. This calls for the repeated
LU{decomposition of an often very large Jacobian matrix. This can be a very expensive proposition.

A new mixed symbolic and numeric DAE solution technique was recently discovered that rev-
olutionizes the way in which DAEs can be solved e�ciently. The approach has been coined inline

integration [10]. The principal idea is to merge the model equations with the solution equations,
thereby symbolically converting the former DAE problem to an implicitly formulated set of di�er-
ence equations. Tearing [11] is then applied to the so transformed model to reduce the number of
iteration variables to a minimum.

In a six degree{of{freedom Manutek R3 robot with drive trains, controllers, and control elec-
tronics, a model of 66th order, this approach led to a reduction in the number of iteration variables
from 66 to 6, and of the size of the Jacobian from 4356 to 36. The gain in execution speed of the
Newton iteration was a factor of 18.

Whereas the original robot simulation (using DASSL as the DAE solver) was already as fast
as the best of today's special purpose multibody system (MBS) simulators, the new code can now
compete with the best that a human programmer could achieve in manually optimized simulation
code. The conceptual distance between the original DAE model and the �nally generated simulation
code is now very large, and it would be almost impossible for a human programmer to derive such a
code manually from the original model, and if he or she did, the code would be totally unreadable,
very hard to maintain, and even harder to upgrade. The code would be extremely speci�c, and
hardly any of the code could ever be reused again.

In contrast, inline integration is a tool that can be completely automated, i.e., the human modeler
can generate the object{oriented model in a highly abstract and very intuitive fashion. The entire
translation down to the optimized simulation run{time code is fully automated. All parts of the
model are modular and reusable, and the original model code is by at least a factor of 10 shorter in
the number of lines or characters than the ultimately generated simulation code.

IMPLEMENTATION IN DYMOLA

Although the heart of the presentation is on the concepts of and ideas behind the object{oriented
modeling paradigm, it shall be demonstrated also how these ideas have been realized in the Dymola
suite of programs. The system consists of four programs:

1. Dymodraw: This software tool is a graphical general{purpose object diagram editor that
enables the user to compose models of systems from models of subsystems by topologically
connecting them in a fashion similar to how an experimenter would assemble a real system in
the laboratory. The end product of the graphical model is an object{oriented textual model
encoded in Dymola.

2. Dymola: This software tool is a symbolic formula manipulation system that assembles the
equations from the submodels, adds the appropriate connection equations, and then trans-
forms the equations to a form suitable for the simulation system. Dymola can generate code
for a variety of simulation languages including ACSL, SimuLink, Desire, and a few more. It
can also directly generate either Fortran (DSblock) or C (Dymosim) code.

3. Dymosim: This software is a C{based continuous{time simulation system. It supports both



ordinary di�erential equations and di�erential{algebraic equations. It also supports proper
discontinuity handling. Dymosim generates its results in tabular form for use by either Matlab
or Dymoview.

4. Dymoview: This software is a graphical postprocessor that provides plotting of simulation
results as well as 3D postanimation of mechanical systems, such as robots, vehicles, or missiles.

The heart of the system (Dymola) had originally been designed at the Lund Institute of Technology
by Hilding Elmqvist as part of his Ph.D. dissertation [4], was then further developed at the University
of Arizona [12], and is currently under further development by Dynasim AB [13]. The simulator
(Dymosim) had originally been developed at the German Aerospace Research Establishment (DLR)
in Oberpfa�enhofen [14]. The two graphical tools are recent additions from Dynasim AB.

REFERENCES

1. Mitchell & Gauthier Assoc. ACSL: Advanced Continuous Simulation Language | User Guide

and Reference Manual. Concord, MA (1991).

2. Cellier, F.E., H. Elmqvist, and M. Otter \Modeling from Physical Principles." The Control

Handbook. Edited by W.S. Levine. CRC Press, Boca Raton, FL (1995).

3. Runge, T.F. A Universal Language for Continuous Network Simulation. Ph.D. disserta-
tion, Form: UIUCDCS-R-77-866, Dept. of Comp. Science, University of Illinois, Urbana{
Champaign, (1977).

4. Elmqvist, H.A Structured Model Language for Large Continuous Systems. Ph.D. Dissertation,
Report CODEN: LUTFD2/(TFRT{1015), Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden (1978).

5. Brenan, K.E., S.L. Campbell, and L.R. Petzold Numerical Solution of Initial{Value Problems

in Di�erential{Algebraic Equations. Elsevier Science Publishers, New York (1989).

6. Petzold, L.R. \A Description of DASSL: A Di�erential/Algebraic System Solver." Proc. 10th

IMACS World Congress, Montreal, Canada (1982).

7. Hairer, E. and G. Wanner Solving Ordinary Di�erential Equations II. Sti� and Di�erential{

Algebraic Problems. Springer{Verlag, Berlin (1991).

8. Pantelides, C.C. \The Consistent Initialization of Di�erential{Algebraic Systems." SIAM J.

Scienti�c and Statistical Computing 9(1988), pp. 213{231.

9. Tarjan, R.E. \Depth First Search and Linear Graph Algorithms." SIAM J. Comp., 1(1972),
pp. 146{160.

10. Elmqvist, H., M. Otter, and F.E. Cellier \Inline Integration: A New Mixed Symbolic/Numeric
Approach for Solving Di�erential{Algebraic Equation Systems." Proc. ESM'95, SCS Euro-

pean Simulation MultiConference, Prague, Czech Republic (1995), pp. xxiii{xxxiv.

11. Elmqvist, H., and M. Otter \Methods for Tearing Systems of Equations in Object{Oriented
Modeling." Proc. ESM'94, SCS European Simulation MultiConference, Barcelona, Spain
(1994), pp. 326{332.

12. Cellier, F.E. Continuous System Modeling. Springer{Verlag, New York (1991).

13. Elmqvist, H. Dymola: Dynamic Modeling Language | User's Guide. Dynasim AB, Lund,
Sweden (1995).

14. Otter, M. DSblock: A Neutral Description of Dynamic Systems, Version 3.2. Technical Report
TR R81{92, DLR, Institute for Robotics and System Dynamics, Wessling, Germany (1992).
Newest version available via anonymous ftp from \rlg15.df.op.dlr.de" (129.247.181.65) in di-
rectory \pub/dsblock".


