TOWARDS ROBUST GENERAL PURPOSE SIMULATION SOFTWARE

Frangois E. Cellier Peter J. Moebius

Institute for Automatic Control
The Swiss Federal Institute of Technology Zurich
ETH - Zentrum
CH-8092 Zurich
Switzerland

The aim of this paper is to present methods to improve the robustness of a gemeral purpose
run—time system for digital simulation of continuous systems.

This aspect of simulation software robustness is just one of several possible aspects. One
could as well discuss the robustness of a language to formulate simulation problems (simula-
tion language) or the robustness of a compiler for such a language (simulation compiler).
Such aspects will, however, not be considered in this article.

The run-time system robustness is a very important aspect which has not sufficiently been
taken into account in the development of existing simulation software. The aim of this paper
is to specify demands rather than to present optimal solutions. Solutions are presented from

an engineering point of view. They improve the run—time system robustness
solutions can certainly be found. It is hoped that some of the Numerical Mathe-—

but better

,maticians attending this Conference may find these problems
solutions to them in the future. This is one of the main reasons why the authors de-

better

cided to present this material at a Conference of Numerical Mathematics

Conference of Simulation Techniques.

I) INTRODUCTION:

A simulation run-time system can be robust in two
senses:

a) The user should never be required to provide any
kind of information which he does not have at his
disposal. He should be able to concentrate on those
factors which have to do with the statement of his
problem, and should be relieved, as much as pos-
sible, of all aspects which have to do with the way
his problem is executed on the machine. He should
be able to describe his system as easily as pos-—
sible in terms which are closely related to his
common language, but must not be required to pro-
vide a step-size for the numerical integration or
to specify the integration algorithm to be used.

b) The run—-time software itself must be able to
check whether the produced time responses are
"correct”" (within a prescribed tolerance range).

The user, normally, has a more or less precise
(although often not mathematically formulated)
knowledge of the system he is investigating. He
has, however, hardly any "insight information'" into
the tool he is using for that task. He is, usually,
very credulous (the obtained results must be cor-
rect because the computer displays 14 digits!), and
he has no means to judge the correctness of the

.been

18-1

to some extent,

of interest and may develop

rather than at a

produced results. For this reason, it is vital that
each algorithm in the system has its own '"bell"
which rings as wsoon as it is unable to properly
proceed. Under no circumstances are incorrect
results allowed to be displayed to the user.

II) AUTOMATED SELECTION OF INTEGRATION
ALGORITHMS:

A huge step towards robust simulation software has
taken in the development of step-size
controlled integration algorithms. Before these
algorithms existed, the user of digital simulation
software was required to supply information concer-—
ning the step-size to be used —- an information
item which he clearly did not have at his disposal.
Now, the user can simply provide a tolerance range
for the accuracy of the results. This is identical
to requesting the wuser to identify the smallest
number in his problem which can be distinguished
from =zero. This question can certainly be answered
by any user, independently of whether he is an
expert in Numerical Mathematics or not, since it is
closely related to the physics of the problem, and
not to the numerical behaviour of the algorithm.

Available simulation software, up to now, usually
offers a comprehensive selection of different inte-

gration algorithms. It does, however, not tell the
user which would be the most appropriate one for
his particular application. In this way, the user
is again confronted with making a decision on some-
thing he does not really understand. Experience has
shown that the majority of the average users always
operate with the default integration method imple-~
mented in the package which, in most cases, 1is a
Runge-Kutta algorithm of 4th order. Since he does
not know what to specify, he simply ignores that
question, and after some time of using the software
he has even forgotten that the language provides
him with the facility to select among different
integration algorithms. So far, no integration
algorithm could be found which would be able to
handle all kinds of problems equally well, and it
is more than doubtful whether such an algorithm
could be found at all. The user, who does not make
use of the facility to select among different
integration rules, will, consequently, often waste
a lot of computing power. Although much research
has been devoted to the development of different
integration methods for the different classes of
application problems [3,8], the user has, however,
no means to easily determine, from the state space
description, the problem class to which his par-
ticular application belongs. For this reason, the
selection of the appropriate integration algorithm
should also be automated.

For this purpose, we try to extract features from
an application problem during its execution which
are supposed to characterize the numerical be-
haviour of that particular problem as completely as
possible. These features are then combined in a
feature space in which we can identify specific
clusters for which a particular integration method
is optimally suited. The proposed methodology for
the solution to this problem originates from pat—
tern recognition.

What features may be used for this purpose? A first
feature can be associated with the accuracy re-
quirements for the problem. It can be found that
the CPU-cost »to execute a particular problem
depends on the required relative accuracy. Low
order algorithms are appropriate for the treatment
of systems from the "gray-" and '"black box" area
where the available data and models are so vague
that a precise numerical integration does not make
much sense, whereas higher order algorithms are ap-
propriate for the handling of systems form the
"white box" area, e.g. from celestrial mechanics.
Since the user is requested to specify the wanted
relative accuracy, this feature can be extracted
from the input data.

. Multi-step methods require more CPU-time during
their initial phase, but are more economic than
one-step methods if integration goes on over a
longer interval of simulated time. This can be ex—
plained by the fact that one—step methods are
self-starting whereas multi-step methods need to be
initialized. This leads to a second feature. Since
the integration has to be restarted after "event
times" (instants at which some s&tate trajectories
are discontinuous), multi-step integration is in

18-2

favour for purely continuous problems or for
problems with few event times, whereas one-step
integration is appropriate for combined (con-
tinuous/discrete) problems where discrete events
occur with a high density.

Each integration algorithm has associated with it a
domain of numerical stability. The stiffer a parti-
cular problem is (the more the different eigen-
values (A.) of the Jacobian are separated), the
smaller the step—size (h) must be in order to keep
all (A.*h) within the stability region of the algo-
rithm. Fortunately, special integration algorithms
could be found for which this restriction no longer
holds (A~stability, stiff stability). If such an
algorithm is used, the step~size need not be re-
duced due to restrictions imposed by stability de-
mands, but is determined exclusively by the re-
quirements of accuracy. For this reason the eigen-—
value distribution of the Jacobian determines a
third feature which must influence our decision as
to which integration algorithm to wuse for the
execution of a particular problem.

These three features can now be combined to a fea-
ture space as depicted in fig.1.

& Accurocy

g
TZ T
y l
) 20 LA gt ——
-7 ! - !
/’l/ i] 2% >
d i ” P Stitfness
//
/){;.7z_-F,__
e -
-~ -
Smoothness

Fig.1l: Feature space for selection
of integration algorithm

18 clusters have been distinguished in fig.l, and
fig.2a and 2b show integration rules which can be
associated with them.

4 Accuracy A ccuracy
Runge~ Runge-
we W | 2 wee w12
order order) & (8th ord.) (8th ord.)| (<)
Adams Gear Gear i:zzﬁ:
{medium {medium {medium
order) order) order) Tg';:"’i:ﬂ) VA ®) 2)
Adams Gear .
Evler (low (low Euler
order) order) . . a(b) g (b) .
Stiffness Stiffness

Fig.2: Integration algorithms to be
used for smooth (left) and
non—-smooth (right) problems

As can be seen from fig.2, some of the assignments
are still open.

Concerning (a): A Gear algorithm [3] would be ap-
propriate, but it should be of about 8th ordér (at
least for a CDC 6000 series installation —- this
depends on the length of the mantissa), whereas, in
the Kahaner implementation [6] we use, we have only
up to 5th order available.

Concerning (b): For these clusters, a one-step
algorithm with a stiff stability behaviour would be
most suitable. So far, we have experimented with
IMPEX-2 [9], and with DIRK [1], but the programming
style of these algorithms, as they are at our dis-
posal at the moment, is not sufficiently elaborate
to allow for a fair comparison with the extremely
careful and sophisticated Kahaner implementation of
the Gear algorithm.

Concerning (c¢): For this cluster, a high-order
stiffly-stable one-step method would be most appro-
priate. Such an algorithm is, however, unknown to
date.

As a matter of fact, the feature space as depicted
in fig.l is still a simplification. To show this,
let "us consider a system with complex dominant
poles close to the imaginary axis. For ' the treat~
ment of such a system, a stiffly-stable method
cannot be properly applied. The system has,
however, fast transients, making a Runge-Kutta
algorithm not suitable either. Thus, these types of
systems, which are called "highly oscillatory"
systems, will again require special methods (like
stroboscopic = methods) for efficient handling
(C.W.Gear: private communication). This establishes
a fourth feature which is to be used for the deter-
mination of the integration method. The reason for
the primary simplification lies in the fact that a
3-dim. feature space can be graphed easier than a
4-dim. ome (!).

The informatiéon provided by these four features is
sufficient to determine the best suited integration
algorithm for most application problems.

There are even two more features which can be ex-
tracted from the eigenvalue distribution of the
Jacobian. These are used for other purposes, and
will be presented in due course.

So far we have defined features, and we have -as-
sociated integration methods with them. It remains
to determine how “these features can be extracted
from the state space description of the problem.
The first feature (relative accuracy) is user
specified on data dinput. The second feature
(smoothness) could also easily be user provided. It
is, however, a simple task to detect automatically
whether a problem is continuous or combined. If the
problem turms out to be combined, one can count the
number © of - event times during a certain period of
simulated time, and decide then whether it is a
smooth or a non-smooth combined problem. Concerning
- the third and fourth features (stiffness / highly
oscillatory behaviour) one has to compute the

18-3

Jacobian out of the state space description of the
problem. This can either be numerically approxi-
mated at run-time, or one can compute it
algebraically by means of formulae manipulation at
compile~time. This is rarely done by - available
simulation compilers but it is feasible, and seems
to be a promising approach. The wanted features can
now be computed by estimating the critical eigen-—
values., The eigenvalues with the largest and smal~
lest absolute values can be approximated by appro-
priate matrix norms, whereas the real part of domi-—
nant poles can be found by estimating the "margin
of stability" [5,7]. However, since several quan—
tities are needed, we found that it is in most
cases faster to compute the whole set of eigen—
values directly by use of the EISPACK software [2].
The required CPU-time turned usually out to be neg—
lectable compared to the time spent for numerical
integration.

I1I) ADAPTIVE SELECTION OF INTEGRATION
ALGORITHMS:

In a nonlinear case, the Jacobian will usually be
time dependent, and, with it, also its eigenvalues.
Since the classification 1is, in general, defined
for linear systems, it may well be that in a mnon-
linear case it would be best to assign the integra-
tion algorithm dynamically to the problem. For this
purpose, one has to recompute the eigenvalues from
time to time to find out whether the integration
method in use is still appropriate. It seems a good
idea to recompute the eigenvalues as soon as the
step-size, which is controlled by the integration
rule, has changed by an order of magnitude, but not
before a minimun time span of maybe 0.01 times the
run length has elapsed. This can then be wused to
obtain an adaptive selection of the appropriate
integration scheme.

Iv) VERIFICATION OF SIMULATION WITH
RESPECT TO MODELING:

Let us assume that a valid model has been derived
from the physical system under investigation, and
let us question what assurance we have that the
time responses which we obtain through simulation
represent the (valid) model correctly.

For a variable-step integration method being used,
we mnormally trust in the step-size control mecha-
nism which is equivalent to confiding in the error
estimation procedure, This will usually be justi-
fied as long as the local error which we control
can be used as a wvalid estimate for the global
error in which we are interested.

Experience has shown that local errors will not
usually accumulate as long as the system is
numerically stable. In a nonlinear case, it may,
however, happen that some eigenvalues '"walk" into
the +tight half-plane for a short - period of
simulated time. Let us consider, as an example, the

well known Van-der~Pol equation. Fig.3 shows how
the eigenvalues "walk arcund" during omne- limit
cycle.

3

5

my

B

P]

4

8

g

£

Rel)

E

b

8

3

L3

1

b

“ie s ke LW LM L e < e Lo PO Py iw - am Ll

o

o ma

Fig.3: Eigenvalue movement of the
Van-der-Pol equation during
one limit ecycle

As can be seen, the system becomes periodically un-
stable. During such time intervals, errors will ac-
cumulate, and, consequently, we must be careful in
the interpretation of the obtained results. This

fact should be reported by the software to.the
user,
For this purpose, we define another feature

(stability). A wvariable STAB is set equal to zero
when all eigenvalues lie in the left half-plane and
is equal to one as soon as at least one of the
eigenvalues moves into the right half-plane.

0.0 : Ra{)\i} < 0.0 ; i=1,...,n
STAB = { :
1.0 : otherwise
We now collect statistics on STAB as for

time~persistent variables. 1In this way we obtain
the integral of STAB over time divided by the run
length:

t..
1.0 fin
FF5 = ———me—mmmm e * | (STAB)dt
lt,.
fin

- tbeg N

. beg
The fifth feature (FF5) is a real number between
0.0 and 1.0. If it is close to 0.0, the results ob-
tained by simulation have a good chance to be re-
liable. If it is close to 1.0, the obtained results
are most probably nonsense, and they must be cau-
tiously verified.

V) VALIDATION OF THE MODEL WITH RESPECT
TO THE SYSTEM UNDER INVESTIGATION:

Another non-trivial question is whether a model,

" mensional analysis). In this

18-4

for given experimental condirions, properly repre-—
sents the system under investigation. There -exist
several possible means to help the user in this re-—
spect (like asking him to supply dimensions for all
variables in the system to enable an automated di-
section we want to
show that the eigenvalue distribution can also help
to answer this question to some extent.

It has been shown in [4] that only those eigen—
values of a matrix can be properly computed which
fulfil the following inequality:

llil > Gl*s(vn)

where 0. 1is the largest singular value of the
matrix, € is the machine resolution (e.g. 10 '* on
a CDC 6000 series installation), and n is equal to
the order of the model, For higher order models
e’ approaches 1.0 and hardly any eigenvalues will
then be properly computable. Smaller eigenvalues
can take any value and small modifications of the
elements of the matrix can place them almost any-
where within the band of incertainty.

If we now assume that the matrix under investiga—
tion is a Jacobian of a state space description for
a real physical process, then the elements of the
Jacobian are extracted from measurements, and
cannot be computed more accurately than €, which is
a relative accuracy of measurement. We, therefore,
must assume that, within that relative accuracy €,
the elements of the matrix can take any values. In
this case, we must also assume that eigenvalues of
the Jacobian which do not fulfil the more stringent
inequality:

~(¥n)
.l > *
fxlf o *E
can take any value within that broader band,
although they can be much more accurately computed

as soon as any particular values have been assigned
to all elements of the Jacobian. This means that as
soon as there exist eigenvalues for which the
second (more stringent) inequality does not hold,
small variations in the systems parameters which
lie within the inaccuracy of the measurement can
make the model non~stiff or stiff or even unstable.
Physically seen, these eigenvalues correspond to
merely constant modes which could as well be
eliminated from the equation set resulting 'in a
model reduction. Numerically seen, these eigen-
values can lead to accumulation of errors so that
these modes can drift away over a longer span of
simulated time, again resulting in incorrect
simulation trajectories.

Together with the eigenvalues, we compute the fol-
lowing quantity:

! 1
BORD = cl*é(/n)

and the number k indicating those eigenvalues whose

_absolute value is smaller than BORD:

0 0: }xii > BORD
k=323, 5 4y =
i=1 1: IAil < BORD

k represents an integer between 0 and n.

We now collect statistics on the quaﬁtity (k/n) as
for time-persistent variables, and obtain a sixth
feature:

1.0 tfin

FF6 = —ommmmmmmmmm *j (x/n)dt

ltfin N tbég] .
beg
Also the sixth feature (FF6) is a real number bet-
ween 0.0 and 1.0. If it is close to 0.0, the model
has some chance to be valid. If it is close to 1.0,
the model is most probably invalid, and it should
be further investigated.

.

Evaluation of features FF5 and FF6 requires com-
putation of the eigenvalues of the Jacobian once
per integration step. Since this can be expensive,
it- should not be done automatically, but the user
must have a switch at his disposal to turn computa-—
tion on and off. In this way he can use these fea-—
tures during the development of 'a new model,
whereas he can turn computation off during produc-
tion runs. .

VI) DETERMINATION OF CRITICAL STATES:

In section V we have discussed the case where
single eigenvalues were situated close to the ima-
ginary axis, and we have seen that in such a case
it may be possible to reduce the order of the
model,

It is, however, as interesting to discuss the
oposite case where single eigenvalues are located
in the A-plane far to the left. We call these modes
the "critical states” of the system. Very often one
is not really interested.in these fast transients.
In such a case one could eliminate these modes from
the equation set. If the fast transients are impor-—

tant one could at least. try to utilize special’

integration techniques (like using singular pertur-
bations) to expedite integrationm.

One can, of course, again compute the eigenvalue
distribution for the solution of this problem.
However, it is not always easy to see which state
equations are responsible for such an eigenvalue.
For this reason we recommend the following pro-—
cedure.

We reserve an integer array i’ of length n which is
initialized to zero. Each timé an integration step
has to be rejected due to accuracy requirements not
being met, we add 1 to each element of the
array i_(k) for which the accuracy is not met. This
implies, of course, that the lccal truncation error
is estimated for all state variables independéntly.

At the end of the simulation run we divide each
element of the array by the total number of re-
jected integration steps and obtain in this way an-—
other set of n real numbers between 0.0 and 1.0.
Elements with the largest value indicate critical
states.

REFERENCES:

[1] R.Alexander: (1977) "Diagonally Implicit
Runge~Kutta Methods for Stiff 0.D.E.'s". SIAM
Journal on .Numerical Analysis, vol. 14,
no, 6 : December 1977; pp. 1006 - 1021.

[2] B.s.Garbow, Boyle J.M., Dongarra J.J., Moler
C.B.,: (1977) “Matrix Eigensystems Routines -
EISPACK Guide Exténsion'. Springer Verlag,
Lecture Notes in Computer Science, vol. 51.

[31 C.W.Gear: (1971> "Numerical Initial Value
Problems in Ordinary Differential Equations™.
Prentice Hall, Series in Automatic Computa-

tion.

[4] G.H.Golub, Wilkinson J.H.: .. (1976)
"I1l-Conditioned Eigensystems and the Com~
putation of the Jordan Canonical Form”. SIAM
Review, vol., 18, mo. 4 : October 1976;

pp. 578 - 619.

[51 P.Henrici: (1970) '"Upper Bounds for the
Abscissa of Stability of a Stable Poly-
nomial®. SIAM Journal on Numerical"Analysis,
vol. 7, no. 4 : Déecember 1970; pp. 538 - 544.

[6] D.Rahaner: (1977) "A New Implementation of
the Gear Algorithm for Stiff Systems". Un-—
published private communication. For further
detail contact: Dr. David Kahaner, University
of California, LosAlamos Scientific Research
Laboratory, Contract W-7405~ENG-36,
P.0,Box 1663, LosAlamos NM 87545, U.S.A..

[7] M.Mansour, Jury E.I., Chapparo L.F,: (1978)
"Estimation of the Margin of Stability for
Linear Continuous and Discrete Systems'.
Internal Report no. 78~01. To be ordered
from: Institute for Automatic Control, The
Swiss Federal Institute of Technology Zurich,
ETH - Zentrum, CH~8092 Zurich, Switzerland.

[81 J.D.Lambert: (1973) "Computational Methods in
Ordinary Differential Equations”. John Wiley.

[9] B.Lindberg: (1973) "IMPEX 2 - A Procedure for
Solution of Systems of Stiff Ordinary Dif-
ferential Equations", Report TRITA-NA-7303 .
To be ordered from: The Royal Institute of
Technology, Stockholm, Sweden.

18-5

